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Abstract

We study the equivalence among a nonconvex QOP, its CPP and DNN relaxations
under the assumption that the aggregated and correlative sparsity of the data ma-
trices of the CPP relaxation is represented by a block-clique graph G. By exploiting
the correlative sparsity, we decompose the CPP relaxation problem into a clique-
tree structured family of smaller subproblems. Each subproblem is associated with
a node of a clique tree of G. The optimal value can be obtained by applying an
algorithm that we propose for solving the subproblems recursively from leaf nodes
to the root node of the clique-tree. We establish the equivalence between the QOP
and its DNN relaxation from the equivalence between the reduced family of sub-
problems and their DNN relaxations by applying the known results on: (i) CPP
and DNN reformulation of a class of QOPs with linear equality, complementarity
and binary constraints in 4 nonnegative variables. (ii) DNN reformulation of a class
of quadratically constrained convex QOPs with any size. (iii) DNN reformulation
of LPs with any size. As a result, we show that a QOP whose subproblems are
the QOPs mentioned in (i), (ii) and (iii) is equivalent to its DNN relaxation, if
the subproblems form a clique-tree structured family induced from a block-clique
graph.
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1 Introduction

Completely positive programming (CPP) relaxations of a class of quadratic optimization
problems (QOPs) have received a great deal of attention as they can provide the optimal
value of the original QOP [2, 7, 8, 17, etc.] even with their computational intractabil-
ity. They are also referred as CPP reformulations of QOPs. As for computationally
tractable alternatives, further relaxations of the CPP reformulations to doubly nonnega-
tive programming (DNN) relaxations have been studied in [4, 16], and their effectiveness
in obtaining good lower bounds for the optimal value of the QOP have been demon-
strated in [14, 16]. Since the equivalence among QOPs, their CPP and DNN relaxations
cannot be obtained in general, in this paper, we explore structured QOPs for which the
equivalence to their DNN reformulations can be established. In particular, we focus on
some structured sparsity characterized by block-clique graphs [9] and partial convexity to
establish their equivalence for a class of QOPs. As far as we are aware of, this is the first
time that the equivalence of nonconvex QOPs and their DNN relaxations are studied for
this class of structured QOPs.

We start by introducing a conic optimization problem (COP) model to simultaneously
represent QOPs, CPP problems and DNN problems. Let Rn denote the n-dimensional
Euclidean space and Rn

+ the corresponding nonnegative orthant. We assume that each
x ∈ Rn is a column vector, and xT denotes its transpose. Let Sn denote the space of
n×n symmetric matrices. For every pair of A ∈ Sn and X ∈ Sn, 〈A, X〉 stands for their
inner product defined as the trace of AX. Let Ieq and Iineq be disjoint finite subsets of
positive integers and Qp ∈ Sn (p ∈ {0}∪ Ieq∪ Iineq). Given a closed (possibly nonconvex)
cone K ⊂ Sn, we consider the following general COP:

COP(K): ζ(K) = inf

〈Q0, X〉 :
X ∈ K, X11 = 1,
〈Qp, X〉 = 0 (p ∈ Ieq),
〈Qp, X〉 ≤ 0 (p ∈ Iineq)


The distinctive feature of COP(K) is that it only involves homogeneous equality and
inequality constraints except X11 = 1. A general equality standard form COP can be
transformed to COP(K) with Iineq = ∅ in a straightforward manner (see Section 2.2).
If Γn = {xxT ∈ Sn : x ∈ Rn

+} is chosen as the closed cone K ⊂ Sn, then COP(Γn)
represents a QOP with quadratic equality and inequality constraints in x ∈ Rn

+ (see
Section 2.5). Notice that the inequality constraints 〈Qp, X〉 ≤ 0 (p ∈ Iineq) are dealt
with separately from the equality constraints 〈Qp, X〉 = 0 (p ∈ Ieq) without introducing
slack variables. In particular, the inequality constraints 〈Qp, X〉 ≤ 0 (p ∈ Iineq) with
X ∈ Γn correspond to convex quadratic inequality constraints in Section 2.5. If K is the
DNN cone of size n (denoted as DNNn) or the CPP cone of size n (denoted as CPPn), then
COP(K) represents a general DNN or CPP problem, respectively (see Section 2.2). They
are known to serve as convex relaxations of the nonconvex QOP, COP(Γn). In general,
ζ(DNNn) ≤ ζ(CPPn) ≤ ζ(Γn) holds since Γn ⊂ CPPn (= the convex hull of Γn) ⊂
DNNn.

