
7.3 Threshoding

• the most important approaches to image segmentation

7.3.1 Foundation

(a)

- light objects on a dark background
- grouped into two dominant modes
- select threshold T that separates these modes
- object point : f(x, y) > T

background point : otherwise

(b)

- three dominant mode
 - ex. 2 types of light objects

a dark background

-
$$T_1 < f(x, y) \le T_2$$
 Two object
$$f(x, y) > T_2$$

$$f(x, y) \le T_1$$
 background

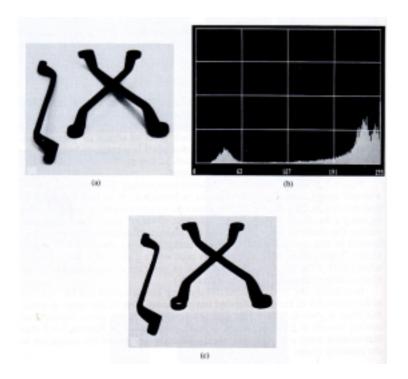
- multilevel thresholding
 - : generally less reliable than single thresholding
 - : difficulty of establishing multiple thresholdings that effectively isolate regions
- thresholding operation

$$T = T[x, y, p(x, y), f(x, y)]$$

where $f(x, y)$: gray level of point (x, y)
 $p(x, y)$: some local property of this point

- thresholded image

ex.) average gray level of neighborhood centered on (x, y)


$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T & \text{:object} \\ 0 & \text{if } f(x,y) \le T & \text{:backgound} \end{cases}$$

if T: depend only on $f(x, y) \rightarrow \text{global}$

T : depend on both f(x,y) and $p(x,y) \rightarrow local$

T : depend on the spatial coordi. x angle \rightarrow dynamic

7.3.3 Simple Global Thresholding

- threshold T=70
- eliminating shadow
- any pixels with gray level $\leq T \rightarrow \text{black } (0)$ any pixels with gray level $> T \rightarrow \text{white } (255)$ $\rightarrow \text{binary image } (c)$
- this method : successful in highly controlled environment
 ex.) industrial inspection applications
 where illumination control : usually feasible
 - $(\Theta \text{ illumination}: a \text{ crucial role in establishing the shape of the histogram in resulting image})$

7.3.4 Optimal Thresholding

- only two principal brightness regions
 - histogram : estimate of brightness probability density function p(z)
- ✓ sum or mixture of two unimodel densities : one for the light and one for the dark regions
- ✓ mixture parameter : proportional to the area of picture of each brightness
 - if form of densities : known \rightarrow segmentation : possible
- mixture probability density function
 - $p(z) = P_1 p_1(z) + P_2 p_2(z)$

for the Gaussian case

$$p(z) = \frac{P_1}{\sqrt{2\pi}\sigma_1} \exp\left[-\frac{(z-\mu_1)^2}{2\sigma_1^2}\right] + \frac{P_2}{\sqrt{2\pi}\sigma_2} \exp\left[-\frac{(z-\mu_2)^2}{2\sigma_2^2}\right]$$

where μ_1, μ_2 : mean

- \checkmark constraint $P_1 + P_2 = 1$
- ✓ five unknown parameters
 - if all parameters: known
 - → optimal threshold : easily determined
- suppose
 - dark region : background
 - bright region : object
 - $\mu_1 < \mu_2$ threshold T
 - gray level $\leq T \rightarrow$ background points

gray level $> T \rightarrow$ object points

- error prob. (object → background points)

$$E_1(T) = \int_{-\infty}^{T} p_2(z) dz$$

background \rightarrow object points error prob.

$$E_2(T) = \int_T^\infty p_1(z) dz$$

- overall prob. of error

$$E(T) = P_2 E_1(T) + P_1 E_2(T)$$

- min. error
 - ✓ differentiating with T and equaling result to 0

$$\checkmark P_1 p_1(T) = P_2 p_2(T)$$

$$\rightarrow AT^2 + BT + C = 0$$

$$A = \sigma_1^2 - \sigma_2^2$$

$$B = 2(\mu_1 \sigma_2^2 - \mu_2 \sigma_1^2)$$

$$C = \sigma_1^2 \mu_2^2 + \sigma_2^2 \mu_1^2 + 2\sigma_1^2 \sigma_2^2 \ln(\sigma_2 P_1 / \sigma_1 P_2)$$

