Numerical Methods

Aaron Naiman

Jerusalem College of Technology naiman@math.jct.ac.il http://math.jct.ac.il/~naiman

based on: Numerical Mathematics and Computing by Cheney & Kincaid, ©1994

Brooks/Cole Publishing Company

ISBN 0-534-20112-1

Copyright ©2004 by A. E. Naiman

Taylor Series

- ⇒ Definitions and Theorems
 - Examples
 - Proximity of x to c
 - Additional Notes

Motivation

- Sought: cos(0.1)
- Missing: calculator or lookup table
- Known: cos for another (nearby) value, i.e., at 0
- Also known: lots of (all) derivatives at 0
- Can we use them to approximate cos (0.1)?
- What will be the worst error of our approximation?

These techniques are used by computers, calculators, tables.

Taylor Series

• Series definition: If $\exists f^{(k)}(c)$, k = 0, 1, 2, ..., then:

$$f(x) \approx f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \cdots$$
$$= \sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x - c)^k$$

- c is a constant and much is known about it $(f^{(k)}(c))$
- x a variable near c, and f(x) is sought
- With $c = 0 \Rightarrow$ Maclaurin series
- What is the maximum error if we stop after n terms?
- \bullet Real life: crowd estimation: 100K ± 10 K vs. 100K ± 1 K

Key NM questions: What is estimate? What is its max error?

Taylor Series — $\cos x$

Better and better approximation, near c, and away.

Taylor's Theorem

• Theorem: If $f \in C^{n+1}[a,b]$ then

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^k + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - c)^{n+1},$$

where

 $x,c\in[a,b],\ \xi(x)\in$ open interval between x and c

- Notes:
 - * $f \in C(X)$ means f is continuous on X
 - * $f \in C^k(X)$ means $f, f', f'', f^{(3)}, \dots, f^{(k)}$ are continuous on X
 - * $\xi = \xi(x)$, i.e., a point whose position is a function of x
 - * Error term is just like other terms, with k := n + 1

 ξ -term is "truncation error", due to series termination

Taylor Series—Procedure

- Writing it out, step-by-step:
 - * write formula for $f^{(k)}(x)$
 - * choose c (if not already specified)
 - * write out summation and error term
 - * note: sometimes easier to write out a few terms
- ullet Things to (possibly) prove by analyzing worst case ξ
 - * letting $n \to \infty$
 - \star LHS remains f(x)
 - * summation becomes infinite Taylor series
 - \star if error term $\rightarrow 0 \Rightarrow$

infinite Taylor series represents f(x)

* for given n, we can estimate max of error term

Taylor Series

- Definitions and Theorems
- \Rightarrow Examples
 - Proximity of x to c
 - Additional Notes

Taylor Series: e^x

- $f(x) = e^x$, $|x| < \infty$: $f^{(k)}(x) = e^x$, $\forall k$
- Choose c := 0
- We have

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \frac{e^{\xi(x)}}{(n+1)!} x^{n+1}$$

• As $n \to \infty$ — take worst case ξ (just less than x) error term \to 0 (why?) .:.

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Taylor Series: $\sin x$

- $f(x) = \sin x$, $|x| < \infty$: $f^{(k)}(x) = \sin\left(x + \frac{\pi k}{2}\right)$, $\forall k$, c := 0
- We have

$$\sin x = \sum_{k=0}^{n} \frac{\sin\left(\frac{\pi k}{2}\right)}{k!} x^{k} + \frac{\sin\left(\xi(x) + \frac{\pi(n+1)}{2}\right)}{(n+1)!} x^{n+1}$$

- Error term \rightarrow 0 as $n \rightarrow \infty$
- Even k terms are zero $\ell : \ell = 0, 1, 2, \ldots$, and $k \to 2\ell + 1$

$$\sin x = \sum_{\ell=0}^{\infty} \frac{\sin\left(\frac{\pi(2\ell+1)}{2}\right)}{(2\ell+1)!} x^{2\ell+1} = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

Taylor Series: $\cos x$

- $f(x) = \cos x$, $|x| < \infty$: $f^{(k)}(x) = \cos\left(x + \frac{\pi k}{2}\right)$, $\forall k$, c := 0
- We have

$$\cos x = \sum_{k=0}^{n} \frac{\cos\left(\frac{\pi k}{2}\right)}{k!} x^{k} + \frac{\cos\left(\xi(x) + \frac{\pi(n+1)}{2}\right)}{(n+1)!} x^{n+1}$$

- Error term \rightarrow 0 as $n \rightarrow \infty$
- Odd k terms are zero $\ell : \ell = 0, 1, 2, \ldots$, and $k \to 2\ell$

$$\cos x = \sum_{\ell=0}^{\infty} \frac{\cos\left(\frac{\pi(2\ell)}{2}\right)}{(2\ell)!} x^{2\ell} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

Numerical Example: cos (0.1)

- We have $^{1)}f(x) = \cos x$ and $^{2)}c = 0$ * obtain series: $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$
- Actual value: cos(0.1) = 0.99500416527803...
- With $^{3)}x = 0.1$ and $^{4)}$ specific n's
 - * from Taylor approximations:

n^*	approximation	error ≤
0, 1	1	0.01/2!
2, 3	0.995	0.0001/4!
4, 5	$0.9950041\overline{6}$	0.000001/6!
6, 7	0.99500416527778	0.00000001/8!
	:	:

*includes odd k

Obtain accurate approximation easily and quickly.

Taylor Series: $(1-x)^{-1}$

•
$$f(x) = \frac{1}{1-x}$$
, $|x| < 1$: $f^{(k)}(x) = \frac{k!}{(1-x)^{k+1}}$, $\forall k$, choose $c := 0$

We have

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + \frac{(n+1)!}{(1-\xi(x))^{n+2}} \cdot \frac{x^{n+1}}{(n+1)!}$$
$$= \sum_{k=0}^{n} x^k + \left(\frac{x}{1-\xi(x)}\right)^{n+1} \frac{1}{1-\xi(x)}$$

- Why bother, with LHS so simple? Ideas?
- Sufficient: $\left|\frac{x}{1-\xi(x)}\right|^{n+1} \to 0$ as $n \to \infty$
- For what range of x is this satisfied?

Need to determine radius of convergence.

$$(1-x)^{-1}$$
 — Range of Convergence

- Sufficient: $\left|\frac{x}{1-\xi(x)}\right| < 1$
- Approach:
 - * get variable x in middle of sufficiency inequality
 - * transform range of ξ inequality to LHS and RHS of sufficiency inequality
 - * require restriction on x
 - * but check if already satisfied
- $|\xi| < 1 \Rightarrow 1 \xi > 0 \Rightarrow$ sufficient: $-(1 \xi) < x < 1 \xi$

$(1-x)^{-1}$ — Range of Convergence (cont.)

- case $x < \xi < 0$:
 - * LHS: $-(1-x) < -(1-\xi) < -1 \Rightarrow \text{require: } -1 \le x \sqrt{x}$
 - * RHS: $1 < 1 \xi < 1 x \Rightarrow$ require: $x \le 1 \sqrt{x}$
- case $0 < \xi < x$:
 - * LHS: $-1 < -(1-\xi) < -(1-x) \Rightarrow \text{require: } -(1-x) \le x,$

or: $-1 < 0 \ \sqrt{}$

- * RHS: $1-x < 1-\xi < 1 \Rightarrow$ require: $x \le 1-x$, or: $x \le \frac{1}{2}$
- Therefore, for $-1 < x \le \frac{1}{2}$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + \dots$$
 (Zeno: $x = \frac{1}{2}, \dots$)

Need more analysis for the whole range |x| < 1.

Taylor Series: $\ln x$

•
$$f(x) = \ln x$$
, $0 < x \le 2$: $f^{(k)}(x) = (-1)^{k-1} \frac{(k-1)!}{x^k}$, $\forall k \ge 1$

- Choose c := 1
- We have

$$\ln x = \sum_{k=1}^{n} (-1)^{k-1} \frac{(x-1)^k}{k} + (-1)^n \frac{1}{n+1} \frac{(x-1)^{n+1}}{\xi^{n+1}(x)}$$

- Sufficient $\left|\frac{x-1}{\xi(x)}\right|^{n+1} \to 0$ as $n \to \infty$
- Again, for what range of x is this satisfied?

$\ln x$ — Range of Convergence

- Sufficient: $\left|\frac{x-1}{\xi(x)}\right| < 1 \ldots 1 \xi < x < 1 + \xi$
- case $1 < \xi < x$:
 - * LHS: $1 x < 1 \xi < 0 \Rightarrow$ require: $0 \le x \sqrt{x}$
 - * RHS: $2 < 1 + \xi < 1 + x \Rightarrow$ require: $x \le 2 \sqrt{x}$
- case $x < \xi < 1$:
 - * LHS: $0 < 1 \xi < 1 x \Rightarrow$ require: $1 x \le x$, or: $\frac{1}{2} \le x$
 - * RHS: $1 + x < 1 + \xi < 2 \Rightarrow$ require: $x \le 1 + x \sqrt{1 + \xi}$
- Therefore, for $\frac{1}{2} \le x \le 2$

$$\ln x = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{(x-1)^k}{k} = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \dots$$

Again, need more analysis for entire range of x.

Ratio Test and In x Revisited

- Theorem: $\left|\frac{a_{n+1}}{a_n}\right| \to (<1) \Rightarrow \text{partial sums converge}$
- In x: ratio of adjacent summand terms (not the error term)

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| (x-1) \frac{n}{n+1} \right|$$

- ullet Obtain convergence of partial sums for 0 < x < 2
- Note: not looking at ξ and the error term
- x = 2: $1 \frac{1}{2} + \frac{1}{3} \cdots$, which is convergent (why?)
- x = 0: same series, all same sign \Rightarrow divergent harmonic series
- \therefore we have $0 < x \le 2$

$(1-x)^{-1}$ Revisited

• Letting $x \to (1-x)$

$$\ln(1-x) = -\left(x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots\right), -1 \le x < 1$$

- $\frac{d}{dx}$: Ihs = $\frac{-1}{1-x}$ and rhs = $-(1+x+x^2+x^3+\cdots)$
- $\stackrel{!}{\underline{\hspace{0.1cm}}}$: no "=" for x=-1 as rhs oscillates (note: correct avg value)
- |x| < 1 we have (also with ratio test)

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$$

Taylor Series

- Definitions and Theorems
- Examples
- \Rightarrow Proximity of x to c
 - Additional Notes

Proximity of x to c

Problem: Approximate In 2

• Solution 1: Taylor $\ln(1+x)$ around 0 with x=1

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \cdots$$

• Solution 2: Taylor $\ln\left(\frac{1+x}{1-x}\right)$ around 0 with $x=\frac{1}{3}$

$$\ln 2 = 2\left(3^{-1} + \frac{3^{-3}}{3} + \frac{3^{-5}}{5} + \frac{3^{-7}}{7} + \cdots\right)$$

Proximity of x to c (cont.)

- Approximated values, rounded:
 - * Solution 1, first 8 terms: 0.63452
 - * Solution 2, first 4 terms: 0.69313
- Actual value, rounded: 0.69315
- .: importance of proximity of evaluation and expansion points

This error is in addition to the truncation error.