The main purpose of this paper is to investigate structured sparsity, in particular,
the aggregated sparsity [12] and the correlative sparsity [18] characterized by block-
clique graphs [9], and partial convexity of the data matrices of COP(K) to establish the
equivalence among the three types of problems, COP(Γn), COP(CPPn) and COP(DNNn).
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Sparsity, especially the chordal graph sparsity, has been heavily used to improve
the computational efficiency of solving semidefinite programming (SDP) problems. The
sparsity exploitation technique [12, 18, 20, 21, etc.] for SDP problems was based on
the semidefinite matrix completion in order to reduce the size of the positive semidef-
inite variable matrix. More precisely, it replaces a large but sparse variable matrix of
a given SDP problem with smaller positive semidefinite variable matrices whose sizes
are determined by the maximal cliques of the extended chordal graph characterizing the
aggregated sparsity of the data matrices of the SDP problem. On the other hand, exploit-
ing sparsity in CPP problems has not been studied in the literature, to the best of our
knowledge, as the studies on CPP problems have been mainly for theoretical interests.

We discuss the equivalence of COP(Γn), COP(CPPn) and COP(DNNn) based on the
following techniques and/or facts.

(a) The CPP and DNN matrix completion in [10].

(b) Exploiting (aggregated and correlative) sparsity in chordal graph structured SDPs
[12, 18].

(c) CPPn = DNNn if n ≤ 4.

(d) CPP reformulation of a class of QOPs with linear equality, binary and complemen-
tarity constraints [2, 7, 8, 17, etc.].

(e) DNN reformulation of quadratically constrained convex QOPs in nonnegative vari-
ables. See Lemma 2.5 in Section 2.6.

We note that (c) is well-known. A block-clique graph G is a chordal graph in which any
two maximal cliques intersect in at most one vertex [9]. It was shown in [10] that every
partial CPP (or DNN) matrix whose specified entries are determined by an undirected
graph G has a CPP (or DNN) completion if and only if G is a block-clique graph.

Let K ∈ {Γn,CPPn,DNNn}. In our method, the basic idea developed in (b) combined
with (a), instead of positive semidefinite matrix completion [13], is applied to COP(K)
with Qp ∈ Sn (p ∈ {0} ∪ Ieq ∪ Iineq). The data structure of COP(K) is characterized
by a block-clique graph G with the maximal cliques Cr (r = 1, . . . , `). COP(K) is
then decomposed into a family of ` smaller size subproblems according to a clique tree
structure induced from G. The family of ` subproblems inherit the clique tree structure
of the block-clique graph G. More precisely, they are associated with the ` nodes of the
clique tree. Two distinct subproblems are almost independent but weakly connected in
the sense that they share one scalar variable if they are adjacent in the clique tree and
no common variable otherwise. In addition, each problem associated with a clique Cr in
the family is of the same form as COP(K), but the size of its matrix variable is decreased
to the size of Cr. It is important to note that the decomposition is independent of the
choice of K ∈ {Γn,CPPn,DNNn}.

We utilize the aforementioned decomposition of COP(K) for two purposes: to effi-
ciently solve large scale COPs and to show the equivalence among COP(Γn), COP(CPPn)
and COP(DNNn). For the first purpose of efficiently solving large scale COPs, the opti-
mal value ζ(K) of COP(K) is computed by solving the ` small decomposed subproblems
in the family. We propose an algorithm for sequentially solving the decomposed sub-
problems. As a result, the proposed algorithm is more efficient than directly solving the
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original COP(K) when its size becomes increasingly large. Here we implicitly assume
that K = DNNn, although all the results would remain valid even when the decomposed
subproblems are not numerically tractable. We should emphasize that the decomposi-
tion into smaller subproblems is certainly beneficial computationally. For example, the
decomposition of a DNN problem of size 1000 into 200 DNN subproblems of size at most
10 is certainly much more numerically tractable than the original DNN problem.

