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Motivation

e Sought: cos(0.1)

e Missing: calculator or lookup table

e Known: cos for another (nearby) value, i.e., at O
e Also known: lots of (all) derivatives at 0

e Can we use them to approximate cos (0.1)7

e VWhat will be the worst error of our approximation?

These techniques are used by computers, calculators, tables.
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Taylor Series

e Series definition: If 3f(*)(¢), k =0,1,2,..., then:
f"(c)

f(x) =~ flo)+ f(c)(xz—c)+ > (z —c)°>+ ---
— f(k)(c) k
N /;::o TR

e cis a constant and much is known about it (f(¥)(¢))
e 1 a variable near ¢, and f(x) is sought

e With ¢ = 0 = Maclaurin series

e¢ What is the maximum error if we stop after n terms?

e Real life: crowd estimation: 100K +10K vs. 100K +1K

Key NM questions: What is estimate? What is its max error?
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Taylor Series — cosx

| |
2 4
e

function value

Better and better approximation, near ¢, and away.
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Taylor’'s Theorem

e Theorem: If f € C"T1[a,b] then

n (k) (e (n+1) (¢(z
f(z) = Z Y )(CIZ—C)k—|— f (&( ))(CIZ—C)n-I_l,

i—o k! (n+1)!

where

x,c € [a,b], £&(x) € open interval between z and c

e Notes:
x f e C(X) means f is continuous on X
x feck(X) means f, 7, " 3, ..., %) are continuous
on X
x & =¢&(x), i.e., a point whose position is a function of x
x Error term is just like other terms, with £k :=n+ 1

&-term is “truncation error’”, due to series termination
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Taylor Series—Procedure

e Writing it out, step-by-step:
+ write formula for f(5)(z)
x choose ¢ (if not already specified)
x write out summation and error term
* note: sometimes easier to write out a few terms

e Things to (possibly) prove — by analyzing worst case &
x letting n — oo
* LHS remains f(x)
* summation becomes infinite Taylor series
* if error term — 0 =
infinite Taylor series represents f(x)
x for given n, we can estimate max of error term
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Taylor Series: e*

o f(x)=¢", |z|<oo.. fR)(z)=e? Vk
e Choose ¢c:=20

e \We have
n xk S ()

P—— (n-I—l)'

n—|—1

e As n — oo — take worst case £ (just less than x)
error term — 0 (why?) ..

ooxk 2 3

e’ = i 14+ —|- —|- —|'
k=0
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Taylor Series: sinx

o f(z)=singz, |z| < oo.. fF)(z) = sin <:1: + %),Vk, c:=0

e \We have

n wk - w(n+1)
s (), e+ T)
i—o k! (n+ 1)!

e Error term — 0 as n — o

e Even k terms are zero ... £ =0,1,2,..., and k> 2/ + 1

o sin (%) k. 2k+1 3 5
S L2+ (=1)%z _ r—, z
sinz = (20F1)! T Z ChFDT =Tyt

£=0
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Taylor Series: cosx

e f(z)=cosz, |z| < oco.. fF)(z) = cos (a; + %’“),Vk, ¢c:=0

e \We have

n rk m(n+1)
cosz = 3" COS(Q)xk_I_COS (@ +752)
i—o k! (n+1)!

e Error term — 0 as n — o

e Odd k£ terms are zero .. £ =0,1,2,..., and k — 2¢

o COS (”(2@) 2k 2 4

cosnggo (20, Z( (2k)|=1_§+ﬂ_m
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Numerical Example: cos (0.1)

e We have 1) f(z) =cosz and 2)¢ =0
2 4
*+ obtain series: cosz =15+ 77— -

e Actual value: cos(0.1) = 0.99500416527803...

o With 3z = 0.1 and ¥specific n's
x from Taylor approximations:

n* approximation lerror| <
0,11 0.01/2!

2, 3| 0.995 0.0001/4!

4,5 | 0.99500416 0.000001/6!
6, 7 | 0.99500416527778 | 0.00000001/8!

*includes odd k

Obtain accurate approximation easily and quickly.
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Taylor Series: (1 —z)~ 1

o f(2) =11, |z|<1.. fF)(z) = )Hl,wc, choose ¢ :=0

e \We have

v ok (n+1)!  g"t!
B Zo +(1—§(£U))"+2 (n+1)!

T >n+1 1
§(z) 1 —¢&(x)

e Why bother, with LHS so simple? Ideas?

|
(]
_|_
=
|

1
e Sufficient: \%@\”"L — 0 as n— oo

e For what range of z is this satisfied?

Need to determine radius of convergence.
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(1 —z)~! — Range of Convergence

e Sufficient: |{=£| <1

e Approach:
x get variable z in middle of sufficiency inequality
x transform range of £ inequality to LHS and RHS of
sufficiency inequality
x require restriction on «x
* but check if already satisfied

e (]<1=1—¢>0 = sufficient: —(1—-¢)<z<1—¢
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(1 — z)~! — Range of Convergence (cont.)

e Case x < £ <KO0:
* LHS: —(1 —2) < —(1-¢&) < -1 = require: —1<z /
* RHS: 1<1—-€¢6<1—x = require: <1,/

e Case 0 < ¢ <
x LHS: 1< —-(1—-¢) < —(1 —1z) = require: —(1 —z) <u,
or: —1 <0 +/
« RHS: 1 -z <1-£6<1 = require: z<1—z, or z <5

N —

e Therefore, for —1 <z <

1

)

N

@)
= Z a:k=1—|—:13—|—:132—|—:133—|—--- (Zeno: T =
1l —=x =0

Need more analysis for the whole range |z| < 1.
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Taylor Series: Inx

¢ f(@)=Inz, 0<z<2. . fF)(z) = (-1)F 20 v >

e Choosec:=1

e \We have
Nz = _qye-1(@ _1)"
e )
1
e Sufficient ‘% nt —~0asn— o

e Again, for what range of x is this satisfied?
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Inx — Range of Convergence
e Sufficient: % <1l...1—-¢<z<14¢

o

e Case 1 < &< x:
* LHS: 1 -2 <1-£<0 = require: 0<z 4/
* RHS: 2<14€&< 14z = require: <24/

e Case x < £ < 1:
x LHS: 0<1—-¢é<1—z = require: 1—z <z or: 5<uw
*x RHS: 14+ 2<14+£<2 = require: <14z

o Therefore, for 3 <z <2

- po1(@— 1P (z—1)% | (z—1)°
|nx_k§::1(—1) =D

Again, need more analysis for entire range of x.
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Ratio Test and Inx Revisited

e [ heorem: ‘a”é‘gl‘ » (< 1) = partial sums converge

e Inxz: ratio of adjacent summand terms (not the error term)

n—l—l _

—|—1

e Obtain convergence of partial sums for O < x < 2

e Note: not looking at & and the error term

e x=2: 1-%+4+%— ... which is convergent (why?)

e r = 0: same series, all same sign = divergent harmonic series
e .we have O <z <2
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(1 — )~ ! Revisited

o Letting z — (1 —x)

5132 513'3
In(l—x)=—<:c—|— >t +> ~1<z<1

o 4:1hs =L and rhs=—<1—|—:1:-|—x2—|—a:3—|—---)

° A: no “=" for x = —1 as rhs oscillates (note: correct avg
value)

e |x| <1 we have (also with ratio test)

1

=1+4+z4+22+2>+--
l—=x
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Proximity of x to ¢

Problem: Approximate In2
e Solution 1: Taylor In(1 4 x) around 0 with x =1
1 1 1 1 1 1 1
n2—1--4 - - -4 - _ _ 4+ __
2 T 3 4 T 5 6 T 7 8 T
e Solution 2: Taylor In (1"';') around 0 with z =%

3 5 7
|n2=2<3—1+3_+3__|_3_+ )
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Proximity of z to ¢ (cont.)

e Approximated values, rounded:
* Solution 1, first 8 terms: 0.63452
x Solution 2, first 4 terms: 0.69313

e Actual value, rounded: 0.69315

e .. importance of proximity of evaluation and expansion points

This error is in addition to the truncation error.
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Polynomials and a Second Form
e Polynomials € C®(—o0, o0)
* have finite number of non-zero derivatives, .-.

x laylor series Ve¢ ... original polynomial, i.e., error = 0O
2 (K)o
fz)=32%2-1, ... f(z)= Y U )xk=—1—|—0—|—3x2

k=0 k!
x laylor Theorem can be used for fewer terms
* €.d.. approximate a Py7 near c by a P3

e Taylor's Theorem, second form (z = constant expansion
point, h = distance, x + h = variable evaluation point):
If f € C"T1[a,b] then

@) e FOTDEM) g

f(x+h)=,go k! (n+ 1)!

x,x+ h € [a,b], &(h) € open interval between x and =z + h
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4
Taylor Approximate: (1 — 3h)5

4
e Define: f(z) =25; x =1 is the constant expansion point
1 6 11
o Derivs: f/(2) =5275, f(2) = 25275, ["(z) = 23275, ...
o
4 4 4 _1 4 _6.5 24 _ 11 3
(:1:—|—h)5—a:5—|—g:1: 5h—2!.52:1: 5h —|-3!.53:13 5h> 4 ...
4 4 4 _1 4 _6 5 24 _ 11 3
(m——3h)5——x5——gx 53h——2!.52x 59h ——3!.53x 527h>+...
4 4 4 24
1—-3h)5 = 1——3h— Oh? — 27h3 4+ ...
( ) 5 21.52 31.53 +
12 18 108
= 1—-""h——"h°———"Rr3+..