Taylor Series

- Definitions and Theorems
- Examples
- Proximity of x to c
- ⇒ Additional Notes

Polynomials and a Second Form

- Polynomials $\in C^{\infty}(-\infty,\infty)$
 - * have finite number of non-zero derivatives, ...
 - * Taylor series $\forall c$... original polynomial, i.e., error = 0

$$f(x) = 3x^2 - 1$$
, ... $f(x) = \sum_{k=0}^{2} \frac{f^{(k)}(0)}{k!} x^k = -1 + 0 + 3x^2$

- * Taylor *Theorem* can be used for fewer terms \star e.g.: approximate a P_{17} near c by a P_3
- Taylor's Theorem, second form (x = constant expansion point, h = distance, <math>x + h = variable evaluation point): If $f \in C^{n+1}[a,b]$ then

$$f(x+h) = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^k + \frac{f^{(n+1)}(\xi(h))}{(n+1)!} h^{n+1},$$

 $x, x + h \in [a, b], \ \xi(h) \in \text{ open interval between } x \text{ and } x + h$

Taylor Approximate: $(1-3h)^{\frac{4}{5}}$

- Define: $f(z) \equiv z^{\frac{4}{5}}$; x = 1 is the constant expansion point
- Derivs: $f'(z) = \frac{4}{5}z^{-\frac{1}{5}}$, $f''(z) = -\frac{4}{5^2}z^{-\frac{6}{5}}$, $f'''(z) = \frac{24}{5^3}z^{-\frac{11}{5}}$, ...
- . . . :

$$(x+h)^{\frac{4}{5}} = x^{\frac{4}{5}} + \frac{4}{5}x^{-\frac{1}{5}}h - \frac{4}{2! \cdot 5^{2}}x^{-\frac{6}{5}}h^{2} + \frac{24}{3! \cdot 5^{3}}x^{-\frac{11}{5}}h^{3} + \dots$$

$$(x-3h)^{\frac{4}{5}} = x^{\frac{4}{5}} - \frac{4}{5}x^{-\frac{1}{5}}3h - \frac{4}{2! \cdot 5^{2}}x^{-\frac{6}{5}}9h^{2} - \frac{24}{3! \cdot 5^{3}}x^{-\frac{11}{5}}27h^{3} + \dots$$

$$(1-3h)^{\frac{4}{5}} = 1 - \frac{4}{5}3h - \frac{4}{2! \cdot 5^{2}}9h^{2} - \frac{24}{3! \cdot 5^{3}}27h^{3} + \dots$$

$$= 1 - \frac{12}{5}h - \frac{18}{25}h^{2} - \frac{108}{125}h^{3} + \dots$$

Second Form — $\ln(e+h)$

- Evaluation of interest: $\ln (e + h)$
- Define: $f(z) \equiv \ln(z)$
- x = e is the constant expansion point
- In $\Rightarrow z > 0$
- Derivatives

$$\begin{split} f(z) &= \ln z & f(e) = 1 \\ f'(z) &= z^{-1} & f'(e) = e^{-1} \\ f''(z) &= -z^{-2} & f''(e) = -e^{-2} \\ f'''(z) &= 2z^{-3} & f'''(e) = 2e^{-3} \\ f^{(n)}(z) &= (-1)^{n-1}(n-1)!z^{-n} & f^{(n)}(e) = (-1)^{n-1}(n-1)!e^{-n} \end{split}$$

$\ln(e+h)$ — Expansion and Convergence

• Expansion (recall: x = e)

$$\ln(e+h) \equiv f(x+h) = 1 + \sum_{k=1}^{n} \frac{(-1)^{k-1}(k-1)!e^{-k}h^k}{k!} + \frac{(-1)^n n! \xi(h)^{-(n+1)}h^{n+1}}{(n+1)!}$$

or

$$\ln(e+h) = 1 + \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \left(\frac{h}{e}\right)^k + \frac{(-1)^n}{n+1} \left(\frac{h}{\xi(h)}\right)^{n+1}$$

• Range of convergence, sufficient (for variable h): $-\xi < h < \xi$

* case
$$e + h < \xi < e$$
: ... $-\frac{e}{2} \le h$

* case
$$e < \xi < e + h$$
: ... $h \le e$

O() Notation and MVT

• As $h \to 0$, we write the speed of $f(h) \to 0$

$$f(h) = O\Big(h^k\Big) \equiv |f(h)| \le C|h|^k$$
 e.g., $f(h)$: h , $\frac{1}{1000}h$, h^2 ; let $h \to \frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \dots$

• Taylor truncation error = $O(h^{n+1})$; if for a given n the max exists, then

$$C := \left| \max_{\xi(h)} f^{(n+1)}(\xi(h)) \right| / (n+1)!$$

ullet Mean value theorem (Taylor, n=0): If $f\in C^1[a,b]$ then

$$f(b) = f(a) + (b-a)f'(\xi), \ \xi \in (a,b)$$

or:

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Alternating Series Theorem

• Alternating series theorem: If $a_k > 0$, $a_k \ge a_{k+1}$, $\forall k \ge 0$, and $a_k \to 0$, then

$$\sum_{k=0}^{n} (-1)^{k} a_{k} \to S \text{ and } |S - S_{n}| \le a_{n+1}$$

- Intuitively understood
- Note: *direction* of error is also know for specific n
- We had this with sin and cos
- Another useful method for max truncation error estimation

Max truncation error estimation without ξ -analysis

$\ln(e+h)$ — Max Trunc. Error Estimate

- What is the max error after n+1 terms?
- ullet Max error estimate *also* depends on proximity—size of h
 - * from Taylor: obtain $O(h^{n+1})$

$$|\operatorname{error}| \le \frac{1}{n+1} |h|^{n+1} \max_{\xi} \left| \frac{1}{\xi} \right|^{n+1}$$

* from AST (check the conditions!): also obtain $O(h^{n+1})$, with different constant

$$|\text{error}| \le \frac{1}{n+1} \left| \frac{h}{e} \right|^{n+1}$$

- E.g.: $h = -\frac{e}{2}$: $\ln \frac{e}{2} = 1 \frac{1}{2} \frac{1}{2} \cdot \frac{1}{2^2} \frac{1}{3} \cdot \frac{1}{2^3} \frac{1}{4} \cdot \frac{1}{2^4} \cdots$
 - * Taylor max error (occurs as $\xi \to \frac{e}{2}^+$): $\frac{1}{n+1}$
 - * AST max error: $\frac{1}{n+1} \cdot \frac{1}{2^{n+1}}$
 - * note the huge difference in max error estimate

Base Representations

- ⇒ Definitions
 - Conversions
 - Computer Representation
 - Loss of Significant Digits

Number Representation

Simple representation in one base
 ⇒ simple representation in another base, e.g.

$$(0.1)_{10} = (0.0\ 0011\ 0011\ 0011\ \dots)_2$$

• Base 10:

37294 =
$$4 + 90 + 200 + 7000 + 30000$$

= $4 \times 10^0 + 9 \times 10^1 + 2 \times 10^2 + 7 \times 10^3 + 3 \times 10^4$
in general: $a_n \dots a_0 = \sum_{k=0}^{n} a_k 10^k$

Fractions and Irrationals

Base 10 fraction:

$$0.7217 = 7 \times 10^{-1} + 2 \times 10^{-2} + 1 \times 10^{-3} + 7 \times 10^{-4}$$

• In general, for real numbers:

$$a_n \dots a_0.b_1 \dots = \sum_{k=0}^n a_k 10^k + \sum_{k=1}^\infty b_k 10^{-k}$$

- Note: \exists numbers, i.e., irrationals, such that an infinite number of digits are required, in *any* rational base, e.g., $e, \pi, \sqrt{2}$
- Need infinite number of digits in a base \Rightarrow irrational

$$(0.333...)_{10}$$
 but $\frac{1}{3}$ is not irrational

Other Bases

Base 8, ∄ '8' or '9', using octal digits

$$(21467)_8 = \cdots = (9015)_{10}$$

$$(0.36207)_8 = 8^{-5}(3 \times 8^4 + \cdots) = \frac{15495}{32768} = (0.47286 \dots)_{10}$$

- Base 16: '0', '1', ..., '9', 'A' (10), 'B' (11), 'C' (12), 'D' (13), 'E' (14), 'F' (15)
- Base β

$$(a_n \dots a_0.b_1 \dots)_{\beta} = \sum_{k=0}^n a_k \beta^k + \sum_{k=1}^\infty b_k \beta^{-k}$$

Base 2: just '0' and '1', or for computers: "off" and "on",
 "bit" = binary digit

Base Representations

- Definitions
- ⇒ Conversions
 - Computer Representation
 - Loss of Significant Digits

Conversion: Base $10 \rightarrow Base 2$

Basic idea:

$$3781 = 1 + \underbrace{10}_{(1010)_2} \left(\underbrace{8}_{(1000)_2} + 10(7 + 10(3)) \right) = \cdots$$
$$= (111 \ 011 \ 000 \ 101)_2$$

• Easy for computer, but by hand: $(3781.372)_{10}$

Base 8 Shortcut

Base 2 ↔ base 8, trivial

$$(551.624)_8 = (101\ 101\ 001.110\ 010\ 100)_2$$

- $\bullet \approx 3$ bits for every 1 octal digit
- One digit produced for every step in (hand) conversion
- \therefore base 10 \rightarrow base 8 \rightarrow base 2

Base Representations

- Definitions
- Conversions
- ⇒ Computer Representation
 - Loss of Significant Digits

Computer Representation

Scientific notation:

$$32.213 \rightarrow 0.32213 \times 10^2$$

In general

$$x=\pm 0.d_1d_2\ldots\times 10^n,\ d_1\neq 0,\ {\rm or}:\ x=\pm r\times 10^n,\ \frac{1}{10}\leq r<1$$
 we have sign, "mantissa" r and "exponent" n

• On the computer, base 2 is represented

$$x = \pm 0.b_1b_2... \times 2^n$$
, $b_1 \neq 0$, or: $x = \pm r \times 2^n$, $\frac{1}{2} \le r < 1$

• Finite number of mantissa digits, therefore "roundoff" or "truncation" error

Base Representations

- Definitions
- Conversions
- Computer Representation
- ⇒ Loss of Significant Digits

LSD—Addition

- (a+b)+c=a+(b+c) on the computer?
- Six decimal digits for mantissa

$$1,000,000. + 1. + \cdots + 1. = 1,000,000.$$

because

$$0.100000 \times 10^7 + 0.100000 \times 10^1 = 0.100000 \times 10^7$$

but

$$1. + \cdots + 1. + 1,000,000. = 2,000,000.$$

Add numbers in size order.

LSD—Subtraction

• E.g.: $x - \sin x$ for x's close to zero

$$x = \frac{1}{15}$$
 (radians)
 $x = 0.66666 66667 \times 10^{-1}$
 $\sin x = 0.66617 29492 \times 10^{-1}$
 $x - \sin x = 0.00049 37175 \times 10^{-1}$
 $= 0.49371 75000 \times 10^{-4}$

- Note
 - * still have 10^{-10} precision, but
 - * can we retain 3 "lost" digits for 10^{-13} precision?

Avoid subtraction of close numbers.

LSD Avoidance for Subtraction

- $x \sin x$ for $x \approx 0 \rightarrow$ use Taylor series
 - * no subtraction of *close* numbers
 - * e.g., 3 terms: $0.49371 74328 \times 10^{-4}$
 - actual: $0.49371 74327 \times 10^{-4}$
- $e^x e^{-2x}$ for $x \approx 0 \to \text{use Taylor series twice and add}$ common powers
- $\sqrt{x^2 + 1} 1$ for $x \approx 0 \to \frac{x^2}{\sqrt{x^2 + 1} + 1}$
- $\cos^2 x \sin^2 x$ for $x \approx \frac{\pi}{4} \to \cos 2x$
- $\ln x 1$ for $x \approx e \rightarrow \ln \frac{x}{e}$

Nonlinear Equations

- ⇒ Motivation
 - Bisection Method
 - Newton's Method
 - Secant Method
 - Summary

Motivation

- For a given function f(x), find its root(s), i.e.: \Rightarrow find x (or r = root) such that f(x) = 0
- BVP: dipping of suspended power cable. What is λ ?

$$\lambda \cosh \frac{50}{\lambda} - \lambda - 10 = 0$$

(Some) simple equations ⇒ solve analytically

$$6x^{2} - 7x + 2 = 0 cos 3x - cos 7x = 0$$

$$(3x - 2)(2x - 1) = 0 2sin 5x sin 2x = 0$$

$$x = \frac{2}{3}, \frac{1}{2} x = \frac{n\pi}{5}, \frac{n\pi}{2}, n \in \mathbb{Z}$$

Motivation (cont.)

In general, we cannot exploit the function, e.g.:

$$2^{x^2} - 10x + 1 = 0$$

and

$$\cosh\left(\sqrt{x^2 + 1} - e^x\right) + \log|\sin x| = 0$$

- Note: at times ∃ multiple roots
 - * e.g., previous parabola and cosine
 - * we want at least one
 - * we may only get one (for each search)

Need a general, function-independent algorithm.

Nonlinear Equations

- Motivation
- ⇒ Bisection Method
 - Newton's Method
 - Secant Method
 - Summary

Bisection Method—Example

Intuitive, like guessing a number $\in [0, 100]$.

Restrictions and Max Error Estimate

Restrictions

- * function slices x-axis at root
 - \star start with two points a and $b \ni f(a)f(b) < 0$
 - \star graphing tool (e.g., Matlab) can help to find a and b
- * require $C^0[a,b]$ (why? note: not a big deal)

Max error estimate

- * after n steps, guess midpoint of current range
- * error: $\epsilon \leq \frac{b-a}{2^{n+1}}$ (think of n=0,1,2)
- * note: error is in x; can also look at error in f(x) or combination
 - * enters entire world of stopping criteria

Question: Given tolerance (in x), what is n? ...

