4.3.3 Sharpening Filters

- Objectives:
 - to highlight fine detail
 - to enhance detail that has been blurred
- various methods according to applications :
- 1) Basic highpass spatial filtering
- Impulse response :
 - positive coeffs. near its center
 negative coeffs. in the outer periphery

3×3 sharpening filter

	-1	-1	-1
$\frac{1}{9}$ ×	-1	8	-1
l Carre	-1	-1	-1

• HPF:

- eliminate the zero frequency term
- → reduce the average gray-level value to zero
- → reduce significantly the global contrast of image

- ✓ dark background, enhance edge
- 2) High-boost filtering:
- High pass = original lowpass
- High boost (high freq. emphasis):
 - high boost = A(original) Lowpass
 = (A-1)(original) + original-Lowpass
 = (A-1)(original) + Highpass
 where A: amplification factor
 - if $A=1 \rightarrow$ standard highpass result
 - when A>1
 - ✓ part of original is added back to the highpass result
 - ✓ restore partially the low freq. components lost by HPF
 - ✓ the result : the high-boost image looking more like the original image
 - ✓ relative degree of edge enhancement : dependent on the value of A
 - implementation;
 - ✓ the center weight of mask w=9A-1

A: increase → background : brighter

3) Derivative filters:

• Low pass :

- Integration: analogous to average
- tend to blur detail

• Differentiation:

- effect opposite to integration
- sharpen an image
- gradient, for f(x,y)

$$- \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

- magnitude;

$$\nabla f = mag(\nabla \mathbf{f}) = \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right]^{\frac{1}{2}}$$

z₁ z₂ z₃
z₄ z₅ z₆
z₇ z₈ z₉
(a)

1	0
0	-1

0	1
-1	0

(b) Roberts

-1	-1	-1
0	0	0
1	1	1

-1	0	1
-1	0	1
-1	0	1

(c) Prewitt

-1	-2	-1
0	0	0
1	2	1

-1	0	1,
-2	0	2
-1	0	1

(d) Sobel

- approximately, at point z_5 ;

$$\frac{\partial f}{\partial x} = z_5 - z_8$$
, $\frac{\partial f}{\partial y} = z_5 - z_6$, $\nabla f \approx [(z_5 - z_8)^2 + (z_5 - z_6)^2]^{\frac{1}{2}}$

- another approach; Use of cross difference

$$\nabla f \approx [(z_5 - z_9)^2 + (z_6 - z_8)^2]^{\frac{1}{2}}$$

- \Rightarrow implemented using masks of size 2× 2
- ex.) (b) Roberts cross-gradient operators
- 3×3 mask;

$$\nabla f \approx |(z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)| + |(z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)|$$

- (c) Prewitt operator
- (d) Sobel operator
- all masks;
 - : sum of all weights in mask : 0
 - → mean of HPF (for even values of gray levels → zero output)

ex.) Edge enhancement by gradient technique

- (a) original image
- (b) image obtained by using Prewitt mask
- (c) image obtained by setting to maximum white (255) any gradient value greater than 25 (that is, approximately 10% or higher of the highest possible gray-level value in the image)

Any point which do not meet this criterion: set equal to its original value

- → restoring the background white and enhancing prominent edge
- (d) image obtained in the same way as (c), except that point for which the gradient did not exceed 25 : set to zero (black)

4.4 Enhancement in the Frequency Domain

procedure :

$$f(x,y) \xrightarrow{F.T} F(u,v) \xrightarrow{\text{filtering}} G(u,v) = F(u,v) \cdot H(u,v) \xrightarrow{\text{IFT}} g(x,y)$$

- spatial:
 - simpler implementation _____ Than freq. domain processing
 - higher speed operation
 - → frequently used
- understanding of freq. domain concept :
 - essential to the solution of many applications.

4.4.1 Lowpass filtering

- high freq. components in image:
 - edge, sharp transitions (noise)
 - blurring : obtained by LPF
- $G(u,v) = H(u,v) \cdot F(u,v)$

1)ideal filter

• 2-D ideal LPF:

$$H(u,v) = \begin{cases} 1 & if \quad D(u,v) \le D_0 \\ 0 & if \quad D(u,v) > D_0 \end{cases}$$
 where D_0 : nonnegative value

D(u,v): distance from point (u,v) to origin that is $D(u,v) = (u^2 + v^2)^{1/2}$

- radically symmetric about the origin
- D_0 : cutoff freq.

ex.)