5 25 125
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Second Form — In(e 4+ h)

e Evaluation of interest: In(e 4 h)

e Define: f(z) =In(z)

e r = e IS the constant expansion point
o INn = 2>0

e Derivatives

f(z)=Inz fle) =1
;:’( (Z))z 2_1‘2 ;Z’((e))= 6_1‘2
F1(2) = 2,3 f"(e) = 2¢—3

[ = ()" =1 () = (-1)" (- 1le™
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In (e + h) — EXxpansion and Convergence

e Expansion (recall: x = e)
YVerl(k — 1)le kpk
Ll
(n—l— 1)!

_|_

In(e+h)=f(z+h) = 1—|—Z( L

or

n (_1)k—1 h k (_1)?’1,( h >n—|—1
In (e-l—h) =14 _ -4
k; k (e> n+ 1 \&(h)

e Range of convergence, sufficient (for variable h): —¢§ < h <&
* caseet+h<&<e ... —5<h
x casee<é<e—4h: ... h<e
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O() Notation and MVT

e AS h — 0, we write the speed of j(h) — O

f(ry=0(r*) = |fI<

. 1 2. c 11 1
e.g., f(h): h, 1555n h*: let h — 15, 155> 600> - - -

e Taylor truncation error = O(h”"‘l); if for a given n the max
exists, then

e (n+1) n
C .= ‘rgn(;agf (£(h))‘/( + 1)!

e Mean value theorem (Taylor, n = 0): If f € Cl[a,b] then
F®) = f(a)+ ®-a)f' (&), €€ (a,b)

or.

Fio =10 1@
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Alternating Series Theorem

e Alternating series theorem: If ay > 0, ag > ag41, Vk > 0, and
ap, — 0, then

n
3 (=1)*ap, — S and |S — Sp| < ap41
k=0

e Intuitively understood
e Note: direction of error is also know for specific n
e \We had this with sin and cos

e Another useful method for max truncation error estimation

Max truncation error estimation without &-analysis
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In(e + h) — Max Trunc. Error Estimate

e What Is the max error atter n + 1 terms?
e Max error estimate also depends on proximity—size of A
«+ from Taylor: obtain O(h”"‘l)

1 1 n—+1
lerror| < ?|h|”"']L max |—
n

3

x from AST (check the conditions!): also obtain
O(h""‘l), with different constant

1 |htl
lerror| < -
n—+1lle
L _e. 1.1 1.1 1 1
e Eg:h=-5In5=1- 7_7'2_2_3 55— 4 oF —

* Taylor max error (occurs as & — g"'). —=

1 1
* AST max error: =7 - 5ny

x Nnote the huge difference in max error estimate
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Number Representation

e Simple representation in one base # simple representation in
another base, e.q.

(0.1);5 = (0.0 0011 0011 0011 ...),

e Base 10:

37294 4 + 90 + 200 + 7000 + 30000

4%x1094+9x10 ' +2x%x10%247x 103+ 3 x 104

n
in general: an...ag= Y a;10"
k=0
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Fractions and Irrationals

e Base 10 fraction:

07217 =7x 1071 4+2%x1072+1x103+7x 1074
e In general, for real numbers:

n o0
an...agby...= Y apl0"+ 3 b 107"
k=0 k=1

e Note: d numbers, i.e., irrationals, such that an infinite number
of digits are required, in any rational base, e.g., e, m, V2

e Need infinite number of digits in a base % irrational

1
(0.333...)1p but 3 is not irrational
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Other Bases

e Base 8, A ‘8" or ‘9’, using octal digits

15495
—_ o5 4 — —
(0.36207)g =87>(3x 8" +---) = ores = (047286 .. )10
e Base 16: ‘0', ‘1', ..., '9', ‘A’ (10), ‘B’ (11), ‘C’ (12), 'D’
(13), ‘E’ (14), 'F' (15)
e Base 8
n oo
(an...ao.bl...)ﬁ — Z akﬂk —|— Z bkﬂ_k
k=0 k=1

e Base 2: just ‘O’ and ‘1’, or for computers: "“off” and “on’’,
“bit” = binary digit

Copyright ©2004 by A. E. Naiman NM Slides—Base Representations, p. 4



Base Representations

Definitions

Conversions

Computer Representation
Loss of Significant Digits

..‘U’.

Copyright ©2004 by A. E. Naiman NM Slides—Base Representations, p. 5



Conversion: Base 10 — Base 2

e Basic idea:

3781 1+ 10 B +10(7T+10@) | ="

(1010), \ (1000),
(111 011 000 101),

e Easy for computer, but by hand: (3781.372)9

remainder 0'373
2)3781 | b —[0l74a
2)1890 [1]=q¢p 4 v 1= >
2)945 [0]= a3 bp =1].488 (drop 1))
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Base 8 Shortcut

e Base 2 < base 8, trivial

(5651.624)g = (101 101 001.110 010 100),
e ~ 3 bits for every 1 octal digit
e One digit produced for every step in (hand) conversion

e .. base 10 — base 8 — base 2
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Computer Representation

e Scientific notation:

32.213 — 0.32213 x 102

e In general

1
x = +0.d1d> ... x 10", dqy #0, or: z = +r x 10", 1—O§’I“<1

we have sign, “mantissa’ r and “exponent” n
e On the computer, base 2 is represented

1
x = £0.b1bs... x 2", by =0, or: z = +£r x 2", §§T<1

e Finite number of mantissa digits, therefore “roundoff” or
“truncation” error
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LSD—Addition

e (a+b)+c=a—+ (b+c) on the computer?

e Six decimal digits for mantissa

1,000,000. 4+ 1.4 ---+ 1. = 1,000, 000.

million times

because

0.100000 x 107 + 0.100000 x 10! = 0.100000 x 107
but
1.4 ---41.41,000,000. = 2,000,000.

million times

Add numbers in size order.
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LSD—Subtraction

e E.g.: x —sinx for z's close to zero

1
= — (radians
* T )

r = 0.66666 66667 x 101

sinz = 0.66617 29492 x 101

£ —sSinz = 0.00049 37175 x 10~ 1

0.49371 75000 x 10~%

e Note
+ still have 10710 precision, but
%+ can we retain 3 “lost” digits for 10~13 precision?

Avoid subtraction of close numbers.
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LSD Avoidance for Subtraction

e r—Sinx for x 0 — use Taylor series
* NO subtraction of close numbers

x e.d., 3terms: 0.49371 74328 x 104
actual: 0.49371 74327 x 104

o ¥ — e 2% for x ~ 0 — use Taylor series twice and add
common powers

2 T2
\/ 1—1forz~0 —
* VIt g 24141

e Ccos2z —sin?x for z ~ T — cos2z

° In:c—lfora:ze—ﬂn%
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Motivation

e For a given function f(x), find its root(s), i.e.:
= find x (or r = root) such that f(z) =0

e BVP: dipping of suspended power cable. What is A7

Acosh%—A—lO=O

e (Some) simple equations = solve analytically

6w2—7x—|—2

= 0 cos3x —cos7x = O
(3z—2)(2z — 1) 0 2sinb5xsin2x = 0
2 1 nmw N cZ
I r = — —, N
* 37 2 5 2
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Motivation (cont.)

e In general, we cannot exploit the function, e.qg.:

w2_ —
2 10z +1=0

cosh <\/:c2 +1— ex) + log |sinz| = 0

e Note: at times d multiple roots
x €.g., previous parabola and cosine
x we want at |least one
x we may only get one (for each search)

and

Need a general, function-independent algorithm.
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Bisection Method—EXxample

4 |
2l /x
2_ -
)
=2 1r .
>
8 O_ ................................................................................................................... -
5 "Ll T
c
S5 27 ]
Y—
3L i
4 - _
-5
a L2 T3 X1 L0 b

Intuitive, like guessing a number € [0, 100].
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Restrictions and Max Error Estimate

e Restrictions
x function slices z-axis at root
x start with two points @ and b > f(a)f(b) <O
% graphing tool (e.g., Matlab) can help to find a
and b
+ require COa,b] (why? note: not a big deal)

e Max error estimate
x after n steps guess midpoint of current range
x error: e < 2n+1 (think of n =10,1,2)
*x note: error is in x; can also look at error in f(x) or
combination
*x enters entire world of stopping criteria

Question: Given tolerance (in z), what is n? ...
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Convergence Rate

e Given tolerance 7 (e.qg., 10_6), how many steps are needed?

e Tolerance restriction (e from before):
< b—a
(e = 2n+1) =7

e ... 1) x 2, 2) |og (any base)

log(b—a) —nlog2 < log 27
or
log (b —a) — log 27
log 2

n >

Rate is independent of function.
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Convergence Rate (cont.)

e Base 2 (i.e., bits of accuracy)

n>logo(b—a) —1—10go T
i.e., number of steps is a constant plus one step per bit

e Linear convergence rate: 3C € [0,1)
‘xn_H — fr‘ <Clzp—r], n>0
l.e., monotonic decreasing error at every step, and
‘xn_H — r‘ < C" g — |

e Bisection convergence
x not linear (examples?), but compared to init. max error:
% Ssimilar form: ‘$n+1 —r| < C"Tl(b—q), with C = %

Okay, but restrictive and slow.
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Newton’'s Method—Definition

e Approximate f(x) near xg by tangent /(x)
f(z) = f(zo) + f'(z0)(z — z0) = £(z)
Want ¢(r) =0 = r =g — flwo) = . x1 .=, likewise:

f(zo)"
. _ _ f(zn)
n+1 — Tn f’(xn)

e Alternatively (Taylor's): have zg, for what h is

f(zo+ h) = f(zg) + hf'(zg) or h = — f((ﬁ?)
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Newton’'s Method—Example

1.2
1r i

© 0.8t -

e 0.2

0.2 | | | |

Copyright ©2004 by A. E. Naiman NM Slides—Nonlinear Equations, p. 11



Convergence Rate

e T heorem: With the following three conditions:

Dfr)y=0, 2f'(r)y#0, ¥fec?(B(rd)) =
10 >Vzg € B(r,d) and Vn we have ‘xn_H — 'r‘ < C0)|xn — ’I“|2

x for a given §, C is a constant (not necessarily < 1)

e English: With enough continuity and proximity =
quadratic convergence!

e Note: again, use graphing tool to seed xg

Newton’'s method can be very fast.
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Convergence Rate Example

f(x)=a23—-2224+2—-3, zg=4

4 33
3 9
2.4375 2.036865234375

2.21303271631511 0.25636333850614183
2.17555493872149 0.00646336148831306
2.17456010066645 4.47906804996122e — 06
2.17455941029331 2.15717547991101e — 12

e Stopping criteria

* theorem: uses z; above: uses f(x)—often all we have

* possibilities: absolute/relative, size/change, x or f(x)
(combos, ...)

