7.4 Region-Oriented Segmentation

• 7.1, 7.2: finding boundaries between regions based on intensity discontinuities

• 7.3 : via thresholds based on the distribution of pixel properties such as intensity or color

• 7.4 : based on finding the regions directly

7.4.1 Basic Formulation

R: entire image region

 $R_1, R_2, ..., R_n$: n subregions

(a)
$$Y_{i=1}^{n} R_{i} = R$$

(b) R_i : connected regions i=1,2,...,n

 $\text{(c)} \quad R_i \; \mathbf{I} \; \; R_j = \emptyset \qquad \qquad \text{for all i and j,} \; \; i \neq j$

(d) $P(R_i) = TRUE$ for i=1,2,...,n and

(e) $P(R_i \mid R_j) = FALSE$ for $i \neq j$

where $P(R_i)$: logical predicate over the points in set R_i

• Condition (d)

- properties that must be satisfied by the pixels in a segmented region

ex.) $P(R_i) = TRUE$ if all pixels in R_i : the same intensity

• Condition (e)

- region R_i, R_j : different in the sense of predicate P

7.4.2 Region Growing by Pixel Aggregation

Pixel aggregation

- start with a set of seed pixels

- append to each seed point those neighboring pixels that have similar properties (ex. Gray level, texture, color)

ex.)

	1	2	3	4	5
1	0	0	5	6	7
2	1	1	. 5	8	7
3	0	1	6	2	7
4	2	0	7	6	6
5	0	1	5	6	5
Ī	hell in	Hidron P	(a)	- OT - DO	entine
	a	a	ь	ь	ь
	2	a	ь	ь	b
Ī	a		ь	ь	ь
	a	a	ь	ь	ь
Ī	a	a	ь	ь	ь
	ylino b	on abno	(b)	ins em	dimir i
1	2	a		a	a
	a				a
	a	49		a	a
1	а	a	a	a l	a
1	a		a	a	a

- ✓ seed points : (3,2), (3,4)
- ✓ property P: gray level difference less than threshold
- \checkmark if T=3 : fig. 7.35 (b) \rightarrow two regions R_1, R_2
- ✓ if T=8 : fig. 7.35 (c) \rightarrow single region

Difficulties

- <u>selection of initial seeds</u> that properly represent region of interest and selection of suitable properties
- based on the nature of problem
 - ex.) military appli. of infrared imaging
 - ✓ target : hotter than background \rightarrow brighter
 - \therefore the brightness pixel \rightarrow seed

if priori information is not available

- ✓ the cluster of values : exist
 - \rightarrow the center pixels of the clusters : seeds
- selection of similarity criteria depends on
 - ✓ dependent on the problem
 - ✓ type of image data available
- typically, region analysis
 carried out with a set of descriptors based on intensity and spatial properties
 - ex) moments, texture of a single image source

Description

- descriptor + connectivity or adjacency information
 - → meaningful result

Stopping rules

- basically, stop when no more pixels satisfy the criteria
- intensity, texture, color : local criteria
- history
 - ✓ size of region
 - ✓ likeness between a candidate pixel and the pixels grown so far (ex. Intensity of candidate and average intensity of the grown region)
 - ✓ shape of region being grown
- assumption
 - ✓ model of expected result : at least partially available ex.)

criteria (1), (2)

7.4.3 Region Splitting and Merging

- i) subdivide an images initially into a set of arbitrary, disjointed regions ii) then merge and/or split the regions to satisfy the Sec. 7.41 condition
- square image R $\xrightarrow{Subdivide}$ quadrant regions so that for any region $P(R_i) = TRUE$ that is if P(R) = FALSE, divide the image into quadrant splitting procedure

- after splitting, the final partition -> adjacent regions with identical properties merging, only adjacent regions that satisfy the predicate P that is two adjacent region R_i and R_j : merged, if $P(R_i \mid X \mid R_j) = T$
- summary
 - image : splitted into a set of square block

ex.)

ex.)

- criteria

 $P(R_i) = T$ if at least 80% of the pixels in R_i have the property $\left| z_j - m_i \right| \le 2\sigma_i$

where z_j : the gray level of j th pixels in R_i

 m_i : mean gray level of that region

 σ_i : standard deviation of gray levels in R_i

- value of all pixels in $R_i \to m_i$
- (b): result of above criteria
- (c): histogram thresholding

7.5 The use of Motion in Segmentation

- motion : powerful cue for objects
- spatial and freq. Domain analysis

7.5.1 Spatial Techniques

1) Basic Approach

• Detection of change between two image frames $f(x, y, t_i), f(x, y, t_j)$

- pixel-by-pixel comparison → difference image
 - $\checkmark \quad d_{ij}(x,y) = \begin{cases} 1 & if \quad |f(x,y,t_i) f(x,y,t_j)| > \theta \\ 0 & otherwise \end{cases}$

where θ : threshold

- ✓ result of noise
 - \rightarrow removal: form 4-or 8-connected regions of 1's in $d_{ij}(x,y)$ and then ignore any region that has less than a predetermined no. of entries
- ex.)

- ✓ object with constant intensity
- ✓ constant velocity
- ✓

2) Accumulative differences

- Changes at a pixel location over several frames
 - random noise(changes that occur only sporadically)
- A sequence of images $f(x, y, t_1), f(x, y, t_2), ..., f(x, y, t_n)$
 - $f(x, y, t_i)$: reference image
 - Accumulative Difference Image (ADI)
 - ✓ A counter for each pixel location in accumulative image
 - : incremented every time a diff. occurs at that pixel location between the ref. and an image in sequence

• three types of ADI

- absolute (AADI), positive (PADI), negative (NADI)
- PADI, NADI: in eg. 7.5.1

$$|f(x, y, t_i) - f(x, y, t_j)| \to f(x, y, t_i) - f(x, y, t_j)$$

ex.)

- object
 - \checkmark intensity: greater than the background
 - ✓ constant velocity in a SE direction