Convergence Rate

- Given tolerance τ (e.g., 10^{-6}), how many steps are needed?
- Tolerance restriction (ϵ from before):

$$\left(\epsilon \le \frac{b-a}{2^{n+1}}\right) < \tau$$

• \therefore 1) \times 2, 2) log (any base)

$$\log(b-a) - n\log 2 < \log 2\tau$$

or

$$n > \frac{\log(b-a) - \log 2\tau}{\log 2}$$

Rate is independent of function.

Convergence Rate (cont.)

Base 2 (i.e., bits of accuracy)

$$n > \log_2(b-a) - 1 - \log_2 \tau$$

i.e., number of steps is a constant plus one step per bit

• Linear convergence rate: $\exists C \in [0,1)$

$$\left|x_{n+1} - r\right| \le C|x_n - r|, \quad n \ge 0$$

i.e., monotonic decreasing error at every step, and

$$\left| x_{n+1} - r \right| \le C^{n+1} |x_0 - r|$$

- Bisection convergence
 - * not linear (examples?), but compared to init. max error:
 - * similar form: $\left|x_{n+1}-r\right| \leq C^{n+1}(b-a)$, with $C=\frac{1}{2}$

Okay, but restrictive and slow.

Nonlinear Equations

- Motivation
- Bisection Method
- ⇒ Newton's Method
 - Secant Method
 - Summary

Newton's Method—Definition

• Approximate f(x) near x_0 by tangent $\ell(x)$

$$f(x)\approx f(x_0)+f'(x_0)(x-x_0)\equiv \ell(x)$$
 Want $\ell(r)=0\Rightarrow r=x_0-\frac{f(x_0)}{f'(x_0)}$, $\therefore x_1:=r$, likewise:
$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$

• Alternatively (Taylor's): have x_0 , for what h is

$$f\left(\underbrace{x_0 + h}_{\equiv x_1}\right) = 0$$

$$f(x_0 + h) \approx f(x_0) + hf'(x_0)$$
 or $h = -\frac{f(x_0)}{f'(x_0)}$

Newton's Method—Example

Convergence Rate

• Theorem: With the following three conditions:

$$f(r) = 0, \ ^2)f'(r) \neq 0, \ ^3)f \in C^2(B(r,\delta)) \Rightarrow$$

$$\exists \delta \ni \forall x_0 \in B(r,\delta) \text{ and } \forall n \text{ we have } |x_{n+1} - r| \leq C(\delta)|x_n - r|^2$$
* for a given δ , C is a constant (not necessarily < 1)

- English: With enough continuity and proximity ⇒ quadratic convergence!
- ullet Note: again, use graphing tool to seed x_0

Newton's method can be very fast.

Convergence Rate Example

- Stopping criteria
 - * theorem: uses x; above: uses f(x)—often all we have
 - * possibilities: absolute/relative, size/change, x or f(x) (combos, ...)

But proximity issue can bite,

Sample Newton Failure #1

Runaway process

Sample Newton Failure #2

Division by zero derivative—recall algorithm

Sample Newton Failure #3

Loop-d-loop (can happen over m points)

Nonlinear Equations

- Motivation
- Bisection Method
- Newton's Method
- ⇒ Secant Method
 - Summary

Secant Method—Definition

- Motivation: avoid derivatives
- Taylor (or derivative): $f'(x_n) \approx \frac{f(x_n) f(x_{n-1})}{x_n x_{n-1}}$

•
$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

- Bisection requirements comparison:
 - * $\sqrt{}$ 2 previous points
 - * $\boxed{\times}$ f(a)f(b) < 0
- Additional advantage vs. Newton:
 - * only one function evaluation per iteration
- Superlinear convergence: $\left|x_{n+1}-r\right| \leq C|x_n-r|^{1.618...}$ (recognize the exponent?)

Nonlinear Equations

- Motivation
- Bisection Method
- Newton's Method
- Secant Method
- ⇒ Summary

Root Finding—Summary

Performance and requirements

	$f \in C^2$	nbhd(r)	init. pts.			speedy
bisection	×	X	2		1	×
Newton		\checkmark	1	×	2	
secant	×	\checkmark	2	×	1	\bigvee

- \square requirement that f(a)f(b) < 0
- function evaluations per iteration
- Often methods are combined (how?), with restarts for divergence or cycles
- Recall: use graphing tool to seed x_0 (and x_1)

Interpolation and Approximation

- ⇒ Motivation
 - Polynomial Interpolation
 - Numerical Differentiation
 - Additional Notes

Motivation

- Three sample problems
 - * $\{(x_i,y_i)|i=0,\ldots,n\}$, $(x_i \text{ distinct})$, want simple (e.g., polynomial) $p(x) \ni y_i = p(x_i), i = 0, \dots, n \equiv$ "interpolation"
 - * Assume data includes errors, relax equality but still close, ... least squares
 - * Replace complicated f(x) with simple $p(x) \approx f(x)$
- Interpolation
 - * similar to English term (contrast: extrapolation)
 - * for now: polynomial
 - * later: splines

Use
$$p(x)$$
 for $p(x_{\text{new}})$, $\int p(x) dx$,

Interpolation and Approximation

- Motivation
- ⇒ Polynomial Interpolation
 - Numerical Differentiation
 - Additional Notes

Constant and Linear Interpolation

- n = 0: $p(x) = y_0$
- n = 1: $p(x) = y_0 + g(x)(y_1 y_0)$, $g(x) \in P_1$, and $g(x) = \begin{cases} 0, & x = x_0, \\ 1, & x = x_1 \end{cases} \therefore g(x) = \frac{x - x_0}{x_1 - x_0}$
- n=2: more complicated,

Lagrange Polynomials

- Given: x_i , $i=0,\ldots,n$; "Kronecker delta": $\delta_{ij}=\left\{\begin{array}{ll} 0, & i\neq j,\\ 1, & i=j.\end{array}\right.$
- Lagrange polynomials: $\ell_i(x) \in P_n$, $\ell_i(x_j) = \delta_{ij}$, $i = 0, \ldots, n$ * independent of any y_i values
- E.g., n = 2:

Lagrange Interpolation

We have

$$\ell_{0}(x) = \frac{x - x_{1}}{x_{0} - x_{1}} \cdot \frac{x - x_{2}}{x_{0} - x_{2}}, \quad y_{0}\ell_{0}(x_{j}) = y_{0}\delta_{0j} = \begin{cases} 0, & j \neq 0, \\ y_{0}, & j = 0 \end{cases}$$

$$\ell_{1}(x) = \frac{x - x_{0}}{x_{1} - x_{0}} \cdot \frac{x - x_{2}}{x_{1} - x_{2}}, \quad y_{1}\ell_{1}(x_{j}) = y_{1}\delta_{1j} = \begin{cases} 0, & j \neq 1, \\ y_{1}, & j = 1 \end{cases}$$

$$\ell_{2}(x) = \frac{x - x_{0}}{x_{2} - x_{0}} \cdot \frac{x - x_{1}}{x_{2} - x_{1}}, \quad y_{2}\ell_{2}(x_{j}) = y_{2}\delta_{2j} = \begin{cases} 0, & j \neq 1, \\ y_{1}, & j = 1 \end{cases}$$

$$\bullet \therefore \exists! p(x) \in P_{2}, \text{ with } p(x_{j}) = y_{j}, \ j = 0, 1, 2 \colon p(x) = \sum_{i=0}^{2} y_{i}\ell_{i}(x)$$

- In general: $\ell_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x-x_j}{x_i-x_j}, \ i=0,\ldots,n$
- Great! What could be wrong? Easy functions (polynomials), interpolation (: error = 0 at x_i) ... but what about $p(x_{new})$?

Interpolation Error & the Runge Function

- $\{(x_i, f(x_i))|i=0,\ldots,n\}, |f(x)-p(x)| \leq ?$
- Runge function: $f_R(x) = (1+x^2)^{-1}, x \in [-5, 5]$ and uniform mesh: $(x)^{-1} p(x)$'s wrong shape and high oscillations

$$\lim_{n \to \infty} \max_{-5 \le x \le 5} |f_R(x) - p_n(x)| = \infty$$

Copyright © 2004 by A. E. Naiman NM Slides—Interpolation and Approximation, p. 7

Error Theorem

• Theorem: ..., $f \in C^{n+1}[a,b]$, $\forall x \in [a,b]$, $\exists \xi \in (a,b) \ni$

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

- Max error
 - * with x_i and x_i , still need $\max_{(a,b)} f^{(n+1)}(\xi)$
 - * with x_i only, also need max of \prod
 - * without x_i :

$$\max_{(a,b)} \prod_{i=0}^{n} (x - x_i) = (b - a)^{n+1}$$

Chebyshev Points

- ullet Chebyshev points on [-1,1]: $x_i = \cos\left[\left(rac{i}{n}
 ight)\pi
 ight]$, $i=0,\ldots,n$
- In general on [a,b]: $x_i = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos\left|\left(\frac{i}{n}\right)\pi\right|$, $i = 0, \ldots, n$
- Points concentrated at edges

Runge Function with Chebyshev Points

Copyright ©2004 by A. E. Naiman

NM Slides—Interpolation and Approximation, p. 10

Chebyshev Interpolation

- Same interpolation method
- Different interpolation points
- Minimizes

$$\left| \prod_{i=0}^{n} (x - x_i) \right|$$

- Periodic behavior \Rightarrow interpolate with sins/coss instead of P_n * uniform mesh minimizes max error
- Note: uniform partition with spacing = cheb₁ − cheb₀
 * num. points ↑ ∴ polynomial degree ↑ ∴ oscillations ↑
- Note: shape is still wrong ... see splines later

Interpolation and Approximation

- Motivation
- Polynomial Interpolation
- ⇒ Numerical Differentiation
 - Additional Notes

Numerical Differentiation

- Note: until now, approximating f(x), now f'(x)
- $f'(x) \approx \frac{f(x+h)-f(x)}{h}$
- Error = ?
- Taylor: $f(x+h) = f(x) + hf'(x) + h^2 \frac{f''(\xi)}{2}$
- :. $f'(x) = \frac{f(x+h)-f(x)}{h} \frac{1}{2}hf''(\xi)$
- I.e., truncation error: O(h)

Can we do better?

Numerical Differentiation—Take Two

• Taylor for +h and -h:

$$f(x \pm h) = f(x) \pm hf'(x) + h^2 \frac{f''(x)}{2!} \pm h^3 \frac{f'''(x)}{3!} + h^4 \frac{f^{(4)}(x)}{4!} \pm h^5 \frac{f^{(5)}(x)}{5!} + \cdots$$

• Subtracting:

$$f(x+h) - f(x-h) = 2hf'(x) + 2h^3 \frac{f'''(x)}{3!} + 2h^5 \frac{f^{(5)}(x)}{5!} + \cdots$$

• . . .

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{1}{6}h^2f'''(x) - \cdots$$

We gained O(h) to $O(h^2)$. However, ...

Richardson Extrapolation—Take Three

We have

$$f'(x) = \underbrace{\frac{f(x+h) - f(x-h)}{2h}}_{\equiv \phi(h)} + a_2h^2 + a_4h^4 + a_6h^6 + \cdots$$

Halving the stepsize, ...

$$\phi(h) = f'(x) - a_2h^2 - a_4h^4 - a_6h^6 - \cdots$$

$$\phi\left(\frac{h}{2}\right) = f'(x) - a_2\left(\frac{h}{2}\right)^2 - a_4\left(\frac{h}{2}\right)^4 - a_6\left(\frac{h}{2}\right)^6 - \cdots$$

$$\phi(h) - 4\phi\left(\frac{h}{2}\right) = -3f'(x) - \frac{3}{4}a_4h^4 - \frac{15}{16}a_6h^6 - \cdots$$

Q: So what? A: The h^2 term disappeared!

Richardson—Take Three (cont.)