But proximity issue can bite, .. ..

OO0, WNHOS
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Sample Newton Failure #1

O N W H» O

function value

|
Y

Runaway process
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Sample Newton Failure #2

4_ —
O 2 —
=
©
>
.50_ .......................................................................................................................... |
4
O
c
2-2 i
-4 = -

|
Ln

Division by zero derivative—recall algorithm
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Sample Newton Failure #3

\ ©
o o O

I
o

function value

|
- |
0] =
|
|

I
N

Loop-d-loop (can happen over m points)
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Nonlinear Equations

Motivation
Bisection Method
Newton's Method
Secant Method
Summary

.‘U’...
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Secant Method—Definition

e Motivation: avoid derivatives

e Taylor (or derivative): f/(zn) ~ f(zn)—F(2n-1)

In—Tp—1

In—Tnp—1

® .. Tpy41 = Tn — f(xn)f(wn)—f(wn—l)

e Bisection requirements comparison:
* |4/ | 2 previous points

x | x| f(a)f(b) <O

e Additional advantage vs. Newton:
x only one function evaluation per iteration

e Superlinear convergence: ‘xn+1 — 'r‘ < Clzp — r|1-618---
(recognize the exponent?)
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Nonlinear Equations

Motivation
Bisection Method
Newton's Method
Secant Method
Summary

‘U’....
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Root Finding—Summary

e Performance and requirements

f € C? | nbhd(r) | init. pts. | O | m | speedy
bisection X X 2 V|1 X
Newton Vi Vv 1 X |2 Vi
secant X Vv 2 X |1 W

O requirement that f(a)f(b) <O
m function evaluations per iteration

e Often methods are combined (how?), with restarts for
divergence or cycles

e Recall: use graphing tool to seed zg (and zq)
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Interpolation and Approximation

= Motivation

e Polynomial Interpolation
e Numerical Differentiation
e Additional Notes
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Motivation

e [ hree sample problems
x {(x;,y;)]t =0,...,n}, (x; distinct), want simple (e.g.,
polynomial) p(x) >y; = p(x;),t =0,...,n =
“interpolation”
x Assume data includes errors, relax equality but still
close, ... least squares
*x Replace complicated f(z) with simple p(z) =~ f(x)

e Interpolation
*x similar to English term (contrast: extrapolation)
x for now: polynomial
x later: splines

Use p(x) for p(xznew), [ p(x)dz, .. ..
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Interpolation and Approximation

Motivation

Polynomial Interpolation
Numerical Differentiation
Additional Notes

..‘U’.
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Constant and Linear Interpolation

function value

e n=0: p(z) =y

e n=1 p(z) =yo+ g(x)(y1 —yo), 9(x) € P, and

0, =z,
g(:v)={1 °

. — Z—xQ
r=x1 -9(z) T1—xQ

e n—= 2. more complicated, ....
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Lagrange Polynomials

e Given: z;, 1 =0,...,n; “Kronecker delta": 9;; = { ?’ zfj.’
e Lagrange polynomials: Z;(x) € Pn, Ei(:c]) = 5Z-j, t1=20,...,n
x independent of any y; values

o E.g., n=2:

function value
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Lagrange Interpolation

e \We have
_ _ (0, j#0
€Zr xZr xZr xZr —_ - ’ ’
to(x) = L2722 yolo(z;) =wodo; = |, L
ro—T1 O — I \ ’
r—rg I —I ([0 77#1
bi(x) = : : bilx;) =y161; = < 7~ ’
1(z) i1 — 2o o1 —xzo Y1 1(z5) = y101; g, =1
r — I r — I ( .
E xZr — . , - — 07 J # 27
2(®) To —To T2 — T1 yQEQ(xJ') =Y202; = | Yo, j =2
2
o .. 3lp(z) € Py, with p(z;) =y;,  =0,1,2: p(z) = Y yili(x)
i=0
nooxr—x;
e In general: (z) = ] J i=0,...,n
AL
J3=9 7
JFi
e Great! What could be wrong? Easy functions (polynomials),
interpolation (. error = 0 at z;) ... but what about p(znew)?
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Interpolation Error & the Runge Function
o {(zi, f(z))]i=0,...,n}, [f(z) —p(x)| <7

—1
e Runge function: fr(z) = (1 +:132> ,x € [—5,5] and uniform

mesh: A p(x)'s wrong shape and high oscillations

lim max T) — )| = o
Jim. max | fr(@) - pa(@)|

1

function value
(@)

| | | I | | |
g T7 Te T (Q T3 T2 T1 XQ
(= -5) (= a) (=5)
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Error Theorem

e Theorem: ..., f € C"T1[qa,b], Vz € [a,b], 3¢ € (a,b) >
r) — p(x) = 1 (n+1) - T — x;
1@ 3 = PO T e -

e Max error
« with z; and z, still need max, p) f("T1 ()
x with z; only, also need max of []
* without z;:

max [[ (z — ;) = (b — a)" !
(aab) Z:O
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hebyshev Points

-

function value

Yg7 26 25 24 23 22 730
(=-1) (=0) (=1)

e Chebyshev points on [—1,1]: x; = COS [(%)w] t1=20,...,n

e In general on [a,b]: z; = %(a +b) + %(b — a) COS [(%)ﬂ

1=20,...,n

e Points concentrated at edges
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Runge Function with Chebyshev Points

function value
(@)

_xgc; L6 L5 ( 0

g x3 T2 TEQ,

Is this good interpolation?
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Chebyshev Interpolation

Same interpolation method
Different interpolation points

Minimizes
n

1 (= — =)

1=0

Periodic behavior = interpolate with sins/coss instead of Py,
x uniform mesh minimizes max error

Note: uniform partition with spacing = chebq — chebg
x num. points 1 .. polynomial degree 1 .". oscillations ¢

Note: shape is still wrong ... see splines later
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Interpolation and Approximation

Motivation

Polynomial Interpolation
Numerical Differentiation
Additional Notes

.‘U’..
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Numerical Differentiation

e Note: until now, approximating f(z), now f'(x)

o fl(z)~ f(fc-l-hg—f(fﬂ)
e Error =7
o Taylor: f(zx+ h) = f(z) + hf'(z) + h2f”2(€)

o o fl(z) = HEHZIE _ Lp e

e I.e., truncation error: O(h)

Can we do better?
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Numerical Differentiation—Take Two

e Taylor for +h and —h:
f(z+h) =
f(x) + hf'(x) + h2E5E) £ p370) 4 paf @) 4 5O 4

e Subtracting:

f<5>(:v>
5I

f’”( )_|_2 5

f(z 4 h) — f(z — h) = 2hf'(z) + 2h>

/ _f($+h)_f($_h) 1. o.m
/(@) = - ~ S " (@) -

We gained O(h) to O(hQ). However, . ..
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Richardson Extrapolation—Take T hree

e \We have

figy = L@ D) —f( —h)

2
=¢(h)

+ash? + aah* + agh® + - -

- -

e Halving the stepsize, ..

Qb(h) — f,(x) — a2h2 — a,4h,4 — a,6h6 _ e

-3 -3) el

3 15
—3f(x) — Za4h4 — Ea6h6 — .

©-
AN
N[
N—
|

s(h) — 49

Q: So what? A: The h?2 term disappeared!
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Richardson—Take Three (cont.)

e Divide by 3 and write f/(z)

Fa) = 50(5) - o) — jaah® — Zach® — -
= o) +3[(3) - o] +o(n?)

"

)

e (x) only uses old and current information

We gained o(h2) to o(h4)!!
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Interpolation and Approximation

Motivation

Polynomial Interpolation
Numerical Differentiation
Additional Notes

‘U’...
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Additional Notes

e Three f/(z) formulae used additional points =
vs. Taylor, more derivatives in same point

e Similar for f"(x):

f(x £ h) = f(z)Lhf (33)+h2f (x):lzh3f///(x)—|-h4f( )($):|:h5f( )($)+,_,
Adding:

f(z 4 h) + f(z —h) = 2f(z) + h2f"(z) + %h4f(4>(x) 4.
or.

fx+h)—2f(z) + f(z - h)

h2 h’2 (4) (x) —I_

(@) =

- error = O(h2>
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Numerical Quadrature

= Introduction

Riemann Integration
Composite Trapezoid Rule
Composite Simpson’'s Rule
Gaussian Quadrature
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Numerical Quadrature—Interpretation

e f(x)>0 on [a,b] bounded = fé’ f(x)dx is area under f(x)

I I

function value
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Numerical Quadrature—Motivation

e Analytical solutions—rare:

T

2 .
/ Sinx dxr = — CoS x|
0

ONIz

=-(0-1)=1

e In general:

NS

/O (1 - a?sin? 9)%49

Need general numerical technique.
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Definitions

e Mesh: P={a=29<z1 <---<xp=>}, n subintervals (n+1

points)

e Infima and suprema:

m; = inf{f(x):xigxgxi+1}
M; = Sup{f(x):xinSxH_l}

e Two methods (i.e., integral estimates): lower and upper sums

L(f;P)

U(f, P)

e For example, . ...