(a) image with a variety of detail from fine to coarse

• total power:

$$- P_T = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} P(u,v)$$

- β percent of power

$$\beta = 100 \left[\sum_{u} \sum_{v} P(u, v) / P_{T} \right]$$

Sum taken over value of (u,v) inside circle

• In (b):

radius of circles : 8, 18, 43, 78, 153

 β percent of power : $\beta = 90, 93, 95, 99, 99.5$

• the results of applying ideal LPF with cutoff freqs. At the radii given above

- (a) original image
- (b) β =90, clear indication that most of the sharp detail information is contained in the 10% power removed by the filter
- (c) $\beta = 95$, Still severe ringing
- (d) $\beta = 99$, Mild degree of blurring
- (e) β =99.5, essentially the same as the original

• blurring and ringing properties of ILPF:

$$G(u,v) = H(u,v) \cdot F(u,v)$$

$$g(x,y) = h(x,y) * f(x,y)$$

(a) blurring function, (b) two bright spots, (c) g(x, y) = h(x, y) * f(x, y)

- 2) Butterworth filter
- to reduce ringing artifacts: no sharp discontinuity

$$H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}}$$

(a) butterworth filter (b) radial cross section

→ smooth transition in blurring

→ no ringing effect

4.4.2 high pass filter

- IHPF;

2) Butterworth filter

• BHPF:

$$H(u,v) = \frac{1}{1 + [D_0/D(u,v)]^{2n}}$$

ex.) BHPF: order 1

- (a) origin
- (b)
- (c)
- high pass filtered image high boost (high freq. emphasis) high boost + histogram equalization (d)

3) Homomorphic Filter (Multiplication)

Image:

$$f(x,y) = i(x,y)r(x,y)$$
illumination reflection

• Procedure:

- taking logarithm:

$$z(x, y) = \ln f(x, y)$$
$$= \ln i(x, y) + \ln r(x, y)$$

- FT

$$Z(u,v) = I(u,v) + R(u,v)$$

- Filtering

$$S(u,v) = H(u,v)Z(u,v)$$
$$= H(u,v)I(u,v) + H(u,v)R(u,v)$$

- IFT

$$s(x,y) = i'(x,y) + r'(x,y)$$

- Take inverse operation of log -> exponent

$$g(x,y) = \exp[s(x,y)]$$

$$= \exp[i'(x,y)] \cdot \exp[r'(x,y)]$$

$$= i_0(x,y)r_0(x,y)$$

 $i_0(x, y), r_0(x, y)$: illumination and reflection components of output image

• Homomorphic system:

- H(u,v): homomorphic filter

• Filter H(u,v) affects the low – and high–freq. components of FT in different ways :

- Parameters;

$$\gamma_L < 1, \gamma_H < 1$$

- Filter;
 - ✓ decrease the low freq.
 - ✓ amplify the high freq.
 - \Rightarrow simultaneous dynamic range compression and contrast enhancement

ex.)

(a) original (b)
$$\gamma_L = 0.5$$
 $\gamma_H = 1.5$

4.5 Generation of Spatial Masks from Frequency Domain Specification

- spatial domain processing:
 - simple to implement
 - short time to process
- given freq. domain filter:

— appro. → spatial mask

$$G(u,v) = H(u,v)F(u,v)$$

$$g(x,y) = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} h(x-i, y-k) f(i,k)$$

with
$$x,y = 0,1,...,L-1$$

h: spatial convolution mask

$$H(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} h(x,y) \exp(-j2\pi (ux + vy)/N)$$

for u,v = 0,1,...,L-1

- suppose

$$h(x, y) = 0$$
 for $x > n$, $y > n$ with $n < N$

 $\rightarrow n \times n$ convolution mask \hat{h}

$$\hat{H}(u,v) = \frac{1}{N} \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} \hat{h}(x,y) \exp(-j2\pi(ux+vy)/N)$$
for $u,v=0,1,...,N-1$

- find $\hat{H}(u,v)$ with error minimization such as;

$$e^{2} = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} |\hat{H}(u,v) - H(u,v)|^{2}$$

- in matrix form

$$\checkmark$$
 $\hat{\mathbf{H}} = \mathbf{C}\hat{\mathbf{h}}$

where $\hat{\mathbf{H}}$: column vector of order N^2

 $\hat{\mathbf{h}}$: column vector of order n^2

 $\mathbf{C}: N^2 \times n^2$ matrix of exponential terms

- in matrix form;

$$e^{2} = (\hat{\mathbf{H}} - \mathbf{H})^{*} (\mathbf{H} - \hat{\mathbf{H}})$$
$$= \|\hat{\mathbf{H}} - \mathbf{H}\|^{2}$$
$$= \|\hat{\mathbf{C}}\hat{\mathbf{h}} - \mathbf{H}\|^{2}$$

where | | : complex Euclidian norm.

- derivative;

$$\frac{\partial e^2}{\partial \hat{\mathbf{h}}} = 2\mathbf{C}^* (\mathbf{C}\hat{\mathbf{h}} - \mathbf{H}) = 0$$

$$\rightarrow \hat{\mathbf{h}} = (\mathbf{C}^*\mathbf{C})^{-1}\mathbf{C}^*\mathbf{H}$$

✓ specified N× N filter function h(x,y)

$$\xrightarrow{\text{error}} n \times n$$
 convolution mask $\hat{h}(x, y)$

- b) filtered using a BLPF \rightarrow blurred image
- c) n=9
- 9× 9 convolution mask

filtered using spatial filter of 9×9 convolution mask obtained by eg. (4.5-12)

: slightly less blurred than that obtained by using the complete filter in freq. Domain