• Divide by 3 and write f'(x)

$$f'(x) = \frac{4}{3}\phi\left(\frac{h}{2}\right) - \frac{1}{3}\phi(h) - \frac{1}{4}a_4h^4 - \frac{5}{16}a_6h^6 - \cdots$$
$$= \phi\left(\frac{h}{2}\right) + \underbrace{\frac{1}{3}\left[\phi\left(\frac{h}{2}\right) - \phi(h)\right]}_{\equiv (*)} + O(h^4)$$

• (*) only uses old and current information

We gained $O(h^2)$ to $O(h^4)!!$

Interpolation and Approximation

- Motivation
- Polynomial Interpolation
- Numerical Differentiation
- ⇒ Additional Notes

Additional Notes

- Three f'(x) formulae used additional points \Rightarrow vs. Taylor, more derivatives in *same* point
- Similar for f''(x):

$$f(x \pm h) = f(x) \pm hf'(x) + h^2 \frac{f''(x)}{2!} \pm h^3 \frac{f'''(x)}{3!} + h^4 \frac{f^{(4)}(x)}{4!} \pm h^5 \frac{f^{(5)}(x)}{5!} + \cdots$$

Adding:

$$f(x+h) + f(x-h) = 2f(x) + h^2 f''(x) + \frac{1}{12}h^4 f^{(4)}(x) + \cdots$$

or:

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + \frac{1}{12}h^2f^{(4)}(x) + \cdots$$

$$\therefore$$
 error = $O(h^2)$

Numerical Quadrature

- ⇒ Introduction
 - Riemann Integration
 - Composite Trapezoid Rule
 - Composite Simpson's Rule
 - Gaussian Quadrature

Numerical Quadrature—Interpretation

• $f(x) \ge 0$ on [a,b] bounded $\Rightarrow \int_a^b f(x) dx$ is area under f(x)

Numerical Quadrature—Motivation

Analytical solutions—rare:

$$\int_0^{\frac{\pi}{2}} \sin x \, dx = -\cos x \Big|_0^{\frac{\pi}{2}} = -(0-1) = 1$$

• In general:

$$\int_0^{\frac{\pi}{2}} \left(1 - a^2 \sin^2 \theta\right)^{\frac{1}{3}} d\theta$$

Need general numerical technique.

Definitions

- Mesh: $P \equiv \{a = x_0 < x_1 < \dots < x_n = b\}$, n subintervals (n + 1) points)
- Infima and suprema:

$$m_i \equiv \inf \left\{ f(x) : x_i \le x \le x_{i+1} \right\}$$
 $M_i \equiv \sup \left\{ f(x) : x_i \le x \le x_{i+1} \right\}$

Two methods (i.e., integral estimates): lower and upper sums

$$L(f;P) \equiv \sum_{i=0}^{n-1} m_i (x_{i+1} - x_i)$$

$$U(f;P) \equiv \sum_{i=0}^{n-1} M_i (x_{i+1} - x_i)$$

• For example,

Lower Sum—Interpretation

Clearly a lower bound of integral estimate, and ...

Upper Sum—Interpretation

... an upper bound. What is the max error?

Lower and Upper Sums—Example

- Third method, use lower and upper sums: (L+U)/2
- $f(x) = x^2$, [a, b] = [0, 1] and $P = \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$
- ..., $L = \frac{7}{32}$, $U = \frac{15}{32}$
- Split the difference: estimate $\frac{11}{32}$ (actual $\frac{1}{3}$)
- Bottom line
 - * naive approach
 - * low n
 - * still error of $\frac{1}{96}$. (!)
- Max error: $(U-L)/2 = \frac{1}{8}$

Is this good enough?

Numerical Quadrature—Rethinking

- Perhaps lower and upper sums are enough?
 - * Error seems small
 - * Work seems small as well
- But: estimate of max error was not small $(\frac{1}{8})$
- Do they converge to integral as $n \to \infty$?
- Will the extrema always be easy to calculate? Accurately? (Probably not!)

Proceed in theoretical and practical directions.

Numerical Quadrature

- Introduction
- ⇒ Riemann Integration
 - Composite Trapezoid Rule
 - Composite Simpson's Rule
 - Gaussian Quadrature

Riemann Integrability

- $f \in C^0[a,b]$, [a,b] bdd $\Rightarrow f$ is Riemann integrable
- When integrable, and max subinterval in $P \to 0$ ($|P| \to 0$):

$$\lim_{|P| \to 0} L(f; P) = \int_{a}^{b} f(x) \, dx = \lim_{|P| \to 0} U(f; P)$$

• Counter example: Dirichlet function $d(x) \equiv \left\{ \begin{array}{l} 0, & x \text{ rational,} \\ 1, & x \text{ irrational} \end{array} \right.$ $\Rightarrow L=0, \ U=b-a$

Challenge: Estimate n for Third Method

- Current restrictions for *n* estimate:
 - * Monotone functions
 - * Uniform partition
- Challenge:
 - * estimate $\int_0^{\pi} e^{\cos x} dx$
 - * error tolerance $=\frac{1}{2} \times 10^{-3}$
 - st using L and U
 - * n = ?

Estimate n—Solution

- $f(x) = e^{\cos x} \setminus \text{on } [0, \pi] : m_i = f(x_{i+1}) \text{ and } M_i = f(x_i)$
- $L(f; P) = h \sum_{i=0}^{n-1} f(x_{i+1})$ and $U(f; P) = h \sum_{i=0}^{n-1} f(x_i)$, $h = \frac{\pi}{n}$
- Want $\frac{1}{2}(U-L) < \frac{1}{2} \times 10^{-3}$ or $\frac{\pi}{n}(e^1 e^{-1}) < 10^{-3}$
- ... $n \ge 7385$ (!!) (note for later: max error estimate = O(h))
- Number of f(x) evaluations
 - * 2 for (U-L) max error calculation
 - * > 7000 for either L or U

We need something better.

Numerical Quadrature

- Introduction
- Riemann Integration
- ⇒ Composite Trapezoid Rule
 - Composite Simpson's Rule
 - Gaussian Quadrature

Composite Trapezoid Rule (CTR)

- Each area: $\frac{1}{2}(x_{i+1}-x_i)[f(x_i)+f(x_{i+1})]$
- Rule: $T(f; P) \equiv \frac{1}{2} \sum_{i=0}^{n-1} (x_{i+1} x_i) [f(x_i) + f(x_{i+1})]$
- Note: for monotone functions and any given mesh (why?):

$$T = (L + U)/2$$

- Pro: no need for extrema calculations
- Con: adding new points to existing ones (for a non-monotonic function)
 - * T can land on "bad point" \Rightarrow no monotonic improvement (necessarily)
 - * L and U look for extremum on $\left[x_i, x_{i+1}\right] \Rightarrow$ monotonic improvement

CTR—Interpretation

Almost always better than L or U. (When not?)

Uniform Mesh and Associated Error

• Constant stepsize $h = \frac{b-a}{n}$

$$T(f;P) \equiv h \left\{ \sum_{i=1}^{n-1} f(x_i) + \frac{1}{2} [f(x_0) + f(x_n)] \right\}$$

• Theorem: $f \in C^2[a,b] \to \exists \xi \in (a,b) \ni$

$$\int_{a}^{b} f(x) dx - T(f; P) = -\frac{1}{12} (b - a) h^{2} f''(\xi) = O(h^{2})$$

 Note: leads to popular Romberg algorithm (built on Richardson extrapolation)

How many steps does T(f; P) require?

$e^{\cos x}$ Revisited—Using CTR

- Challenge: $\int_0^{\pi} e^{\cos x} dx$, error tolerance $= \frac{1}{2} \times 10^{-3}$, n = ?
- $f(x) = e^{\cos x} \Rightarrow f'(x) = -e^{\cos x} \sin x \dots |f''(x)| \le e \text{ on } [0, \pi]$
- :. $|\text{error}| \le \frac{1}{12}\pi(\pi/n)^2 e \le \frac{1}{2} \times 10^{-3}$
- ... n > 119
- Recall perennial two questions/calculations of NM
 - * monotonic : estimate of T produces same (L+U)/2
 - * but previous $max \ error$ estimate was less exact (O(h))

Better estimate of \max error : better estimate of n

Another CTR Example

- Challenge: $\int_0^1 e^{-x^2} dx$, error tolerance $= \frac{1}{2} \times 10^{-4}$, n = ?
- $f(x) = e^{-x^2}$, $\Rightarrow f'(x) = -2xe^{-x^2}$ and $f''(x) = (4x^2 2)e^{-x^2}$
- $\therefore |f''(x)| \le 2 \text{ on } [0,1]$
- \Rightarrow $|\text{error}| \leq \frac{1}{6}h^2 \leq \frac{1}{2} \times 10^{-4}$
- We have: $n^2 \ge \frac{1}{3} \times 10^4$ or $n \ge 58$ subintervals

How can we do better?

Numerical Quadrature

- Introduction
- Riemann Integration
- Composite Trapezoid Rule
- ⇒ Composite Simpson's Rule
 - Gaussian Quadrature

Trapezoid Rule as /Linear Interpolant

Linear interpolant, one subinterval: $p_1(x) = \frac{x-b}{a-b}f(a) + \frac{x-a}{b-a}f(b)$, intuitively:

$$\int_{a}^{b} p_{1}(x) dx = \frac{f(a)}{a-b} \int_{a}^{b} (x-b) dx + \frac{f(b)}{b-a} \int_{a}^{b} (x-a) dx$$

$$= \frac{f(a)}{a-b} \left[\frac{b^{2}-a^{2}}{2} - b(b-a) \right] + \frac{f(b)}{b-a} \left[\frac{b^{2}-a^{2}}{2} - a(b-a) \right]$$

$$= -f(a) \left[\frac{a+b}{2} - b \right] + f(b) \left[\frac{a+b}{2} - a \right]$$

$$= -f(a) \left(\frac{a-b}{2} \right) + f(b) \left(\frac{b-a}{2} \right)$$

$$= \frac{b-a}{2} (f(a) + f(b))$$

CTR is integral of composite linear interpolant.

CTR for Two Equal Subintervals

• n = 2 (i.e., 3 points):

$$T(f) = \frac{b-a}{2} \left\{ f\left(\frac{a+b}{2}\right) + \frac{1}{2} [f(a) + f(b)] \right\}$$
$$= \frac{b-a}{4} \left[f(a) + 2f\left(\frac{a+b}{2}\right) + f(b) \right]$$

with error = $O\left(\left(\frac{b-a}{2}\right)^3\right)$

- (Previously, CTR error = $O\left(h^2\right)$ = TR error \times n subintervals = $O\left(h^3\right) \times O\left(\frac{1}{h}\right)$)
- Deficiency: each subinterval ignores the other

How can we take the entire picture into account?

Simpson's Rule

- Motivation: use $p_2(x)$ over the two equal subintervals
- Similar analysis actually loses O(h), but ... $\exists \xi \in (a,b) \Rightarrow$

$$\int_{a}^{b} f(x) dx = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] - \frac{1}{90} \left(\frac{b-a}{2}\right)^{5} f^{(4)}(\xi)$$

- Similar to CTR, but weights midpoint more
- ullet Note: for each method, denominator $=\sum$ coefficients

Each method multiplies width by weighted average of height.

Composite Simpson's Rule (CSR)

• For an even number of subintervals n, $h = \frac{b-a}{n}$, $\exists \xi \in (a,b) \Rightarrow$

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left\{ [f(a) + f(b)] + 4 \sum_{i=1}^{n/2} \underbrace{f[a + (2i - 1)h]}_{\text{odd nodes}} + 2 \sum_{i=1}^{(n-2)/2} \underbrace{f(a + 2ih)}_{\text{even nodes}} \right\} - \frac{b - a}{180} h^{4} f^{(4)}(\xi)$$

- Note: denominator = \sum coefficients = 3n
 - * but only n+1 function evaluations

Can we do better than $O(h^4)$?

Evaluating the Error

- Another important accuracy angle
 - * until now: error = $O(h^{\alpha})$
 - * now on, looking at $f^{(\beta)}$: error = 0 $\forall f \in P_{\beta-1}$
- With higher β , $p_{\beta}(x)$ can approximate any f(x) better
- Define $\epsilon(x) \equiv f(x) p_{\beta}(x)$
- $\int f = \int (p_{\beta} + \epsilon) = \int p_{\beta} + \int \epsilon = \operatorname{method}(p_{\beta}) + \int \epsilon = \operatorname{method}(f) \operatorname{method}(\epsilon) + \int \epsilon$
- As $\beta \uparrow$: $\epsilon(x) \downarrow$, $\left(\int \epsilon \mathsf{method}(\epsilon) \right) \downarrow$... $\mathsf{method}(f) \to \int f$

Can we do better than Simpson's P_3 ?