Copyright ©2004 by A. E. Naiman

n—1

> m; (l‘i+1 - fvz)

1=0
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Lower Sum—Interpretation

function value

T1TD x%ﬁ%)

Clearly a lower bound of integral estimate, and . ..
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Upper Sum—Interpretation

function value

T1TD x%ﬁ%)

. an upper bound. What is the max error?
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Lower and Upper Sums—Example

e Third method, use lower and upper sums: (L4 U)/2
o f(z) =22 [o,b] =[0,1] and P ={0,%,3,% 1]

— [ — 15
o ,L—3—2,U—3—2

e Split the difference: estimate 5 (actual 3)
e Bottom line
x Naive approach

x oW n
- 1
+ still error of g5. (1)

e Max error: (U—-L)/2 =%

Is this good enough?
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Numerical Quadrature—Rethinking

e Perhaps lower and upper sums are enough?
x Error seems small
x Work seems small as well

e But: estimate of max error was not small (%)
e Do they converge to integral as n — oco?

e Will the extrema always be easy to calculate? Accurately?
(Probably not!)

Proceed in theoretical and practical directions.
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Numerical Quadrature

Introduction

Riemann Integration
Composite Trapezoid Rule
Composite Simpson’'s Rule
Gaussian Quadrature

...‘U’.
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Riemann Integrability

o fc (CYa,bl], [a,b] bdd = f is Riemann integrable

e When integrable, and max subinterval in P — 0 (|P|—0):

b
lim L(f;P):/ f(z)dz = lim U(f; P)

|P|—0 a |P|—0

O, x rational,

e Counter example: Dirichlet function d(x) = { 1 5 irrational

= L =0, U=b—a
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Challenge: Estimate n for Third Method

e Current restrictions for n estimate:
* Monotone functions
* Uniform partition

e Challenge:

viy
* estimate/O eCOST dx

% error tolerance = % % 103
x using L and U

*x n =7
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Estimate n—Solution

o f(z)=e" N\ on [0,7] .. m; = f(ziy1) and M; = f(a;)

n—1 n—1

o LL(fiP)=hY f(zig1) and U(f; P)=h > f(z;), h=1
i=0 i=0

e Want (U - L) < 5 x1073 or %(el — e_1> <103

e ... n>7385 (1) (note for later: max error estimate = O(h))

e Number of f(x) evaluations
x 2 for (U — L) max error calculation
x > 7000 for either L or U

We need something better.
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Numerical Quadrature

Introduction

Riemann Integration
Composite Trapezoid Rule
Composite Simpson’'s Rule
Gaussian Quadrature

..‘U’..
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Comp05|te Trapezoid Rule (CTR)
e Each area: 2(x2+1 ) f(:cz)—l—f(:cH_l)

n—1

e Rule: T(f;P)=3 2 (:z:z-_|_1 — xz) [f(:ci) + f(:cz'+1>]

e Note: for monotone functions and any given mesh (why?):
T=(L+U)/2

e Pro: no need for extrema calculations

e Con: adding new points to existing ones (for a
non-monotonic function)
x 1" can land on "bad point” =
no monotonic improvement (necessarily)
x L and U look for extremum on [a;z-,aci_|_1] =

monotonic improvement
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CTR—Interpretation

function value

T1TD x%ﬁi)

Almost always better than L or U. (When not?)
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Uniform Mesh and Associated Error

e Constant stepsize h = b_Ta

n—1
T(f; P) = h{ > f) + 5L o) + f(:vn)]}
1 =1

e Theorem: f € C?[a,b] — I € (a,b) >
1

b /!
| f@)de = T(£; P) = = (b= )h?f"(&) = O(n?)

e Note: leads to popular Romberg algorithm (built on
Richardson extrapolation)

How many steps does T'(f; P) require?
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etO>T Revisited—Using CTR

T
e Challenge: /o e > dz, error tolerance = % x 1073, n =7

o f(x) =€" = fl(z) = —€e“®Tsinz ... |f(z)| <eon [0,7]
o .. |lerror| < %W(W/n)ze < % x 1073
e ... n>119

e Recall perennial two questions/calculations of NM
* monotonic . . estimate of T produces same (L+U)/2
x but previous max error estimate was less exact (O(h))

Better estimate of max error .'. better estimate of n
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Another CTR Example

1 2
e Challenge: / e T dx, error tolerance = 1« 10_4, n=7

o)

N

2 2

o f(x)=e ", = fl(x) = _2z¢~%° and () = (4:132 — 2)6_“”
e .. |f"(z)| <2 o0n [0,1]
o = lerror| < ¢h?2 < 5 x 1074

e We have: n? > 2 x 10% or n > 58 subintervals

How can we do better?
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Numerical Quadrature

Introduction

Riemann Integration
Composite Trapezoid Rule
Composite Simpson’'s Rule
Gaussian Quadrature

.‘U’...
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Trapezoid Rule as ./Linear Interpolant

Linear interpolant, one subinterval: pi(x) = 2—:lgf(a) + 7=, f(b),
intuitively:

/bpl(x)d:c = f(a)/( —b)dx + f(b)/ (x —a) dx

a a—>b

_ CJ:(_"%[’)Q;“ —b(b—a)]-l—g(_b) [bQ;"’ — a(b—a)
= @[ T o]+ T

= 1@ (*57) + 5o (757

= 7 (@) + b))

CTR is integral of composite linear interpolant.

Copyright ©2004 by A. E. Naiman NM Slides—Numerical Quadrature, p. 20



CTR for Two Equal Subintervals

e n =2 (i.e., 3 points):

() = " H(M10) 4 U@ + s}
= i@ +2("27) + 1)
with error = O((”‘Ta>3)

e (Previously, CTR error = O(hQ) = TR error x n subintervals
= 0(1) x 0(3)

e Deficiency: each subinterval ignores the other

How can we take the entire picture into account?
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Simpson’s Rule

e Motivation: use py(x) over the two equal subintervals

e Similar analysis actually loses O(h), but ... 3¢ € (a,b) >

1@ +ar(“E) 4 o] - (222) e

e Similar to CTR, but weights midpoint more

b—a

/abfcc)d:c—

e Note: for each method, denominator = Z coefficients

Each method multiplies width by weighted average of height.
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Composite Simpson’s Rule (CSR)

e For an even number of subintervals n, h = I’_Ta 3¢ € (a,b) >
b 5 n/2
[ f@de = 2@+ (O] +4 X fla+ (2 = Dh]+
¢ 1=1 odd nodes
(n—2)/2 b—_a

2 S fla+2ih)y — —h (g

=1 even nodes

180

e Note: denominator = Z coefficients = 3n
x but only n + 1 function evaluations

Can we do better than O(h“)?
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Evaluating the Error

e Another important accuracy angle
x until now: error = O(h%)
+ now on, looking at f(#): error = 0 Vf € Pg_;

e With higher 3, pﬁ(az) can approximate any f(x) better

e Define e(z) = f(z) — pg(z)

. /f:/(pﬁ—l—e):/pﬁ—l—/e:meth0d<p5>—|—/e=

method(f) — method(e) + /e

e As 81 «(z) I, (/e—method(e)) L+ method(f) = [ f

Can we do better than Simpson’'s P37
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Integration Introspection

e Simpson beat CTR because heavier weighted midpoint

e But CSR similarly suffers at subinterval-pair boundaries
(weight = 2 vs. 4 for no reason)

e All composite rules
x ignore other areas
x patch together local calculations
x .". Will suffer from this

e What about using all nodes and higher degree interpolation?

e AIsSO note: we can choose
* weights
* |ocation of calculation nodes
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Numerical Quadrature

Introduction

Riemann Integration
Composite Trapezoid Rule
Composite Simpson’'s Rule
Gaussian Quadrature

‘U’....
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Interpolatory Quadrature

n
o i i) = |
j=0 Ti ™ Ty

JF

CIJ—ZI}j

, 1=0,...,n; p(x) = ) f(z)l(x)
i=0

o If f(z) ~ p(z) = hopefully /bf(:v) dz ~ /abp(:v) dz

a

o [p@yde= [ éo f @) ti(e) de = go e | " ti(x) &z

o A = A, <a, b; {;}"_

O), but A; % A;(f) |

b n
(Endpoints, nodes) = A; = / f)dz = > A;if(z;).
@ i=0
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Interp. Quad.—Error Analysis

e Vf € Py f(z) =p(z), and .-

Vfe P, = /bf(:v) dxr = i A;f(x;), i.e., error =0
@ i=0

e n+ 1 weights determined by nodes x; (and a and b)
e True for any choice of n 4+ 1 nodes x;

e What if we choose n + 1 specific nodes (with weights, total:
2(n+ 1) choices)?

