Numerical Differential Equations Syllabus (Fall Semester, 2016) Graduate School, Ewha Womans University

Course Number : MA 506 Hours and Credits : 3 hr 3 cr Instructor : Prof. June-Yub Lee E-mail : jyllee@ewha.ac.kr Class Hour : Tue 2, Thur 3 Office Hour : Tue/Thur (1:30-2:30) Office : SciCmplx A324(3277-3451) http://math.ewha.ac.kr/~jylee

1. Main text book

Michael Celia(MIT/Princeton) and William Gray(Notre Dame), Numerical methods for differential equations, fundamental concepts for scientific and engineering applications. Prentice Hall. [PDE+FDM/FEM]

2. References

- Robert Schilling and Sandra Harris(Clarkson), Applied numerical methods for engineers (using Matlab and C), Brooks/Cole, 2000. [Basic Numerical Tools]
- John Strikwerda(Wisconsin), Finite Difference schemes and PDEs, Wadsworth & Brooks / Core, 1989. [Finite difference method]
- *Charles Hall and Thomas Porsching(Pittsburgh)*, Numerical Analysis of PDEs, Prentice Hall, 1990. [Finite element method / Analysis]
- *Tikhonov and Samarskii*, **Eqs of Mathematical physics**, Dover, 1963(1990) [PDE]
- Sobolev, PDEs of Mathematical physics, Dover, 1964(1989) [PDE]

3. Homeworks and Evaluation Scheme

- Homework or Computational Project : 4-5 times (40%)
- Final Examination : Theory and basic idea methods (60%)

4. Weekly Syllabus

주	강 의 주 제	강 의 제 목	교재 페이지	비고
1-4	Partial differential equation	1.1 Physical systems1.2 Defs and Eqs Properties1.3 Characteristics and BC	1-43	9/1(W) 9/14-16(W-F)
5-6	Finite difference approximation (one-dimensional FDM)	2.1 Discrete approximations2.3 Analysis of approximation2.4 Generalized Formulation2.6 Initial Value Problems	44-90	
7-8	Finite difference approximation (Multi-dimensional FDM)	2.7 Multi-dimensional problems2.8 Two dimensional examples	91-108	
9	Midterm Exam Week	Review	_	
10-12	Finite Element approximation (Theoretical basis)	3.1 Weighted residuals3.3 Computation Procedures3.4 Mathematical requirements	114-165	
13-14	Finite Element approximation (Computational Methods)	3.5~3.6 Method of weighted residuals in 2D/3Ds3.7 Galerkin Finite Element method	166-177	
15	Miscellaneous Topics	4.3 Space-Time Discretization	242-254	
16	Final Exam Week	Final (Written) Exam	_	12/15(Thur)