Integration Introspection

- Simpson beat CTR because heavier weighted midpoint
- But CSR similarly suffers at subinterval-pair boundaries (weight = 2 vs. 4 for no reason)
- All composite rules
 - * ignore other areas
 - * patch together local calculations
 - * ... will suffer from this
- What about using all nodes and higher degree interpolation?
- Also note: we can choose
 - * weights
 - * location of calculation nodes

Numerical Quadrature

- Introduction
- Riemann Integration
- Composite Trapezoid Rule
- Composite Simpson's Rule
- ⇒ Gaussian Quadrature

Interpolatory Quadrature

•
$$x_i$$
, $\ell_i(x) = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$, $i = 0, ..., n$; $p(x) = \sum_{i=0}^n f(x_i)\ell_i(x)$

- If $f(x) \approx p(x) \Rightarrow$ hopefully $\int_a^b f(x) \, dx \approx \int_a^b p(x) \, dx$
- $\int_{a}^{b} p(x) dx = \int_{a}^{b} \sum_{i=0}^{n} f(x_{i}) \ell_{i}(x) dx = \sum_{i=0}^{n} f(x_{i}) \underbrace{\int_{a}^{b} \ell_{i}(x) dx}_{\equiv A_{i}}$
- $A_i = A_i \left(a, b; \left\{x_j\right\}_{j=0}^n\right)$, but $A_i \neq A_i(f)$!

(Endpoints, nodes)
$$\Rightarrow A_i \Rightarrow \int_a^b f(x) dx \approx \sum_{i=0}^n A_i f(x_i)$$
.

Interp. Quad.—Error Analysis

- $\forall f \in P_n \Rightarrow f(x) = p(x)$, and \therefore $\forall f \in P_n \Rightarrow \int_a^b f(x) dx = \sum_{i=0}^n A_i f(x_i)$, i.e., error = 0
- n+1 weights determined by nodes x_i (and a and b)
- True for any choice of n+1 nodes x_i
- What if we choose n+1 specific nodes (with weights, total: 2(n+1) choices)?

Can we get error = $0 \forall f \in P_{2n+1}$?

Gaussian Quadrature (GQ)—Theorem

- Let
 - * $q(x) \in P_{n+1} \ni \int_a^b x^k q(x) dx = 0, \quad k = 0, \dots, n$ i.e., $q(x) \perp$ all polynomials of lower degree
 - * note: n+2 coefficients, n+1 conditions
 - * unique to a constant multiplier
 - * x_i , i = 0, ..., n, i = 0i.e., x_i are zeros of q(x)
- Then $\forall f \in P_{2n+1}$, even though $f(x) \neq p(x) \ (\forall f \in P_m, m > n)$

$$\int_a^b f(x) dx = \sum_{i=0}^n A_i f(x_i)$$

We jumped from P_n to P_{2n+1} !

Gaussian Quadrature—Proof

- Let $f \in P_{2n+1}$, and divide by $q \ni f = sq + r : s, r \in P_n$
- We have (note: until last step, x_i can be arbitrary)

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} s(x)q(x) dx + \int_{a}^{b} r(x) dx \quad \text{(division above)}$$

$$= \int_{a}^{b} r(x) dx \qquad \qquad (\bot' \text{ ity of } q(x))$$

$$= \sum_{i=0}^{n} A_{i}r(x_{i}) \qquad \qquad (r \in P_{n})$$

$$= \sum_{i=0}^{n} A_{i}[f(x_{i}) - s(x_{i})q(x_{i})] \quad \text{(division above)}$$

$$= \sum_{i=0}^{n} A_{i}f(x_{i}) \qquad \qquad (x_{i} \text{ are zeros of } q(x))$$

GQ—Additional Notes

• Example $q_n(x)$: Legendre Polynomials: for [a,b] = [-1,1] and $q_n(1) = 1$ (\exists a 3-term recurrence formula)

$$q_0(x) = 1$$
, $q_1(x) = x$, $q_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$, $q_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$,...

- Use $q_{n+1}(x)$ (why?), depends only on a, b and n
- Gaussian nodes $\in (a,b) \Rightarrow$ good if $f(a) = \infty$ and/or $f(b) = \infty$ (e.g., $\int_0^1 \frac{1}{\sqrt{x}} dx$)
- ullet More general: with weight function w(x) in
 - * original integral
 - * q(x) orthogonality
 - st weights A_i

Numerical Quadrature—Summary

• n+1 function evaluations

	composite?	node placement	error = 0 $\forall P_{\Box}$
CTR		uniform (usually)*	1
CSR		uniform (usually)*	3
interp.	×	any (distinct)	n
GQ	×	zeros of $q(x)$	2n + 1

*P.S. There are also powerful adaptive quadrature methods

Linear Systems

- ⇒ Introduction
 - Naive Gaussian Elimination
 - Limitations
 - Operation Counts
 - Additional Notes

What Are Linear Systems (LS)?

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots + \vdots + \dots + \vdots = \vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$$

- ullet Dependence on unknowns: powers of degree ≤ 1
- Summation form: $\sum_{j=1}^{n} a_{ij} x_j = b_i$, $1 \le i \le m$, i.e., m equations
- Presently: m = n, i.e., square systems (later: $m \neq n$)

Q: How to solve for
$$[x_1 \ x_2 \ \dots \ x_n]^T$$
? A: ...

Linear Systems

- Introduction
- ⇒ Naive Gaussian Elimination
 - Limitations
 - Operation Counts
 - Additional Notes

Overall Algorithm and Definitions

- Currently: direct methods only (later: iterative methods)
- General idea:
 - * Generate upper triangular system ("forward elimination")
 - * Easily calculate unknowns in reverse order ("backward substitution")
- "Pivot row" = current one being processed
 "pivot" = diagonal element of pivot row

Steps applied to RHS as well.

Forward Elimination

- Generate zero columns below diagonal
- Process rows downward for each row i:=1,n-1 { // the pivot row for each row k:=i+1,n { // \forall rows below pivot multiply pivot row $\ni a_{i\,i}=a_{k\,i}$ subtract pivot row from row $_k$ // now $a_{k\,i}=0$ } // now column below $a_{i\,i}$ is zero } // now $a_{i\,j}=0$, $\forall i>j$
- Obtain triangular system

Let's work an example, ...

Compact Form of LS

$$\begin{cases}
6x_1 - 2x_2 + 2x_3 + 4x_4 = 16 \\
12x_1 - 8x_2 + 6x_3 + 10x_4 = 26 \\
3x_1 - 13x_2 + 9x_3 + 3x_4 = -19 \\
- 6x_1 + 4x_2 + 1x_3 - 18x_4 = -34
\end{cases}$$

$$\begin{pmatrix}
6 -2 & 2 & 4 & 16 \\
12 & -8 & 6 & 10 & 26 \\
3 & -13 & 9 & 3 & -19 \\
-6 & 4 & 1 & -18 & -34
\end{pmatrix}$$

Proceeding with the forward elimination, ...

Forward Elimination—Example

$$\begin{pmatrix} 6 & -2 & 2 & 4 & 16 \\ 12 & -8 & 6 & 10 & 26 \\ 3 & -13 & 9 & 3 & -19 \\ -6 & 4 & 1 & -18 & -34 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & -2 & 2 & 4 & 16 \\ 0 & -4 & 2 & 2 & -6 \\ 0 & -12 & 8 & 1 & -27 \\ 0 & 2 & 3 & -14 & -18 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix}
6 & -2 & 2 & 4 & 16 \\
0 & -4 & 2 & 2 & -6 \\
0 & 0 & 2 & -5 & -9 \\
0 & 0 & 4 & -13 & -21
\end{pmatrix}
\rightarrow
\begin{pmatrix}
6 & -2 & 2 & 4 & 16 \\
0 & -4 & 2 & 2 & -6 \\
0 & 0 & 2 & -5 & -9 \\
0 & 0 & 0 & -3 & -3
\end{pmatrix}$$

Matrix is upper triangular.

Backward Substitution

$$\begin{pmatrix}
6 & -2 & 2 & 4 & 16 \\
0 & -4 & 2 & 2 & -6 \\
0 & 0 & 2 & -5 & -9 \\
0 & 0 & 0 & -3 & -3
\end{pmatrix}$$

- Last equation: $-3x_4 = -3 \Rightarrow x_4 = 1$
- Second to last equation: $2x_3 5$ $\underbrace{x_4}_{=1} = 2x_3 5 = -9 \Rightarrow x_3 = -2$
- ... second equation ... $x_2 = \dots$
- \bullet ... $[x_1 \ x_2 \ x_3 \ x_4]^T = [3 \ 1 \ -2 \ 1]^T$

For small problems, check solution in original system.

Linear Systems

- Introduction
- Naive Gaussian Elimination
- ⇒ Limitations
 - Operation Counts
 - Additional Notes

Zero Pivots

• Clearly, zero pivots prevent forward elimination

- Zero pivots can appear along the way
- Later: When guaranteed no zero pivots?
- All pivots $\neq 0 \stackrel{?}{\Rightarrow}$ we are safe

Experiment with system with known solution.

Vandermonde Matrix

$$\begin{pmatrix}
1 & 2 & 4 & 8 & \cdots & 2^{n-1} \\
1 & 3 & 9 & 27 & \cdots & 3^{n-1} \\
1 & 4 & 16 & 64 & \cdots & 4^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & n+1 & (n+1)^2 & (n+1)^3 & \cdots & (n+1)^{n-1}
\end{pmatrix}$$

- Want row sums on RHS $\Rightarrow x_i = 1$, i = 1, ..., n
- Geometric series:

$$1 + t + t^2 + \dots + t^{n-1} = \frac{t^n - 1}{t - 1}$$

• We obtain b_i , for row $i = 1, \ldots, n$

$$\sum_{j=1}^{n} \underbrace{(1+i)^{j-1}}_{a_{ij}} \cdot \underbrace{1}_{x_{j}} = \frac{(1+i)^{n}-1}{(1+i)-1} = \underbrace{\frac{1}{i}}_{b_{i}} [(1+i)^{n}-1]$$

System is ready to be tested.

Vandermonde Test

- Platform with 7 significant (decimal) digits
 - * $n = 1, ..., 8 \Rightarrow$ expected results
 - * n = 9: error > 16,000% !!
- Questions:
 - * What happened?
 - * Why so sudden?
 - * Can anything be done?
- Answer: matrix is "ill-conditioned"
 - * Sensitivity to roundoff errors
 - * Leads to error propagation and magnification

First, how to assess vector errors.

Errors

- Given system: Ax = b and solution estimate \tilde{x}
- Residual (error): $r \equiv A\tilde{x} b$
- Absolute error (if x is known): $e \equiv x \tilde{x}$
- Norm taken of r or e: vector \rightarrow scalar quantity (more on norms later)
- Relative errors: ||r||/||b|| and ||e||/||x||

Back to ill-conditioning, ...

Ill-conditioning

•
$$\begin{cases} 0 \cdot x_1 + x_2 = 1 \\ x_1 + x_2 = 2 \end{cases} \Rightarrow 0 \text{ pivot}$$

- General rule: if 0 is problematic ⇒
 numbers near 0 are problematic
- $\begin{cases} \epsilon x_1 + x_2 = 1 \\ x_1 + x_2 = 2 \end{cases}$... $x_2 = \frac{2-1/\epsilon}{1-1/\epsilon}$ and $x_1 = \frac{1-x_2}{\epsilon}$
- ϵ small (e.g., $\epsilon=10^{-9}$ with 8 significant digits) $\Rightarrow x_2=1$ and $x_1=0$ —wrong!

What can be done?

Pivoting

 Switch order of equations, moving offending element off diagonal

•
$$\begin{cases} x_1 + x_2 = 2 \\ \epsilon x_1 + x_2 = 1 \end{cases} \Rightarrow$$
, $x_2 = \frac{1 - 2\epsilon}{1 - \epsilon}$ and $x_1 = 2 - x_2 = \frac{1}{1 - \epsilon}$

- This is correct, even for small ϵ (or even $\epsilon = 0$)
- ullet Compare size of diagonal (pivot) elements to ϵ
- Ratio of first row of Vandermonde matrix = $1:2^{n-1}$

Issue is relative size, not absolute size.