- if variances : equal, $\sigma_1^2 = \sigma_2^2 = \sigma^2$

 \rightarrow single threshold

$$T = \frac{\mu_1 + \mu_2}{2} + \frac{\sigma^2}{\mu_1 - \mu_2} \ln \left(\frac{P_2}{P_1} \right)$$

- if prior probs. Are equal, $P_1 = P_2 = P$
 - → single threshold

$$T = (\mu_1 + \mu_2)/2$$

7.3.5 Threshold Selection Based on Boundary Characteristics

- selection of good threshold
 - histogram peaks : tall, narrow, symmetric, separated by deep valleys
 - consider only those pixels that lie on or near the boundary between objects and background
 - → improve the symmetry of the histogram peaks
 - using pixels that satisfy some simple measures based on gradient and Laplacian operators
 - → tendency to deepen the valley between histogram peaks
 - valleys of histogram formed from the pixels selected by a gradient/Laplacian criterion : sparsely populated
 - → highly desirable deep valleys
- gradient ∇f (7.1-4) (7.1-5)


Laplacian $\nabla^2 f$ (7.1-10)

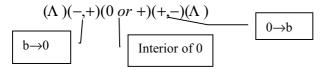
→ three level image

$$s(x,y) = \begin{cases} 0 & \textit{if} & \nabla f < T \\ + & \textit{if} & \nabla f \geq T & \textit{and} & \nabla^2 f \geq 0 \\ - & \textit{if} & \nabla f \geq T & \textit{and} & \nabla^2 f < 0 \end{cases} \rightarrow \text{dark}$$

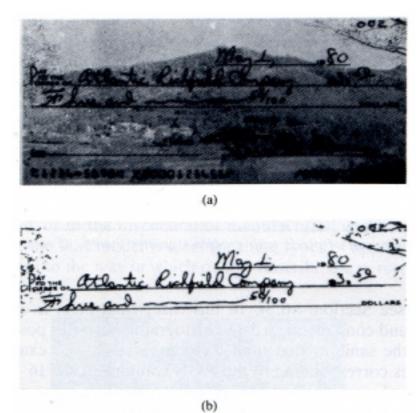
: three distinct gray levels

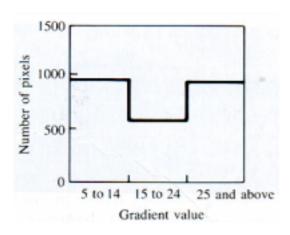
+, -: reversed for a light object on a dark background

• For example, object $\rightarrow 1$ background $\rightarrow 0$ transition


from light background to dark object \rightarrow (-, +)

from object to background \rightarrow (+, -)


interior of object \rightarrow 0 or +


• horizontal or vertical scan line containing a section of an object

ex.)

- histogram : two dominant modes which are symmetric, same height and are separated by a distinct valley
- T: midpoint of valley

- histogram as a function of gradient value for pixels with gradients greater than 5

7.3.6 Thresholds based on Several Variables

- so far, thresholding a single intensity variable
- more than one variable
 - characterize each pixel in an image
 - ex.) color image (RGB components)
 - ✓ 3-D histogram
 - ✓ processing : the same as that used for 1-D processing (one variable)

✓

- ex.) for three 16-level color image (RGB)
 - \rightarrow 16×16 ×16grid (cube) : formed
 - \rightarrow the no. of pixels : inserted in each cell : 3-D histogram

division → normalized histogram

- ✓ thresholding: find clusters of points in 3-D space
- ✓ one cluster \xrightarrow{assign} one intensity other cluster \xrightarrow{assign} other intensity
- ✓ seeking cluster: increasingly complex task as the no. of variable increase

ex.)

• HIS model

- hue, saturation \rightarrow color components
- automated inspection
 - ex.) inspection of fruits in ripeness inspection of manufactured goods
- closely related to human perception of color