Can we get error = 0 Vf € Popy417?
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Gaussian Quadrature (GQ)—Theorem

o Let
* q(x) € Py }/ *q(z)dr =0, k=0,.
i.e., q(x) L all polynomials of lower degree
x note: n 4+ 2 coefficients, n + 1 conditions
* unique to a constant multiplier
x x;, 1=0,...,n, > q(x;) =0
i.e., x; are zeros of q(x)

e Then Vf e Py,41, even though f(z) # p(x) (Vf € Pm, m > n)

b n
[ H@yde =3 Aif(w)
@ i=0

We jumped from P, to Py, 41!
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Gaussian Quadrature—Proof

o Let fe€ Py,41, and divideby g > f=sq+7r..s,r€ Py

e We have (note: until last step, z; can be arbitrary)

/abf(zc) dz = /abs(a:)q(a:) da:—l—/abr(a:) dz (division above)

— /a r(z) dz (L' ity of g(z))

= .ano Air(x;) (r € Pn)

= Z% A;[f(x;) — s(z;)q(x;)]  (division above)

= g:: A;f(x;) (x; are zeros of q(x))
|
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GQ—Additional Notes

e Example gn(xz): Legendre Polynomials: for [a,b] = [—1,1] and
gn(1) =1 (3 a 3-term recurrence formula)

3 1 5 5 3

2
T :]_, = , g — —, g — —x,...
q0(x) q1(z) =z, gq2(x) 5% 5 q3(x) ST = o

o Use g,4+1(z) (why?), depends only on a, b and n

e Gaussian nodes € (a,b) =

good if f(a) = oo and/or f(b) = < (e.g., ——dx)
0 vz
e More general: with weight function w(z) in
x original integral
x g(x) orthogonality
x weights A;

Copyright ©2004 by A. E. Naiman NM Slides—Numerical Quadrature, p. 31



Numerical Quadrature—Summary

e n -+ 1 function evaluations

composite? | node placement | error = 0 VH;
CTR Vv uniform (usually)* 1
CSR Vv uniform (usually)* 3
interp. X any (distinct) n
GQ X zeros of q(x) 2n + 1

*P.S. There are also powerful adaptive quadrature methods
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Linear Systems

= Introduction

Naive Gaussian Elimination
Limitations

Operation Counts
Additional Notes
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What Are Linear Systems (LS)?

a11x1 + a1ox> + -+ a1pxn = b1
a21r1 + axo2xp + -+ axpTn = b7

S T e
Gm1T1 t+ amoxo+ - +amnxTn = bm

e Dependence on unknowns: powers of degree <1

n
e Summation form: Y a;;z; =1b;, 1 <i<m, i.e., m equations
j=1

e Presently: m = n, i.e., square systems (later: m # n)

Q: How to solve for [z1 =5 ... zu]'? A: ...
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Overall Algorithm and Definitions

e Currently: direct methods only (later: iterative methods)

e General idea:
x Generate upper triangular system
( “forward elimination)
x Easily calculate unknowns in reverse order
( “backward substitution™)

e "Pivot row” = current one being processed
“pivot” = diagonal element of pivot row

Steps applied to RHS as well.
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Forward Elimination

e Generate zero columns below diagonal

e Process rows downward

for each row i :=1,n—1 { // the pivot row
for each row k =i+ 1,n { // ¥ rows below pivot
multiply pivot row > a;; = ay;
subtract pivot row from rowy // now ar; =0
} // now column below a;; is zero
} //nOWCLZ‘j:O,\V’i>j

e ODbtain triangular system

Let's work an example, ...
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Compact Form of LS

6rxr1 — 2o + 223 + 4dx4 = 16 )
1221 — 8xo + 6x3 + 10xg4 = 26 L
3xz17 — 132> + 923 + 3Bzx4 = —19
— 6xz1 + 4z + lxzz — 18z4 = —34 |
6 -2 2 4| 16
12 -8 6 10| 26
3 —-13 9 3| —-19
—6 4 1 —-18|-34

Proceeding with the forward elimination, ...
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Forward Elimination—Example

6 -2 2 4| 16 6 -2 2 4| 16
12 -8 6 10| 26 0 -4 2 2 -6
3 -139 3|-19| 7|0 -12 8 1|-27 |
6 4 1 —18|-34 0 2 3 —14 —18
6 —2 2 4] 16 6 —2 2 4] 16
0 -4 2 2| —6 0 -4 2 2|-6
O 02 -5/ -9|7]l0o 02 —-5/-9
0 0 4 —13|-21 O 00 —-3|-3

Matrix is upper triangular.
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Backward Substitution

6 —2 2 4 16
O 4 2 2| -6
O 0 2 -5|-9
O 00 -3 -3
e Last equation: - 3x4 = -3 =>4 =1
e Second to last equation: 2x3 — 53ﬂ/= 22,3 — 5= -9 =
=1
r3 = —2
e ... second equation ... o= ...
e ... [xl ro I3 $4]T=[3 1 -2 1]T

For small problems, check solution in original system.

Copyright ©2004 by A. E. Naiman NM Slides—Linear Systems, p. 8



Linear Systems

Introduction

Naive Gaussian Elimination
Limitations

Operation Counts
Additional Notes

..‘U’..

Copyright ©2004 by A. E. Naiman NM Slides—Linear Systems, p. 9



Zero Pivots

e Clearly, zero pivots prevent forward elimination

° A zero pivots can appear along the way
e Later: When guaranteed no zero pivots?

e All pivots =0 £ we are safe

Experiment with system with known solution.
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Vandermonde Matrix

(1 2 4 8 . pn—1 )
1 3 9 27 e 3n—1

1 4 16 64 - gn—1

\1 n+1 (n+1)2 (n+1)3 --. (n+1)"1
e Want row sums on RHS = z; =1,:1=1,...,n

e Geometric series:

tn— 1
1L+t4+t2 41" =
t—1
e We obtain b;, forrow:=1,...,n
n \ T
N (L4+4)" -1 1 ,
(144011 = _ = Z[(1 4+ )" — 1]
jz::1¥ oy J\x;/ (1+4)-1 g - y

b;

System is ready to be tested.
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Vandermonde Test

e Platform with 7 significant (decimal) digits
*x n=1,...,8 = expected results
x n=9: error > 16,000% !!

e Questions:
x VWhat happened?
x VWhy so sudden?
x Can anything be done?

e Answer: matrix is “ill-conditioned”
x Sensitivity to roundoff errors
x Leads to error propagation and magnification

First, how to assess vector errors.
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Errors

e Given system: Ax = b and solution estimate
e Residual (error): r= Az —b
e Absolute error (if z is known): e=x —

e Norm taken of r or e: vector — scalar quantity
(more on norms later)

e Relative errors: ||r[|/||b]| and |le||/||z]]

Back to ill-conditioning, ...
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Ill-conditioning

O-z1 + o2
r1 + x2

é }:> O pivot

e General rule: if O is problematic =
numbers near O are problematic

1—x5
€

=V and x1 =

8
|—l
_|_
8
N
|
N

° €Ty + T2 1}...332:%_1/6

e ¢ small (e.g., e =102 with 8 significant digits) = z», = 1 and
x1 = 0—wrong!

What can be done?
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Pivoting

e Switch order of equations, moving offending element off
diagonal

2 _
o }:>, x2=11_2€€ and :1:1=2—x2=11_€

5
'—l
+
5
N
|

1

(@)
8
|—l
_|_
8
N

|

e This is correct, even for small € (or even € = 0)
e Compare size of diagonal (pivot) elements to ¢

e Ratio of first row of Vandermonde matrix = 1 : 271

Issue is relative size, not absolute size.
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Scaled Partial Pivoting

e Also called row pivoting (vs. column pivoting)

.

e Instability source: subtracting large values: aj ; -= aij‘;’?
(]

?

e WJo l.0.g.: n rows, and choosing first row

e Find ¢ > Vrows k#14, V columns 3 > 1: minimize

8k
azjail‘

o O(n3) calculations! .-. simplify (remove k), imagine: a1 =1

aw

e .. find ¢ > V columns j > 1: min; |~ .
1

o Still 1)O<n2) calculations, 2how to minimize each row?

man |aw|
|a; 1]

Copyright ©2004 by A. E. Naiman NM Slides—Linear Systems, p. 16
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How Much Work on A7

Real life: crowd estimation costs? (will depend on accuracy)
Counting x and = (i.e., long operations) only
Pivoting: row decision amongst k£ rows = k ratios
First row:
x n ratios (for choice of pivot row)
x n — 1 multipliers
+ (n —1)2 multiplications
total: n? operations
e .-. forward elimination operations (for large n)

3

Y=+ 1)2n+1)— 1~ =
= 6 3

How about the work on b7
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Rest of the Work

n
—1
e Forward elimination work on RHS: Z (k—1) = n(n )
k=2 2
n
1
e Backward substitution: ) k= n(n;_ )
k=1

e Total: n? operations
e O(n) fewer operations than forward elimination on A

e Important for multiple RHSs known from the start
+ do not repeat O<n3> work for each
x rather, line them up, and process simultaneously

Can we do better at times?

Copyright ©2004 by A. E. Naiman NM Slides—Linear Systems, p. 19



Sparse Systems

IR
0

0
el s e X
KO O X X)

e Above, e.g., tridiagonal system (half bandwidth = 1)

e Opportunities for savings
x Storage
x computations

e Both are O(n)

Copyright ©2004 by A. E. Naiman NM Slides—Linear Systems, p. 20



Linear Systems

Introduction

Naive Gaussian Elimination
Limitations

Operation Counts
Additional Notes

‘U’....