Scaled Partial Pivoting

- Also called row pivoting (vs. column pivoting)
- ullet Instability source: subtracting large values: $a_{k\,j}$ -= $a_{i\,j} rac{a_{k\,i}}{a_{i\,i}}$
- ullet W|o I.o.g.: n rows, and choosing first row
- Find $i \ni \forall$ rows $k \neq i$, \forall columns j > 1: minimize $\left| a_{ij} \frac{a_{k1}}{a_{i1}} \right|$
- $O(n^3)$ calculations! ... simplify (remove k), imagine: $a_{k\,1}=1$
- ... find $i \ni \forall$ columns j > 1: $\min_i \left| \frac{a_{ij}}{a_{i1}} \right|$
- Still $^{1)}O(n^2)$ calculations, $^{2)}$ how to minimize each row?
- Find i: $\min_i \frac{\max_j |a_{ij}|}{|a_{i1}|}$, or: $\max_i \frac{|a_{i1}|}{\max_j |a_{ij}|}$

Linear Systems

- Introduction
- Naive Gaussian Elimination
- Limitations
- ⇒ Operation Counts
 - Additional Notes

How Much Work on A?

- Real life: crowd estimation costs? (will depend on accuracy)
- Counting × and ÷ (i.e., long operations) only
- Pivoting: row decision amongst k rows = k ratios
- First row:
 - * n ratios (for choice of pivot row)
 - * n-1 multipliers
 - * $(n-1)^2$ multiplications

total: n^2 operations

• ... forward elimination operations (for large n)

$$\sum_{k=2}^{n} k^2 = \frac{n}{6}(n+1)(2n+1) - 1 \approx \frac{n^3}{3}$$

How about the work on b?

Rest of the Work

- Forward elimination work on RHS: $\sum_{k=2}^{n} (k-1) = \frac{n(n-1)}{2}$
- Backward substitution: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
- Total: n^2 operations
- ullet O(n) fewer operations than forward elimination on A
- Important for multiple RHSs known from the start
 - * do not repeat $O(n^3)$ work for each
 - * rather, line them up, and process simultaneously

Can we do better at times?

Sparse Systems

- Above, e.g., tridiagonal system (half bandwidth = 1)
- Opportunities for savings
 - * storage
 - * computations
- Both are O(n)

Linear Systems

- Introduction
- Naive Gaussian Elimination
- Limitations
- Operation Counts
- ⇒ Additional Notes

Pivot-Free Guarantee

- When are we guaranteed non-zero pivots?
- Diagonal dominance (just like it sounds):

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|, i = 1, ..., n$$

- Or ">" in one row, and "≥" in remaining)
- Many finite difference and finite element problems ⇒ diagonally dominant systems

Occurs often enough to justify individual study.

LU Decomposition

- E.g.: same A, many b's of time-dependent problem
 * not all b's are known from the start
- Want A = LU for decreased work later
- Then define y: $L\underbrace{Ux}_{\equiv y} = b$
 - * solve Ly = b for y
 - * solve Ux = y for x
- U is upper triangular, result of Gaussian elimination
- ullet L is unit lower triangular, 1's on diagonal and Gaussian multipliers below
- For small systems, verify (even by hand): A = LU

Each new RHS is n^2 work, instead of $O\!\left(n^3\right)$

Approximation by Splines

- ⇒ Motivation
 - Linear Splines
 - Quadratic Splines
 - Cubic Splines
 - Summary

Motivation

- Given: set of many points, or perhaps very involved function
- Want: simple representative function for analysis or manufacturing

Any suggestions?

Let's Try Interpolation

Disadvantages:

- Values outside x-range diverge quickly (interp(10) = -1592)
- Numerical instabilities of high-degree polynomials

Runge Function—Two Interpolations

More disadvantages:

- Within *x*-range, often high oscillations
- Even Chebyshev points ⇒ often uncharacteristic oscillations

Splines

Given domain [a,b], a spline S(x)

- Is defined on entire domain
- Provides a certain amount of smoothness
- ∃ partition of "knots" (= where spline can change form)

$${a = t_0, t_1, t_2, \dots, t_n = b}$$

such that

$$S(x) = \begin{cases} S_0(x), & x \in [t_0, t_1], \\ S_1(x), & x \in [t_1, t_2], \\ \vdots & \vdots \\ S_{n-1}(x), & x \in [t_{n-1}, t_n] \end{cases}$$

is *piecewise* polynomial

Interpolatory Splines

- Note: splines *split up* range [a,b]* opposite of CTR \rightarrow CSR \rightarrow GQ development
- "Spline" implies no interpolation, not even any y-values
- If given points

$$\{(t_0,y_0),(t_1,y_1),(t_2,y_2),\ldots,(t_n,y_n)\}$$

"interpolatory spline" traverses these as well

Splines = nice, analytical functions

Approximation by Splines

- Motivation
- ⇒ Linear Splines
 - Quadratic Splines
 - Cubic Splines
 - Summary

Linear Splines

Given domain [a,b], a linear spline S(x)

- Is defined on entire domain
- Provides continuity, i.e., is $C^0[a,b]$
- ∃ partition of "knots"

$${a = t_0, t_1, t_2, \dots, t_n = b}$$

such that

$$S_i(x) = a_i x + b_i \in P_1([t_i, t_{i+1}]), i = 0, ..., n-1$$

Recall: no y-values or interpolation yet

Linear Spline—Examples

ullet Definition outside of [a,b] is arbitrary

Interpolatory Linear Splines

Given points

$$\{(t_0,y_0),(t_1,y_1),(t_2,y_2),\ldots,(t_n,y_n)\}$$

spline must interpolate as well

- Are the $S_i(x)$ (with no additional knots) unique?
 - * Coefficients: $a_i x + b_i$, $i = 0, ..., n-1 \Rightarrow | \text{total} = 2n |$
 - * Conditions: 2 prescribed interpolation points for $S_i(x)$, $i=0,\ldots,n-1$ (includes continuity condition) \Rightarrow total =2n
- Obtain

$$S_i(x) = a_i x + (y_i - a_i t_i), \quad a_i = \frac{y_{i+1} - y_i}{t_{i+1} - t_i}, \quad i = 0, \dots, n-1$$

Interpolatory Linear Splines—Example

Discontinuous derivatives at knots are unpleasing, ...

Approximation by Splines

- Motivation
- Linear Splines
- ⇒ Quadratic Splines
 - Cubic Splines
 - Summary

Quadratic Splines

Given domain [a,b], a quadratic spline S(x)

- Is defined on entire domain
- ullet Provides continuity of zeroth and first derivatives, i.e., is $C^1[a,b]$
- ∃ partition of "knots"

$${a = t_0, t_1, t_2, \dots, t_n = b}$$

such that

$$S_i(x) = a_i x^2 + b_i x + c_i \in P_2([t_i, t_{i+1}]), i = 0, \dots, n-1$$

Again no y-values or interpolation yet

Quadratic Spline—Example

$$f(x) = \begin{cases} x^2, & x \le 0, \\ -x^2, & 0 \le x \le 1, \\ 1 - 2x, & x \ge 1, \end{cases}$$
 $f(x) \stackrel{?}{=}$ quadratic spline

• Defined on domain $(-\infty, \infty)$

1/

- Continuity (clearly okay away from x = 0 and 1):
 - * Zeroth derivative:

*
$$f(0^{-}) = f(0^{+}) = 0$$

* $f(1^{-}) = f(1^{+}) = -1$

* First derivative:

*
$$f'(0^{-}) = f'(0^{+}) = 0$$

* $f'(1^{-}) = f'(1^{+}) = -2$

 $\sqrt{}$

• Each part of f(x) is $\in P_2$

1/

Interpolatory Quadratic Splines

Given points

$$\{(t_0,y_0),(t_1,y_1),(t_2,y_2),\ldots,(t_n,y_n)\}$$

spline must interpolate as well

- Are the $S_i(x)$ unique (same knots)?
 - * Coefficients: $a_i x^2 + b_i x + c_i$, $i = 0, ..., n-1 \Rightarrow$ total = 3n
 - * Conditions:
 - * 2 prescribed interpolation points for $S_i(x)$, $i=0,\ldots,n-1$ (includes continuity of function condition)
 - * (n-1) C^1 continuities \Rightarrow total = 3n-1

Interpolatory Quadratic Splines (cont.)

- Underdetermined system ⇒ need to add one condition
- Define (as yet to be determined) $z_i = S'(t_i), i = 0, ..., n$
- Write

$$S_i(x) = \frac{z_{i+1} - z_i}{2(t_{i+1} - t_i)} (x - t_i)^2 + z_i(x - t_i) + y_i$$

therefore

$$S_i'(x) = \frac{z_{i+1} - z_i}{t_{i+1} - t_i}(x - t_i) + z_i$$

- Need to
 - * verify continuity and interpolatory conditions
 - * determine z_i

Checking Interpolatory Quadratic Splines

Check four continuity (and interpolatory) conditions:

(i)
$$S_i(t_i) \stackrel{\checkmark}{=} y_i$$
 (iii) $S_i'(t_i) \stackrel{\checkmark}{=} z_i$ (ii) $S_i(t_{i+1}) =$ (below) (iv) $S_i'(t_{i+1}) \stackrel{\checkmark}{=} z_{i+1}$

(ii)
$$S_i(t_{i+1}) = \frac{z_{i+1} - z_i}{2} (t_{i+1} - t_i) + z_i (t_{i+1} - t_i) + y_i$$

$$= \frac{z_{i+1} + z_i}{2} (t_{i+1} - t_i) + y_i$$

$$\stackrel{\text{set}}{=} y_{i+1}$$

therefore (n equations, n+1 unknowns)

$$z_{i+1} = 2\frac{y_{i+1} - y_i}{t_{i+1} - t_i} - z_i, i = 0, \dots, n-1$$

Choose any 1 z_i and the remaining n are determined.

Interpolatory Quadratic Splines—Example

Okay, but discontinuous curvature at knots, ...

Approximation by Splines

- Motivation
- Linear Splines
- Quadratic Splines
- ⇒ Cubic Splines
 - Summary

Cubic Splines

Given domain [a,b], a cubic spline S(x)

- Is defined on entire domain
- Provides continuity of zeroth, first and second derivatives, i.e., is $C^2[a,b]$
- ∃ partition of "knots"

$${a = t_0, t_1, t_2, \dots, t_n = b}$$

such that for $i = 0, \ldots, n-1$

$$S_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i \in P_3([t_i, t_{i+1}]),$$

In general: spline of degree k ... C^{k-1} ... P_k ...

Why Stop at k = 3?

- Continuous curvature is visually pleasing
- Usually little numerical advantage to k > 3
- \bullet Technically, odd k's are better for interpolating splines
- Natural (defined later) cubic splines
 - * "best" in an analytical sense (stated later)

Interpolatory Cubic Splines

Given points

$$\{(t_0,y_0),(t_1,y_1),(t_2,y_2),\ldots,(t_n,y_n)\}$$

spline must interpolate as well

- Are the $S_i(x)$ unique (same knots)?
 - * Coefficients: $a_i x^3 + b_i x^2 + c_i x + d_i$, $i = 0, ..., n-1 \Rightarrow$ total = 4n
 - * Conditions:
 - \star 2 prescribed interpolation points for $S_i(x)$, $i=0,\ldots,n-1$ (includes continuity of function condition)

*
$$(n-1)$$
 $C^1 + (n-1)$ C^2 continuities
 $\Rightarrow | total = 4n-2 |$

Interpolatory Cubic Splines (cont.)

- Underdetermined system ⇒ need to add two conditions
- Natural cubic spline
 - * add: S''(a) = S''(b) = 0
 - * Assumes straight lines (i.e., no more constraints) outside of $\left[a,b\right]$
 - * Imagine bent beam of ship hull
 - * Defined for non-interpolatory case as well
- ullet Required matrix calculation for S_i definitions
 - * Linear: independent $a_i = \frac{y_{i+1} y_i}{t_{i+1} t_i} \Rightarrow$ diagonal
 - * Quadratic: two-term z_i definition \Rightarrow bidiagonal
 - * Cubic: . . . ⇒ tridiagonal

Interp. Natural Cubic Splines—Example

Now the curvature is continuous as well.

Optimality of Natural Cubic Spline

• Theorem: If

```
* f \in C^2[a,b],
```

- * knots: $\{a = t_0, t_1, t_2, \dots, t_n = b\}$
- * interpolation points: (t_i, y_i) : $y_i = f(t_i), i = 0, ..., n$
- * S(x) is the natural cubic spline which interpolates f(x) then

$$\int_{a}^{b} \left[S''(x) \right]^{2} dx \le \int_{a}^{b} \left[f''(x) \right]^{2} dx$$

- Bottom line
 - * average curvature of S < that of f
 - * compare with interpolating polynomial

Approximation by Splines

- Motivation
- Linear Splines
- Quadratic Splines
- Cubic Splines
- ⇒ Summary

Interpolation vs. Splines—Serpentine Curve

Vs. oscillatory interpolator—even linear spline is better.