For the second purpose of showing the equivalence among COP(Γn), COP(CPPn) and
COP(DNNn), the decomposition is applied to a pair of COP(K1) and COP(K2) with two
distinct K1, K2 ∈ {Γn,CPPn,DNNn}. Then, two families of subproblems, say family 1
from COP(K1) and family 2 from COP(K2), are obtained. The equivalence between
COP(K1) and COP(K2) is reduced to the equivalence of family 1 and family 2. We note
that a pair of decomposed subproblems, one from family 1 and the other form family 2,
associated with a common clique Cr share the common objective function and constraints
except for their cone constraints. Thus, (c), (d) and/or (e) can be applied for the equiv-
alence of each pair. If all pairs of subproblems from families 1 and 2 are equivalent, then
COP(K1) and COP(K2) are equivalent. In particular, all of nonconvex QOPs with linear
and complementarity constraints in 4 variables, quadratically constrained convex QOPs
with any size and LPs with any size can be included as subproblems in a single QOP for-
mulated as COP(Γ), which can then be equivalently reformulated as its DNN relaxation.
We should mention that a structured sparsity, i.e., the aggregate and correlative sparsity
characterized by a block-clique graph, needs to be imposed on the QOP. Such a QOP
may not appear frequently in practice, but our study here has theoretical importance as
nonconvex QOPs are NP hard to solve in general.

This paper is organized as follows: In Section 2, some basics on block-clique graphs,
(a), (c), (d) and (e) are described. We also define the aggregate and correlative sparsity
which are represented by an undirected graph. Sections 3 and 4 include the main results of
this paper. In Section 3, the equivalence among COP(Γn), COP(CPPn) and COP(DNNn)
based on (c) and (d) is established by exploiting the aggregated sparsity characterized by
block-clique graphs. In Section 4, we show how COP(K) with K ∈ {Γn,CPPn,DNNn}
can be decomposed into smaller subproblems by exploiting the correlative sparsity. Then
the equivalence results given in Section 3 as well as (e) are applied to a pair of subproblems
induced from distinct COP(K1) and COP(K2) to verify their equivalence as mentioned
above. We also present an algorithm to sequentially solve smaller decomposed subprob-
lems. In Section 5, we illustrate two types of QOPs, block-clique graph structured QOPs
with linear equality and complementarity constraints and partially convex QOPs, which
can be formulated as the equivalent DNN problems. We conclude the paper in Section 6.
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2 Preliminaries

2.1 Notation and symbols

We will consider the following cones in Sn.

Sn
+ = the cone of n× n symmetric positive semidefinite matrices,

Nn = the cone of n× n symmetric nonnegative matrices

= {X ∈ Sn : Xij ≥ 0 (i = 1, . . . , n, j = 1, . . . , n)} ,
DNNn = DNN cone = Sn

+ ∩ Nn,

Γn =
{
xxT ∈ Sn : x ∈ Rn

+

}
,

CPPn = CPP cone = the convex hull of Γn.

The following relation is well-known [5]:

CPPn = DNNn if n ≤ 4,
CPPn is a proper subset of DNNn otherwise.

(1)

Let N = {1, . . . , n}. For each nonempty subset C of N , RC denotes the |C|-
dimensional Euclidean space of column vectors of xi (i ∈ C), and SC the linear space of
|C| × |C| symmetric matrices consisting of the elements Xij (i, j) ∈ C × C. A vector in
RC denoted by xC is regarded as a subvector of x ∈ Rn, and a matrix in SC denoted
by XC as a principal submatrix of X ∈ Sn. We define ΓC =

{
xCx

T
C : xC ∈ RC

+

}
, and

DNNC and CPPC to be the DNN cone and the CPP cone in SC , respectively.

