5.8 Restoration in Spatial Domain

• Coeffs. of convolution mask:

$$\hat{\mathbf{h}} = (\mathbf{C}^*\mathbf{C})^{-1}\mathbf{C}^*\mathbf{H}$$
 *: conjugated transpose
= $\mathbf{C}^{\#}\mathbf{H}$

Ex.)

- (a)infrared image corrupted by nearby periodic scanner interference (visible as ripple) interference → produce burst of concentrated energy in the vertical axis of FT (fig. 13 (a))
 - notch filter fig. 5-13 (b)
- (b) notch filtered images
- (c) use of 9×9 convolution mast
- (d) second pass of mask

5.9 Geometric Transformations

- modify the spatial relationship between pixels in image
 - (called rubber-sheet transformation)
 - two basic operation
 - i. spatial transformation
 - ii. gray-level interpolation

5.9.1 Spatial Transformations

• image f: pixel coordinates (x, y)g: geometric distortion with pixel coordinates (\hat{x}, \hat{y}) $\hat{x} = r(x, y)$

$$\hat{x} = r(x, y)$$

 $\hat{y} = s(x, y)$ Spatial transformation

 spatially relocation of pixel tiepoints
 modeled by bilinear equations

$$r(x,y) = c_1x + c_2y + c_3xy + c_4$$

$$s(x,y) = c_5x + c_6y + c_7xy + c_8$$
or
$$\hat{x} = c_1x + c_2y + c_3xy + c_4$$

$$\hat{y} = c_5x + c_6y + c_7xy + c_8$$

eight unknown value c_i, i=1,8

corresponding tiepoints

(a) geometrical distorted image (b) corrected image

5.9.2 Gray-level Interpolation

• Zero order interpolation

Nearst integer approach

• Bilinear interpolation

$$v(\hat{x}, \hat{y}) = a\hat{x} + b\hat{y} + c\hat{x}\hat{y} + d$$

From 4 known neighbor of (\hat{x}, \hat{y}) , calculate unknown values of a,b,c,d Finally one can obtaine $v(\hat{x}, \hat{y})$