Three Splines

Increased smoothness with increase of degree.

Ordinary Differential Equations

- ⇒ Introduction
 - Euler Method
 - Higher Order Taylor Methods
 - Runge-Kutta Methods
 - Summary

Ordinary Differential Equation—Definition

- ODE = an equation
 - * involving one or more derivatives of x(t)
 - * x(t) is unknown and the desired target
 - * somewhat opposite of numerical differentiation
- E.g.: $(x''')^{\frac{3}{7}}(t) + 37 t e^{x^2(t)} \sin \sqrt[4]{x'(t)} \log \frac{1}{t} = 42$ Which x(t)'s fulfill this behavior?
- "Ordinary" (vs. "partial") = one independent variable t
- "Order" = highest (composition of) derivative(s) involved
- "Linear" = derivatives, including zeroth, appear in linear form
- "Homogeneous" = all terms involve some derivative (including zeroth)

Analytical Approach

- Good luck with previous equation, but others . . .
- Shorthand: x = x(t), $x' = \frac{d(x(t))}{dt}$, $x'' = \frac{d^2(x(t))}{dt^2}$, ...
- Analytically solvable

- \bullet c, c_1 and c_2 are arbitrary constants
- Need more conditions/information to pin down constants
 - * Initial value problems (IVP)
 - * Boundary value problems (BVP)

Here: IVP for first-order ODE.

First-Order IVP

General form:

$$x' = f(t, x), x(a)$$
 given

- Note: non-linear, non-homogeneous
- Examples

*
$$x' = x + 1$$
, $x(0) = 0 \Rightarrow x(t) = e^{t} - 1$
* $x' = 6t - 1$, $x(1) = 6 \Rightarrow x(t) = 3t^{2} - t + 4$
* $x' = \frac{t}{x+1}$, $x(0) = 0 \Rightarrow x(t) = \sqrt{t^{2} + 1} - 1$

• Physically: e.g., t is time, x is distance and f=x' is speed/velocity

Another optimistic scenario . . .

RHS Independence of x

- f = f(t) but $f \neq f(x)$
- E.g.

$$\begin{cases} x' = 3t^2 - 4t^{-1} + (1+t^2)^{-1} \\ x(5) = 17 \end{cases}$$

Perform indefinite integral

$$x(t) = \int \frac{d(x(t))}{dt} dt = \int f(t) dt$$

Obtain

$$\begin{cases} x(t) = t^3 - 4 \ln t + \arctan t + C \\ C = 17 - 5^3 + 4 \ln 5 - \arctan 5 \end{cases}$$

And now for the bad news ...

Numerical Techniques

- Source of need
 - * Usually analytical solution is not known
 - * Even if known, perhaps very complicated, expensive to compute
- Numerical techniques
 - * Generate a table of values for x(t)
 - * Usually equispaced in t, stepsize = h
 - * $\stackrel{!}{\underline{\hspace{0.1cm}}}$ with small h, and far from initial value roundoff error can accumulate and kill

Ordinary Differential Equations

- Introduction
- ⇒ Euler Method
 - Higher Order Taylor Methods
 - Runge-Kutta Methods
 - Summary

Euler Method

- First-order IVP: given x' = f(t, x), x(a), want x(b)
- Use first 2 terms of Taylor series (i.e., n=1) to get from x(a) to x(a+h)

truncation error
$$x(a+h) = x(a) + h \underbrace{x'(a) + O(h^2)}_{\text{use } f(a,x(a))}$$

- Repeat to get from x(a+h) to x(a+2h), ...
- Total $n = \frac{b-a}{h}$ steps until x(b)
- Note: units of time/distance/speed are consistent

Euler Method—Example

• When will the slopes match up at the points?

Okay, but not great. What is the accuracy?

Euler Method—Pros and Cons

- Note: straight lines connecting points
 - * from Euler construction (linear in h)
 - * can be used for subsequent linear interpolation
- Advantages
 - * Accurate early on: $O(h^2)$ for first step
 - * Only need to calculate given function f(t, x(t))
 - st Only one evaluation of f(t,x(t)) needed
- Disadvantages
 - * Pretty inaccurate at b
 - * Cumulative truncation error: $n \times O(h^2) = O(h)$
 - * This is aside from (accumulative) roundoff error

How about more terms of the Taylor series?

Ordinary Differential Equations

- Introduction
- Euler Method
- Higher Order Taylor Methods
 - Runge-Kutta Methods
 - Summary

Taylor Method of Order 4

- First-order IVP: given x' = f(t, x), x(a), want x(b)
- Use first 5 terms of Taylor series (i.e., n=4) to get from x(a) to x(a+h)

$$x(a+h) = x(a) + h\underbrace{x'(a)}_{\text{use }f(a,x(a))} + \frac{h^2}{2!}x''(a) + \frac{h^3}{3!}x'''(a) + \frac{h^4}{4!}x^{(iv)}(a) + O(h^5)$$

- Use f', f'' and f''' for x'', x''' and $x^{(iv)}$, respectively
- Repeat to get from x(a+h) to x(a+2h), ...
- Note: units of time/distance/speed still are consistent

Order 4 is a standard order used.

Taylor Method—Numerical Example

- First-order IVP: $x' = 1 + x^2 + t^3$, x(1) = -4, want x(2)
- Derivatives of f(t,x)

$$x'' = 2x x' + 3t^{2}$$

$$x''' = 2x x'' + 2(x')^{2} + 6t$$

$$x^{(iv)} = 2x x''' + 6x' x'' + 6$$

- Solution values of x(2), n = 100
 - * actual: 4.3712 (5 significant digits)
 - * Euler: 4.2358541
 - * Taylor₄: 4.3712096

How about the earlier graphed example?

Taylor Method of Order 4—Example

Single step truncation error of $O(h^5) \Rightarrow$ excellent match.

Taylor Method of Order 4—Larger Step

Even single Taylor step beats Euler.

Taylor Method—Pros and Cons

- Note: graphs connecting points: from construction $(P_4 \text{ in } h)$
- Advantages
 - * Very accurate
 - * Cumulative truncation error: $n \times O(h^5) = O(h^4)$
- Disadvantages
 - * Need derivatives of f(t,x(t)) which might be
 - * analytically: difficult
 - * numerically: expensive—computationally and/or accuracy-wise
 - * just plain impossible
 - * Four new evaluations each step (Euler was just one)

How to avoid the extra derivatives?

Ordinary Differential Equations

- Introduction
- Euler Method
- Higher Order Taylor Methods
- Runge-Kutta Methods
 - Summary

Motivation

- We want to avoid calculating derivatives of f(t,x(t))
- Similar to Newton→secant motivation
- Also, recall different approaches for higher accuracy
 - * Taylor series: more derivatives at one point
 - * Numerical differentiation: more function evaluations, at various points
- Runge-Kutta (RK) of order m: for each step of size h
 - * evaluate f(t,x(t)) at m interim stages
 - * arrive at accuracy order similar to Taylor method of order m

Runge-Kutta Methods: RK2 and RK4

- Each f(t,x(t)) evaluation builds on previous
- Weighted average of evaluations produces x(t+h)
- Error for order m is $O(h^{m+1})$ for each step of size h
- Note: units of time/distance/speed—okay

RK2:

RK4:

$$x(t+h) = x(t) + \frac{1}{2}(F_1 + F_2)$$

$$x(t+h) = x(t) + \frac{1}{2}(F_1 + F_2)$$
 $x(t+h) = x(t) + \frac{1}{6}(F_1 + 2F_2 + 2F_3 + F_4)$

$$\begin{cases} F_1 = hf(t,x) \\ F_2 = hf(t+h,x+F_1) \end{cases}$$

$$\begin{cases} F_1 = hf(t,x) \\ F_2 = hf(t + \frac{1}{2}h, x + \frac{1}{2}F_1) \\ F_3 = hf(t + \frac{1}{2}h, x + \frac{1}{2}F_2) \\ F_4 = hf(t + h, x + F_3) \end{cases}$$

Ordinary Differential Equations

- Introduction
- Euler Method
- Higher Order Taylor Methods
- Runge-Kutta Methods
- ⇒ Summary

Summary—First-Order IVP Solvers

- Complex and complicated IVPs require numerical methods
- Usually generate table of values, at constant stepsize h
- Euler: simple, but not too accurate
- High-order Taylor: very accurate, but requires derivatives of f(t,x(t))
- Runge-Kutta: same order of accuracy as Taylor, without derivative evaluations
- Error sources
 - Local truncation (of Taylor series approximation)
 - * Local roundoff (due to finite precision)
 - * Accumulations and combinations of previous two

Least Squares Method

- ⇒ Motivation and Approach
 - Linearly Dependent Data
 - General Basis Functions
 - Polynomial Regression
 - Function Approximation

Source of Data

• Have the following tabulated data: $\begin{array}{c|c} x & x_0 & x_1 & \cdots & x_m \\ \hline y & y_0 & y_1 & \cdots & y_m \end{array}$

- E.g., data from experiment
- Assume known dependence, e.g. linear, i.e., y = ax + b

What a and b do we choose to represent the data?

Most Probable Line

- For each point, consider the equation $y_i = ax_i + b$ with the two unknowns a and b
- One point $\Rightarrow \infty$ solutions
- Two points (different x_i) \Rightarrow one unique solution
- > two points ⇒ in general no solution

> two points \Rightarrow What is most probable line?

Estimate Error

• Assume estimates \hat{a} and \hat{b} \Rightarrow error at (x_k,y_k) : $e_k=\hat{a}x_k+\hat{b}-y_k$

- Note:
 - * vertical error, not distance to line (a harder problem)
 - * $|e_k| \Rightarrow$ no preference to error direction

How do we minimize all of the $|e_k|$?

Vector Minimizations

Minimize:

- ullet largest component: $\min_{a,b} \max_{0 \le k \le m} |e_k|$, "min-max"
- component sum: $\min_{a,b}\sum_{k=0}^m |e_k|$, linear programming Note: $|\cdot|$ won't allow errors to cancel
- component squared sum: $\min_{a,b} \sum_{k=0}^{m} e_k^2$, least squares $\equiv \phi(a,b)$

Why use least squares?

ℓ_p Norms

• Definition:
$$||\mathbf{v}||_p \equiv \left(\sum_{k=0}^m |v_k|^p\right)^{\overline{p}}$$

• Minimizing ℓ_{∞} , ℓ_1 and ℓ_2 norms, resp., in 2-D (m=1):

 v_{O}

- Why use ℓ_2 ?
 - * Can use calculus (see below)
 - * If error is normally distributed ⇒ get maximum likelihood estimator

$\phi(a,b)$ Minimization

- How do we minimize $\phi(a,b) = \sum_{k=0}^{m} e_k^2$ wrt a and b?
- Standard calculus: $\frac{\partial \phi}{\partial a} \stackrel{\rm set}{=} 0$ and $\frac{\partial \phi}{\partial b} \stackrel{\rm set}{=} 0 \Rightarrow$ two equations with two unknowns
- If dependence of y on a and b is linear (and consequently, dependence of $\phi(a,b)$ is quadratic) \Rightarrow minimization leads to linear system for a and b (linear least squares)
- ullet Example also had linearly dependent data, i.e., y linear in x

Minimization of our example, ...

Least Squares Method

- Motivation and Approach
- ⇒ Linearly Dependent Data
 - General Basis Functions
 - Polynomial Regression
 - Function Approximation

LLS for Linearly Dependent Data—Method

Function to minimize:

$$\phi(a,b) = \sum_{k=0}^{m} e_k^2 = \sum_{k=0}^{m} (ax_k + b - y_k)^2$$

lead to two differentiations:

$$2\sum_{k=0}^{m} (ax_k + b - y_k)x_k = 0, \text{ and } 2\sum_{k=0}^{m} (ax_k + b - y_k) = 0$$

or as a system of linear equations in a and b:

$$\begin{pmatrix} \sum_{k=0}^{m} x_k^2 \end{pmatrix} a + \begin{pmatrix} \sum_{k=0}^{m} x_k \end{pmatrix} b = \begin{pmatrix} \sum_{k=0}^{m} x_k y_k \end{pmatrix}$$
$$\begin{pmatrix} \sum_{k=0}^{m} x_k \end{pmatrix} a + (m+1)b = \begin{pmatrix} \sum_{k=0}^{m} y_k \end{pmatrix}$$

Coefficient matrix = cross-products of a and b coefficients.