Copyright ©2004 by A. E. Naiman NM Slides—Linear Systems, p. 21



Pivot-Free Guarantee

e \When are we guaranteed non-zero pivots?

e Diagonal dominance (just like it sounds):

aij, z=1,...,n

n

aiil > >
J=1

jFi

e (Or “>" in one row, and “>" in remaining)

e Many finite difference and finite element problems =
diagonally dominant systems

Occurs often enough to justify individual study.
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LU Decomposition

e E.g.: same A, many b's of time-dependent problem
x not all b's are known from the start

e Want A = LU for decreased work later
e Then define y: LUz = b

=y
x Solve Ly = b for y

x solve Uz =y for x
e U is upper triangular, result of Gaussian elimination

e [ is unit lower triangular, 1's on diagonal and Gaussian
multipliers below

e For small systems, verify (even by hand): A= LU

Each new RHS is n? work, instead of O(n3>
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Motivation

60 . -

-]
(—040
>
20
O o
£ 0
-
20
~40L— ' i . .

e Given: set of many points, or perhaps very involved function

e \Want: simple representative function for analysis or
manufacturing

Any suggestions?
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Let's Try Interpolation

Disadvantages:
e Values outside z-range diverge quickly (interp(10) = —1592)

e Numerical instabilities of high-degree polynomials
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Runge Function— Two Interpolations

1 T T T
uniform

Chebyshev

function value
(@)

L8 xl7 $I6 37'5 CI) CI3 CIQ CI?O
(=-5) (= 2= ca) (=5)

More disadvantages:
e Within z-range, often high oscillations

e Even Chebyshev points = often uncharacteristic oscillations
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Splines

Given domain [a,b], a spline S(x)
e Is defined on entire domain

e Provides a certain amount of smoothness

e 1 partition of “knots” (= where spline can change form)

{a’ =10,t1,t2,...,tn = b}
such that
([ So(z), =z € [to, 1],

S(CL‘) — Sl(w)a T € _t1:7t2]7

\ Sn—1(z), =€ :tn—latn]
IS piecewise polynomial
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Interpolatory Splines

e Note: splines split up range |[a,b]
x opposite of CTR — CSR — GQ development

e "Spline” implies no interpolation, not even any y-values

e If given points

{(to,v0), (t1,y1), (t2,¥2), .-, (tn,yn)}

“interpolatory spline” traverses these as well

Splines = nice, analytical functions
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Linear Splines

Given domain [a,b], a linear spline S(x)
e Is defined on entire domain

e Provides continuity, i.e., is C9[a, b]

e 1 partition of “knots”
{a’ =10,t1,t2,...,tn = b}
such that

S;(x) =a;x+b; € Pl([tiati—|—1])a 1=0,...,n—1

Recall: no y-values or interpolation yet
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Linear Spline—Examples

undefined part \/
discontinuous /

nonlinear par
linear spline

a b
e Definition outside of [a,b] is arbitrary

function value
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Interpolatory Linear Splines

e Given points

{(t07 yO)a (tla y1)7 (t27 y2)7 I (tna yn)}

spline must interpolate as well

e Are the S;(x) (with no additional knots) unique?
x Coefficients: a;z+b;,, :=0,...,n—1 = |total = 2n
«x Conditions: 2 prescribed interpolation points for S;(x),
i=0,...,n—1 (includes continuity condition) =
total = 2n

e ODbtain

Si(z) = ajx + (yi—aity), =TI —0 . n-1
tiv1 — 4
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Interpolatory Linear Splines—Example

@)

function value

[
N
o
|
|

~40 | | | | |
-4 -2 0 2 4

Discontinuous derivatives at knots are unpleasing, ...
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Quadratic Splines

Given domain [a,b], a quadratic spline S(x)
e Is defined on entire domain

e Provides continuity of zeroth and first derivatives, i.e., is
Cl{a,b]

e 1 partition of “knots”

{a = tg,t1,t2,...,tn, = b}
such that

S;(x) = ai$2—|—bi£€—|—ci S P2<[ti,ti_|_1]>, 1=0,...,.n—1

Again no y-values or interpolation yet
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Quadratic Spline—Example

a:2, x < 0, ,
f(x) =4 —22, 0<=z<1, f(x)=quadratic spline
l -2z, x> 1,
e Defined on domain (—oo, o) Vv

e Continuity (clearly okay away from x = 0 and 1):
x Zeroth derivative:

x f(07)=f(ot) =0
* Firs: dfe<r1iv_a>tije{c<l+) .

« f(07) =r(o%) =0

« f/(17) = f(1F) = -2 )

e Each part of f(x) is € P> Vi
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Interpolatory Quadratic Splines

e Given points

{(t()a y0)7 (t17 y1)7 (t27 y2)7 SR (tn7 yn)}

spline must interpolate as well

e Are the S;(x) unique (same knots)?

+ Coefficients: a;z2 +bjx4+¢;, i=0,....n—1 =
total = 3n
x Conditions:

* 2 prescribed interpolation points for S;(x),

i=20,...,n—1 (includes continuity of function
condition)

*x (n—1) Cl continuities

= |total = 3n -1
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Interpolatory Quadratic Splines (cont.)

e Underdetermined system = need to add one condition

e Define (as yet to be determined) z; = S'(¢;), i =0,...,n

e \Write
A 1 — 23
Si(z) = T (2 — )2 + zi(z — t;) + i
2(tig1 —ti)
therefore
Si(z) = @ —1) + 2
i+1 — b

e Need to

x verify continuity and interpolatory conditions
x determine z;
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Checking Interpolatory Quadratic Splines

Check four continuity (and interpolatory) conditions:

v
(i) Si(t;) Y Yi (iii) Si(t:) 7 Zi
(i) Si(ti41) = (below) — (iv) Sit;i11) L 2z
) Ziiq — 2
(i) Si(tig1) = =F 5 Ytigr — ti) + 2i(tigr — t:) + v
zi11 + 2
= =t > z(757:+1 - ti) + i
set
— Yi+1
therefore (n equations, n + 1 unknowns)
Zit1 =2yi_|_1 — —2z;, 1=0,...,n—1
bi41 — ¢

Choose any 1 z; and the remaining n are determined.

Copyright ©2004 by A. E. Naiman NM Slides—Approximation by Splines, p. 17



Interpolatory Quadratic Splines—Example

@)

function value

[
N
@)

~40 | | | | |

Okay, but discontinuous curvature at knots, ...
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Cubic Splines

Given domain [a,b], a cubic spline S(x)
e Is defined on entire domain

e Provides continuity of zeroth, first and second derivatives,
i.e., is C?[a,b]

e 1 partition of “knots”

{a = tg,t1,t2,...,tn, = b}

such that for :=0,...,n—1

S;(x) = a; :133 —+ b; :132 +c;x+d; € P3([tz',ti_|_1]>,

In general: spline of degree k ... Ck—1 .. P ...
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Why Stop at £ = 37

e Continuous curvature is visually pleasing
e Usually little numerical advantage to k£ > 3
e Technically, odd k’s are better for interpolating splines

e Natural (defined later) cubic splines
* “best” in an analytical sense (stated later)
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Interpolatory Cubic Splines

e Given points

{(t()a y0)7 (t17 y1)7 (t27 y2)7 SR (tn7 yn)}

spline must interpolate as well

e Are the S;(x) unique (same knots)?

+ Coefficients: a; 23+ b2 +cz+d;, i=0,....,n—1 =
total = 4n
x Conditions:

* 2 prescribed interpolation points for S;(x),

i=20,...,n—1 (includes continuity of function
condition)

*x (n—1) C! 4+ (n—1) C? continuities

= |total = 4n — 2
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Interpolatory Cubic Splines (cont.)

e Underdetermined system = need to add two conditions

e Natural cubic spline
x add: S"’(a) =S"(b) =0
* Assumes straight lines (i.e., no more constraints)
outside of [a, b]
x Imagine bent beam of ship hull
x Defined for non-interpolatory case as well

e Required matrix calculation for S; definitions
+ Linear: independent a; = ?i’fii:?t”? — diagonal
x Quadratic: two-term z; definition = bidiagonal

« Cubic: ... = tridiagonal
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Interp. Natural Cubic Splines—Example

@)

function value

[
N
o
|
|

|
N
o

-4 -2 0 2 4

Now the curvature is continuous as well.
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Optimality of Natural Cubic Spline

e [ heorem: If

x f € C?[a,b],

x knots: {a = tg,t1,to,...,tn = b}

x interpolation points: (¢;,v;) i vy; = f(t;), t=0,...,n

x S(x) is the natural cubic spline which interpolates f(x)

then
/b [S’"(:c)}zdx < /ab [f”(:c)fdw

a

e Bottom line
x average curvature of S < that of f
x compare with interpolating polynomial
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Approximation by Splines

e Motivation

e Linear Splines

e (Quadratic Splines
e Cubic Splines
= Summary
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Interpolation vs. Splines—Serpentine Curve

2
1.5+ % n
interpolator
) 1 |
2
g 0.5
S O .......................................................................................................
G.0.5
= | |
A | linear spline
-1.5+ .
Ny | | | | | | |

I I
-2 -15 -1 -05 0 05 1 15 2

Vs. oscillatory interpolator—even linear spline is better.
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Three Splines

Q0
@)

quadratic

IN o
o o

N
@)

function value

linear

20 | | | | |
-4 -2 0 2 4

Increased smoothness with increase of degree.
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Ordinary Differential Equation—Definition
e ODE = an equation
% involving one or more derivatives of xz(t)
x x(t) is unknown and the desired target
x somewhat opposite of numerical differentiation

3
o E.g. (&)7(t)+37te” Dsin Ja/(t) —logt =42 =
Which z(t)'s fulfill this behavior?

e “Ordinary” (vs. “partial”’) = one independent variable ¢

e "Order” = highest (composition of) derivative(s) involved
e ‘Linear’” = derivatives, including zeroth, appear in linear form
e “Homogeneous” = all terms involve some derivative

(including zeroth)
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Analytical Approach

e Good luck with previous equation, but others . ..

e Shorthand: =z = z(t), 2’ d(m(t)), r!! = %, .

e Analytically solvable
x o/ —x = e = z(t) =tet + ce
x 2/ +9x2 =0 = x(t) = cq5Sin3t+ co Ccos 3t