LLS for Linearly Dependent Data—Solution

We obtain:

$$a = \frac{1}{d} \left[(m+1) \sum_{k=0}^{m} x_k y_k - \sum_{k=0}^{m} x_k \sum_{k=0}^{m} y_k \right]$$

and

$$b = \frac{1}{d} \left(\sum_{k=0}^{m} x_k^2 \sum_{k=0}^{m} y_k - \sum_{k=0}^{m} x_k \sum_{k=0}^{m} x_k y_k \right)$$

where d is the determinant:

$$d = (m+1) \sum_{k=0}^{m} x_k^2 - \left(\sum_{k=0}^{m} x_k\right)^2$$

What does this look like?

LLS Solution for Sample Data

 x_i values

What about non-linearly dependent data?

Least Squares Method

- Motivation and Approach
- Linearly Dependent Data
- ⇒ General Basis Functions
 - Polynomial Regression
 - Function Approximation

Non-Linearly Dependent Data

Linear least squares—for *linear* combination of any functions,
 e.g.:

$$y = a \ln x + b \cos x + ce^x$$

• Minimization of ϕ : three differentiations:

$$\frac{\partial \phi}{\partial a} \stackrel{\text{set}}{=} 0$$
, $\frac{\partial \phi}{\partial b} \stackrel{\text{set}}{=} 0$ and $\frac{\partial \phi}{\partial c} \stackrel{\text{set}}{=} 0$

• Elements of matrix: sums of cross-products of functions:

$$\sum_{k=0}^{m} \ln x_k e^{x_k}, \sum_{k=0}^{m} (\cos x_k)^2, \dots$$

A more general form, ...

Linear Combinations of General Functions

- m+1 points $\{(x_0,y_0),(x_1,y_1),\ldots,(x_m,y_m)\}$
- n+1 "basis" functions g_0,g_1,\ldots,g_n , such that

$$g(x) = \sum_{j=0}^{n} c_j g_j(x)$$

• Error function ϕ

$$\phi(c_0, c_1, \dots, c_n) = \sum_{k=0}^{m} \left(\sum_{j=0}^{n} c_j g_j(x_k) - y_k \right)^2$$

• Minimization:

$$\frac{\partial \phi}{\partial c_i} = 2 \sum_{k=0}^m \left(\sum_{j=0}^n c_j g_j(x_k) - y_k \right) g_i(x_k) \stackrel{\text{set}}{=} 0, \quad i = 0, \dots, n$$
Pulling it together, ...

Normal Equations

"Normal equations":

$$\sum_{j=0}^{n} \left(\sum_{k=0}^{m} g_i(x_k) g_j(x_k) \right) c_j = \sum_{k=0}^{m} y_k g_i(x_k), \quad i = 0, \dots, n$$

- Note: n+1 equations (i.e., rows) and n+1 columns
- (Coefficient matrix) $_{ij} = \sum_{k=0}^{m} g_i(x_k) g_j(x_k)$
- Possible solution method: Gaussian elimination
- Require of $g_i(x)$ for any solution method
 - * linear independence (lest there be no solution)
 - * appropriateness (e.g., not sin's for linear data)
 - * well-conditioned matrix (opposite of ill-conditioned)

Choice of Basis Functions

- What if basis functions are unknown?
- Choose them for numerically "good" coefficient matrix (at least not ill-conditioned)
- Orthogonality ⇒ diagonal matrix, would be nice
- Orthonormality \Rightarrow identity matrix, would be best, i.e., $\sum_{k=0}^{m} g_i(x_k) \, g_j(x_k) = \delta_{ij} \text{ and compute coefficients directly}$

$$c_i = \sum_{k=0}^{m} y_k g_i(x_k), \quad i = 0, \dots, n$$

Can be done with Grahm-Schmidt process

Another method for choosing basis functions, ...

Chebyshev Polynomials

- ullet Assume that the basis functions are $\in P_n$, $x_i \in [-1,1]$
- $1, x, x^2, x^3, \ldots$ are too alike to describe varying behavior
- Use Chebyshev polynomials: $1, x, 2x^2 1, 4x^3 3x, \dots$

... with Gaussian elimination produces accurate results.

Least Squares Method

- Motivation and Approach
- Linearly Dependent Data
- General Basis Functions
- ⇒ Polynomial Regression
 - Function Approximation

Motivation and Definition

- ullet Want to smooth out data to a polynomial $p_N(x)$
- ullet Problem: what degree N polynomial?
- For m+1 points, certainly N < m, as N = m is interpolation
- Define variance σ_n^2

$$\sigma_n^2 = \frac{1}{m-n} \sum_{k=0}^m [y_k - p_n(x_k)]^2 \quad (m > n)$$

Regression Theory

• Statistical theory: if data (sans noise) is really of $p_N(x)$, then:

$$\sigma_0^2 > \sigma_1^2 > \sigma_2^2 > \dots > \sigma_N^2 = \sigma_{N+1}^2 = \sigma_{N+2}^2 = \dots = \sigma_{m-1}^2$$

• With noisy data stop when $\sigma_N^2 \approx \sigma_{N+1}^2 \approx \sigma_{N+2}^2 \approx \cdots$

Least Squares Method

- Motivation and Approach
- Linearly Dependent Data
- General Basis Functions
- Polynomial Regression
- ⇒ Function Approximation

Continuous Data

- Given f(x) on [a,b], perhaps from experiment
- Replace complicated or numerically expensive f(x) with

$$g(x) = \sum_{j=0}^{n} c_j g_j(x)$$

Continuous analog of error function

$$\phi(c_0, c_1, \dots, c_n) = \int_a^b [g(x) - f(x)]^2 dx$$

Can also weight parts of the interval differently

$$\phi(c_0, c_1, \dots, c_n) = \int_a^b [g(x) - f(x)]^2 w(x) dx$$

Normal Equations and Basis Functions

Differentiating, we get the normal equations

$$\sum_{j=0}^{n} \left[\int_{a}^{b} g_{i}(x) g_{j}(x) w(x) dx \right] c_{j} = \int_{a}^{b} f(x) g_{i}(x) w(x) dx, \quad i = 0, \dots, n$$

• Want orthogonality of (coefficient matrix) $_{i\,i}$

$$\int_{a}^{b} g_{i}(x) g_{j}(x) w(x) dx = 0, \quad i \neq j$$

• For weighting interval ends, use Chebyshev polynomials since

$$\int_{-1}^{1} T_i(x) T_j(x) \frac{1}{\sqrt{1 - x^2}} dx = \begin{cases} 0, & i \neq j, \\ \frac{\pi}{2}, & i = j > 0 \\ \pi, & i = j = 0 \end{cases}$$

Simulation

- ⇒ Random Numbers
 - Monte Carlo Integration
 - Problems and Games

Motivation

- Typical problem: traffic lights (sans clover leaf)
 - * given traffic flow parameters . . .
 - * how to determine the optimal period
 - * how to distribute the time per period
 - * note: these are all inter-dependent
- Analytically very hard (or impossible)
- Empirical simulation can approach the problem
- Need to implement randomization for modeling various conditions

Less mathematical, but not less important.

Random Numbers—Usage

- With simulation ⇒ assist understanding of
 - * standard/steady state conditions
 - * various perturbations
- Monte Carlo: running a process many times with randomization
 - * help draw statistics

Random Numbers—Requirements

- Not ordered, e.g., monotonic or other patterns
- Equal distribution
- Often RNG produce $x \in [0, 1)$
- Desired (demanded!): P(a, a + h) = h; independent of a
- Low or no periodicity
- No easy generating function from one number to the next
 - * can be deceivingly random-looking
 - * e.g.: digits of π

Random Number Generators

- Computers are deterministic ⇒ not an easy problem
- Current computer $\frac{1}{100}$ of seconds—not good
 - * for requests every $< \frac{1}{100}$ second
 - * for any requests with periodicity of $\frac{1}{100}$ second
- Often based on Mersenne primes (so far, 40 of them)
 - * definition: $2^k 1$, for some k
 - * e.g.: $k = 31 \Rightarrow 2,147,483,647$
 - * largest (as of 17 November 2003): $k = 20,996,011 \Rightarrow$ 6,320,430 decimal digits!
 - * other usages: cryptology

Testing and Using a RNG

- "Not all RNG were created equal!"
- One can (and should) histogram a RNG
- Not obvious (nor necessarily known)
 - * number of trials necessary for testing a RNG
 - * number of trials necessary when using a RNG
- For ranges other than [0,1): apply obvious mapping

Incorrect Usage—In an Ellipse

- Equation: $x^2 + 4y^2 = 4$
- Generation algorithm:
 - * $x_i \in \text{rng}(-2,2)$, $y_i \in \text{rng}(-1,1)$
 - * y_i correction: $y_i \leftarrow (y_i/2)\sqrt{4-x_i^2}$

Points bunch up at ends \Rightarrow non-uniformity.

Incorrect Usage—In a Circle

• Generation algorithm: $\theta_i \in \text{rng}(0, 2\pi)$, $r_i \in \text{rng}(0, 1)$ Points bunch in the middle \Rightarrow non-uniformity.

correct Usage—In an Ellipse

• Generate extra points, discarding exterior ones

Correct Usage—In a Circle

• Generate extra Cartesian points, discarding exterior ones

Simulation

- Random Numbers
- ⇒ Monte Carlo Integration
 - Problems and Games

Numerical Integration

- Motivation: to solve $\int_0^1 f(x)dx$
- Possible solutions
 - * Composite Trapeziod Rule
 - * Composite Simpson's Rule
 - * Romberg Algorithm
 - * Guassian Quadrature
- Problem: sometimes things are more difficult, particularly in higher dimensions
- Monte Carlo solution: for $x_i \in rng(0,1)$

$$\int_0^1 f(x)dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$$

• Error (from statistical analysis): $O(1/\sqrt{n})$

Higher Dimensions and Non-Unity Domains

• In 3-D: for $(x_i, y_i, z_i) \in \text{rng}(0, 1)$

$$\int_0^1 \int_0^1 \int_0^1 f(x, y, z) dx dy dz \approx \frac{1}{n} \sum_{i=1}^n f(x_i, y_i, z_i)$$

• Non-unity domain: for $x_i \in \operatorname{rng}(a,b)$

$$\int_{a}^{b} f(x)dx \approx (b-a)\frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

• In general:

 $\int_A f \approx \text{(size of } A) \times \text{(average of } f \text{ for } n \text{ random points in } A)$

Sample Integration Problem

• Integral:

$$\iint_{\Omega} \sin \sqrt{\ln (x+y+1)} \, dx \, dy$$

Domain:

$$\Omega = \left(x-\frac{1}{2}\right)^2 + \left(y-\frac{1}{2}\right)^2 \leq \frac{1}{4}$$
 Copyright ©2004 by A. E. Naiman NM Slides—Simulation, p. 14

Sample Integration Solution

• Solution: $\frac{\pi}{4n} \sum_{i=1}^{n} f(p_i)$, p_i chosen properly (how?)

Computing Volumes

Problem: determine the volume of the region which satisfies:

$$\begin{cases} 0 \le x \le 1 & 0 \le y \le 1 \\ x^2 + \sin y \le z \\ x + e^y + z \ge 4 \end{cases}$$

- Solution
 - * generate random points in (0,0,0) ... (1,1,3)
 - * determine percentage which satisfies constraints

Geometric Interpretation

• Desired volume is on the left hand side, between the graphs

Simulation

- Random Numbers
- Monte Carlo Integration
- ⇒ Problems and Games

Probability/Chance of Dice and Cards

Dice

- * 12, for 2 die, 24 throws
- * 19, for many die
- * loaded die

Cards

- * shuffling in general
- * straight flush
- * royal flush
- * 4 of a kind

Can be calculated exactly, or approximated by simulation.

Miscellaneous Problems

- How many people for probable coinciding birthdays?
- Buffon's Needle
 - * lined paper
 - * needle of inter-line length
 - * probability of dropped needle crossing a line?
- Monty Hall problem
- Neutron shielding ("random walk")
- n tennis players \Rightarrow how many matches?
- 100 light switches, all off
 - * person i switches multiples of i, i = 1, ..., 100
 - * which remain on?

Problems with somewhat difficult analytic solutions.