« o'+ 4 =0 = z({t)=+c—t
e ¢, c1 and co are arbitrary constants
e Need more conditions/information to pin down constants

* Initial value problems (IVP)
* Boundary value problems (BVP)

Here: IVP for first-order ODE.
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First-Order IVP

e General form:

' = f(t,z), z(a) given
e Note: non-linear, non-homogeneous

e Examples
xx'=xz4+1, 2(0)=0 = =z()=e -1
« ' =6t—1, z(1)=6 = z(t)=3t°—t+4

«+ o/ =17, 2(0)=0 = z@)=\t*+1-1

e Physically: e.g., t is time, x is distance and f =z’ is
speed/velocity

Another optimistic scenario ...
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RHS Independence of x
o f=f(t) but f# f(x)

o E.Q.

r' =312 - 4714 (14 t2>_1
x(5) = 17

e Perform indefinite integral

2(t) = /d(aég» dt = /f(t) dt

e ODbtain

r(t) =t3 —4Int+ arctant + C
C=17-53+4In5—arctanb

And now for the bad news . ..
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Numerical Techniques

e Source of need
x Usually analytical solution is not known
x Even if known, perhaps very complicated, expensive to
compute

e Numerical techniques
*x Generate a table of values for x(t)
x Usually equispaced in t, stepsize = h

* A with small h, and far from initial value
roundoff error can accumulate and Kkill

Copyright ©2004 by A. E. Naiman NM Slides—Ordinary Differential Equations, p. 6



Ordinary Differential Equations

Introduction

Euler Method

Higher Order Taylor Methods
Runge-Kutta Methods
Summary

...‘U’.

Copyright ©2004 by A. E. Naiman NM Slides—Ordinary Differential Equations, p. 7



Euler Method

e First-order IVP: given 2’ = f(t,z), =(a), want z(b)

e Use first 2 terms of Taylor series (i.e., n=1) to get from
x(a) to z(a + h)
truncation error
—N—

z(a+ h) = z(a) + hz'(a) + O(h?)
use f(a,z(a))

e Repeat to get from xz(a+ h) to z(a + 2h), ...
e Total n = b_Ta steps until x(b)

e Note: units of time/distance/speed are consistent
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Euler Method—Example

x(a)

Euler
actual function

function value, z(t)

e When will the slopes match up at the points?

Okay, but not great. What is the accuracy?
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Euler Method—Pros and Cons

e Note: straight lines connecting points
x from Euler construction (linear in h)
x can be used for subsequent linear interpolation

e Advantages
+ Accurate early on: O(hQ) for first step
x Only need to calculate given function f(t,x(t))
x Only one evaluation of f(¢,z(t)) needed

e Disadvantages
x Pretty inaccurate at b
+ Cumulative truncation error: n x O(hQ) = O(h)
* T his is aside from (accumulative) roundoff error

How about more terms of the Taylor series?
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Taylor Method of Order 4

First-order IVP: given ' = f(t,z), z(a), want z(b)

Use first 5 terms of Taylor series (i.e., n = 4) to get from
x(a) to z(a + h)
2

o(a+ 1) = a(@)+h ' (@) + 0’ (@) H s (@) + ) (@) 40 (k)
use f(a a:(a))
Use f/, " and " for z”, 2/ and z(%), respectively

Repeat to get from z(a + h) to x(a 4+ 2h),

Note: units of time/distance/speed still are consistent

Order 4 is a standard order used.
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Taylor Method—Numerical Example

o First-order IVP: 2/ =1+ 22 4¢3, (1) = —4, want z(2)

e Derivatives of f(t,x)
z 2x ' + 3t2
2
—— 258513”+2<£13,> + 61
() = 2z + 622" +6

e Solution values of z(2), n = 100
*x actual: 4.3712 (5 significant digits)
x Euler: 4.2358541
x Tayloryg: 4.3712096

How about the earlier graphed example?
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Tavlor Method of Order 4—Example

x(a)

Euler

actual function
Tayloryg

function value, z(t)

Single step truncation error of O<h5) = excellent match.
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Taylor Method of Order 4—~Larger Step

x(a)

Euler

actual function
Taylorg, h — 7h

function value, z(t)

Even single Taylor step beats Euler.
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Taylor Method—Pros and Cons

e Note: graphs connecting points: from construction (P4 in h)

e Advantages
x Very accurate
+ Cumulative truncation error: n x O(h5> — O(h4>

e Disadvantages
x Need derivatives of f(t,x(t)) which might be
% analytically: difficult
x numerically: expensive—computationally and/or
accuracy-wise
* Just plain impossible
* Four new evaluations each step (Euler was just one)

How to avoid the extra derivatives?
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Ordinary Differential Equations

Introduction

Euler Method

Higher Order Taylor Methods
Runge-Kutta Methods
Summary
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Motivation

e \We want to avoid calculating derivatives of f(t,z(t))

e Similar to Newton—secant motivation

e Also, recall different approaches for higher accuracy
x [aylor series: more derivatives at one point

* Numerical differentiation: more function evaluations, at
various points

e Runge-Kutta (RK) of order m: for each step of size h
x evaluate f(t,z(t)) at m interim stages

x arrive at accuracy order similar to Taylor method of
order m
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Runge-Kutta Methods: RK2 and RK4

e Each f(t,x(t)) evaluation builds on previous

e \Weighted average of evaluations produces z(t + h)
e Error for order m is O(hm‘|‘1) for each step of size h

e Note: units of time/distance/speed—okay

RK2: RK4:

z(t+h) =z(@)+5(F1 + F)  =(t+h) ==z(@)+
L(F1 + 2Py + 2F3 + Fy)

F; = hf(t,il?) ( F1 = hf(t,il?)

Fy = hf(t+ h,z+ Fy) F> = hf(t+ 3h,z+ 5F
< F3 = hf(t+ 3h,z + 5F>
| F4 = hf(t+ h,z+ F3)
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Ordinary Differential Equations

Introduction

Euler Method

Higher Order Taylor Methods
Runge-Kutta Methods
Summary
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Summary—~First-Order IVP Solvers

e Ccomplex and complicated IVPs require numerical methods

e Usually generate table of values, at constant stepsize A
e Euler: simple, but not too accurate

e High-order Taylor: very accurate, but requires derivatives of

ft, (1))

e Runge-Kutta: same order of accuracy as Taylor, without
derivative evaluations

e Error sources
* Local truncation (of Taylor series approximation)
* Local roundoff (due to finite precision)

* Accumulations and combinations of previous two
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L east Squares Method

Motivation and Approach
Linearly Dependent Data
General Basis Functions
Polynomial Regression
Function Approximation

....‘U’
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Source of Data

e Have the following tabulated data: o ¥l " | Im
Y19 Y1 || Ym
® oo

O oo

>

© o

>

> « ®

[
x; values

e E.g., data from experiment

e Assume known dependence, e.g. linear, i.e., y=ax + b
What a and b do we choose to represent the data?
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Most Probable Line

e For each point, consider the equation y; = ax; + b with the
two unknowns a and b

e One point = oo solutions
e Two points (different z;) = one unique solution

e > twoO points = in general no solution

> two points = What is most probable line?
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Estimate Error

e Assume estimates a and b =
error at (xg,yi): ex = axy + b — yx

eight is e,

y; values

x; values

e Note:
x vertical error, not distance to line (a harder problem)
x |ex| = no preference to error direction

How do we minimize all of the |eg|?
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Vector Minimizations

Minimize:

e largest component: min _max |ex|, “min-max”
a,b 0<k<m

m
e component sum: mibn > leg|, linear programming
a
" k=0
Note: |-| won't allow errors to cancel

m
e component squared sum: min Y ez, least squares
a

L —
——

=¢(a,b)

Why use least squares?
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¢p Norms

L 1
m p
o Definition: [[v][, = | >_ |vfP
k=0

e Minimizing ¢, 1 and > norms, resp., in 2—D (m = 1):
Ve =1 ”1“1IIV|I1 =1 ‘1 vl =1

\ / / \4
—1 vQ —1 M vQ —1 vQ
T \/1 " /1 )
—T1 1 —
= M p— —
[Vl o ax (Jvol, [v1]) V]l = |vol + [v1] [vll, = /03 + 3
e Why use (57
x Can use calculus (see below)

x If error is normally distributed =

get maximum likelihood estimator
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é(a,b) Minimization

m
e How do we minimize ¢(a,b) = Y ef wrt a and b7?

k=0
e Standard calculus: %Sét and %Sﬁto =

a
two equations with two unknowns

e If dependence of y on a and b is linear (and consequently,
dependence of ¢(a,b) is quadratic) =
minimization leads to linear system for ¢ and b
(linear least squares)

e Example also had linearly dependent data, i.e., y linear in x

Minimization of our example, ...
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L east Squares Method

Motivation and Approach
Linearly Dependent Data
General Basis Functions
Polynomial Regression
Function Approximation

...‘U’.
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LLS for Linearly Dependent Data—Method

Function to minimize:

m

d(a,b) =Y er = (azp +b—yp)?

k=0 k=0
lead to two differentiations:

m m
2> (arp+b—yp)zp=0,and 2 ) (azp+b—y;) =0
k=0 k=0

or as a system of linear equations in a and b:

ERERE

\k=0

(i f%)a-l- (m—+1)b = (i yk)

k=0 \ k=0
Coefficient matrix = cross-products of a and b coefficients.
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LLS for Linearly Dependent Data—Solution

We obtain:

1 m m m
a=g(m+1)zxkyk—zxk Y
k—0 k=0 k=0

and
1 m 5 m m m
bzd(z X Zyk— Zxk Zxkyk)
k=0 k=0 k=0 k=0

where d is the determinant:

m m 2
d=(m+4+1) Z x%— (Z xk)
k=0

k=0

What does this look like?
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LLS Solution for Sample Data

y; values

x; values

What about non-linearly dependent data?
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L east Squares Method

Motivation and Approach
Linearly Dependent Data
General Basis Functions
Polynomial Regression
Function Approximation
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Non-Linearly Dependent Data

e Linear least squares—for linear combination of any functions,
e.g.:

y=alnz+ bcosx + ce”

e Minimization of ¢: three differentiations:

00 ety 90 5et () gpg 20 %
da 0b Oc

e Elements of matrix: sums of cross-products of functions:

m m
S Inzp e, Y (coszy)?, ...
k=0 k=0

A more general form, ...
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linear Combinations of General Functions
i m_l_ 1 DOintS {(anyO)a(xlayl)a"'7(xm7ym)}

e n+ 1 “basis” functions go,91,-..,9n, Such that
n
g(x) = > cjgi(x)
J=0

e Error function ¢
m n 2
¢(607617--'7cn): Z Z C]g](xk)_yk
k=0 \j=0
e Minimization:

a¢_ m n set o
—=2> | > c¢jgjl@r) —yr|gi(xxg) =0, i=0,...,n

e k=0 \j=0

Pulling it together, ...
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Normal Equations

e “‘Normal equations’:

> (Z gi(zg) 9j($k)> ;= > yrpgi(zk), i=0,...,n

7J=0 \k=0 k=0

e Note: n+ 1 equations (i.e., rows) and n + 1 columns
m

o (Coefficient matrix);; = > gi(zg) 9;(x)
k=0

e Possible solution method: Gaussian elimination

e Require of g;(z) for any solution method
* linear independence (lest there be no solution)
*x appropriateness (e.g., not sin’'s for linear data)
*x well-conditioned matrix (opposite of ill-conditioned)

Copyright ©2004 by A. E. Naiman NM Slides—Least Squares Method, p. 15



Choice of Basis Functions

e \What if basis functions are unknown?

e Choose them for numerically “good” coefficient matrix (at
least not ill-conditioned)

e Orthogonality = diagonal matrix, would be nice

e Orthonormality = identity matrix, would be best, i.e.,

m
> gi(zk) gj(zg) = 6;j and compute coefficients directly
k=0

m
ci= Y ypgi(zg), i =0,...,n
k=0

e Can be done with Grahm-Schmidt process
Another method for choosing basis functions, ...
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Chebyshev Polynomials

e Assume that the basis functions are € Py, z; € [—1, 1]
e 1,z 22 z3,... are too alike to describe varying behavior

e Use Chebyshev 1polynomials: 1,2,222 — 1,423 — 3z, ...

function value

19~ 02 04 06 08 1

. with Gaussian elimination produces accurate results.
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Motivation and Approach
Linearly Dependent Data
General Basis Functions
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Motivation and Definition

e \Want to smooth out data to a polynomial py(x)
e Problem: what degree N polynomial?
e For m + 1 points, certainly N <m, as N = m is interpolation

e Define variance o2

1

m_

on=———73 [y —pu(z)]* (m>n)
k=0
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Regression Theory

e Statistical theory: if data (sans noise) is really of py(x), then:

2 2 2 2 2 _ 2 —_ _ 2
0'0>O'1>O'2>"'>O'N—O'N_|_1—O'N_|_2—"'—O'm_1

e With noisy data stop when 0% ~ 012\,4_1 ~ 012\,4_2 RN

QRN
o

2 ® o |

N—4 N N+ 4
polynomial degree, n
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Motivation and Approach
Linearly Dependent Data
General Basis Functions
Polynomial Regression
Function Approximation
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Continuous Data

e Given f(x) on [a,b], perhaps from experiment

e Replace complicated or numerically expensive f(x) with

9(z) = ¢jgi()

7=0

e Continuous analog of error function
b
#(coser,--ren) = [ [o(e) - f(@))Pda
e Can also weight parts of the interval differently

b
#(coset,-oren) = [ [9(e) — F@))P w(a) da
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Normal Equations and Basis Functions

e Differentiating, we get the normal equations

b b
/ gi<x>gj<x>w<w>dx]cj= | $@) @) w(z)dz, i=0,...,n
e Want orthogonality of (coefficient matrix); ;

b
/ 9i(z) gj(@) w(z)de =0, i # j

a

e For weighting interval ends, use Chebyshev polynomials since

1 1 0, 7’7+_Ja
/1Ti(a;)Tj(:1:) 2d:1;= 5, 1=3>0
- l—=x m, 1=3=0

Copyright ©2004 by A. E. Naiman NM Slides—Least Squares Method, p. 23



Simulation

= Random Numbers
e Monte Carlo Integration
e Problems and Games
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Motivation

e Typical problem: traffic lights (sans clover leaf)
x given traffic flow parameters ...
x how to determine the optimal period
x how to distribute the time per period
x note: these are all inter-dependent

e Analytically very hard (or impossible)
e Empirical simulation can approach the problem

e Need to implement randomization for modeling various
conditions

Less mathematical, but not less important.
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Random Numbers—Usage

e With simulation = assist understanding of
*x standard/steady state conditions
x various perturbations

e Monte Carlo. running a process many times with
randomization
x help draw statistics
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Random Numbers—Requirements

e Not ordered, e.g., monotonic or other patterns

e Equal distribution

e Often RNG produce z € [0,1)

e Desired (demanded!): P(a,a+ h) = h; independent of a
e Low or no periodicity

e NO easy generating function from one number to the next
x can be deceivingly random-looking
x e.g.: digits of «

Copyright ©2004 by A. E. Naiman NM Slides—Simulation, p. 4



Random Number Generators

e Computers are deterministic = not an easy problem

e Current computer 1(1)0 of seconds—not good

x for requests every < 1(130 second
x for any requests with periodicity of o second

e Often based on Mersenne primes (so far, 40 of them)
+ definition: 28 — 1, for some k
x e.g.. k=31 = 2,147,483,647
* largest (as of 17 November 2003): k£ = 20,996,011 =
6,320,430 decimal digits!
x Other usages: cryptology
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Testing and Using a RNG

e "“Not all RNG were created equal!”
e One can (and should) histogram a RNG

e Not obvious (nor necessarily known)
x number of trials necessary for testing a RNG
x number of trials necessary when using a RNG

e For ranges other than [0,1): apply obvious mapping
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Incorrect Usage—In an Ellipse

1
o 0.5 _
>
‘©
> an
§ o '
4+
O
cC
£-0.5 + -
-1 : i
2 -1 0 1 2

e Equation: 22+ 4y° =
e Generation algorithm:
x x; € rng(—2,2), y; € rng(—1,1)
*x y; correction: y; < (yZ/Q)M

1

Points bunch up at ends = non-uniformity.
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Incorrect Usage—In a Circle

©
o1

function value
(@)
1

0.5 1

e Generation algorithm: 6; € rng(0,27), ~, € rng(0,1)
Points bunch in the middle = non-uniformity.
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correct Usage—In an Ellipse

function value

e Generate extra points, discarding exterior ones
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Correct Usage—In a Circle

O
o1

function value
(@)

I
©
o1

-1

e Generate extra Cartesian points, discarding exterior ones
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Simulation

¢ Random Numbers
= Monte Carlo Integration
e Problems and Games
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Numerical Integration

1
e Motivation: to solve/O f(x)dx

e Possible solutions
x Composite Trapeziod Rule
x Composite Simpson’s Rule
x Romberg Algorithm
x GQuassian Quadrature

e Problem: sometimes things are more difficult, particularly in
higher dimensions

e Monte Carlo solution: for z; € rng(0,1)

1
| f@de = ()
e Error (from statistical analysis): O(1/+/n)
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Higher Dimensions and Non-Unity Domains

e In 3—D: for (z;,v;,2;) € rng(0,1)

1,1 ,1 1 7
0J0OJO —1

n .—
1
e Non-unity domain: for x; € rng(a,b)

b 1 .n
[ f@ydem b -a)> Y fa)
@ ni=1

e In general:

/Af ~ (size of A) x (average of f for n random points in A)
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Sample Integration Problem

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
%
e Integral:
siny/In (x 1)dxd
[ siny/in@+y+ 1) dwdy
e Domain:
1\2 1\2 1
o= (e-3) "+ 0-3) 2
| | ) T\ 3) =g
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Sample Integration Solution

000000000
CSDI—‘I\)OO-PU'I@\IOO@

n
e Solution: 41 > f(pi), p; chosen properly (how?)
=1
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Computing Volumes

e Problem: determine the volume of the region which satisfies:

0<z<1l 0<y<1l 0L 2z<L3
2 +siny < z
r+e¥Y+2>4

e Solution
* generate random points in (0,0,0) ... (1,1,3)
x determine percentage which satisfies constraints
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Geometric Interpretation

e Desired volume is on the left hand side, between the graphs
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Simulation

¢ Random Numbers
e Monte Carlo Integration
= Problems and Games
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Probability/Chance of Dice and Cards

e Dice
x 12, for 2 die, 24 throws
x 19, for many die
x |loaded die

e Cards
x shuffling in general
x Straight flush
x royal flush
x 4 of a kind

Can be calculated exactly, or approximated by simulation.
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Miscellaneous Problems

e How many people for probable coinciding birthdays?
e Buffon’s Needle
x |ined paper
x needle of inter-line length
x probability of dropped needle crossing a line?
Monty Hall problem
Neutron shielding (“random walk’)
n tennis players = how many matches?
100 light switches, all off
x person ¢ switches multiples of z, : =1,...,100
x which remain on?

Problems with somewhat difficult analytic solutions.
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