We say a subset F of N×N symmetric if it satisfies (i, j) ∈ F ⇔ (j, i) ∈ F . For every
symmetric subset F of N ×N , we denote {(i, j) ∈ F : i 6= j} and F ∪ {(i, i) : i ∈ N} by
F o and F , respectively.

2.2 Conversion of general COPs to COP(K)

Let dp ∈ R and Q
p ∈ Sn (p ∈ {0} ∪ Ieq ∪ Iineq). We assume d0 = 0. For each K ∈

{Γn,CPPn,DNNn}, consider a general COP in the standard equality form:

inf
{
〈Q0

, Y 〉 : Y ∈ K, 〈Qp
, Y 〉 = dp (p = 1, . . . ,m)

}
.

Let Ieq = {1, . . . ,m}, Iineq = ∅, and Qp =

(
−dp 0T

0 Q
p

)
∈ S1+n (p = 0, 1, . . . ,m).

Then 〈Qp, X〉 = 〈Qp
, Y 〉 − dpX11 for every X =

(
X11 xT

x Y

)
∈ S1+n (p = 0, 1, . . . ,m).

Therefore, the above standard equality form COP with K = Γn, K = CPPn and K =
DNNn can be rewritten as COP(Γ1+n), COP(CPP1+n) and COP(DNN1+n), respectively.
Conversely, if slack variables are introduced for the inequality constraints 〈Qp, X〉 ≤ 0
(p ∈ Iineq) in COP(K), COP(K) can be converted into the standard equality form COP
in a straightforward fashion.
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Figure 1: Illustration of block-clique graphs. In case (a), the maximal cliques are
C1 = {1, 2, 3, 4}, C2 = {3, 5, 6, 7}, C3 = {3, 8, 9} and C4 = {5, 10, 11}. In this case, every
clique Cq (q = 1, 2, 3, 4) contains at most 4 nodes, so that the graph G(N,E) satisfies
the assumption of (ii) and (iii) of Theorem 3.1. In case (b), the maximal cliques are
C1 = {1, 2, 3}, C2 = {3, 4, 5, 6, 7}, C3 = {3, 8, 9, 10, 11} and C4 = {11, 12, 13}. If a new
edge (10, 12) is added, then a new clique C5 = {10, 11, 12} is created. The resulting
graph is no longer block-clique, but it remains to be chordal.

2.3 Chordal and block-clique graphs

We consider an undirected graph G(N,E) with the node set N = {1, . . . , n} and the
edge set E. Here E is a symmetric subset of {(i, j) ∈ N × N : i 6= j} (hence Eo = E)
and (i, j) ∈ E is identified with (j, i) ∈ E. A graph G(N,E) is called chordal if every
cycle in G(N,E) of length 4 or more has a chord, and block-clique [9] if it is a chordal
graph and any pair of two maximal cliques of G(N,E) intersects in at most one node.
See Figure 1 for examples of block-clique graphs.

Let G(N,E) be a chordal graph with the maximal cliques Cq (q = 1, . . . , `). We
assume that the graph is connected. If it is not, the subsequent discussion can be applied
to each connected component. Consider an undirected graph on the maximal cliques,
G(N , E) with the node set {Cq : q = 1, . . . , `} and the edge set E = {(Cq, Cr) : Cq ∩Cr 6=
∅}. Since G(N,E) is assumed to be connected, G(N , E) is connected. Then, add the
weight |Cq ∩ Cr| to each edge (Cq, Cr) ∈ E . Here |Cq ∩ Cr| denotes the number of nodes
contained in the clique Cq ∩ Cr. It is known that every maximum weight spanning tree
G(N , T ) of G(N , E) satisfies the following clique intersection property:

for every pair of distinct cliques Cq and Cr, Cq ∩ Cr is a subset of
every clique on the (unique) path connecting Cq and Cr in the tree.

}
(2)

Such a tree is called as a clique tree of G(N,E). We refer to [6] for the fundamental
properties of chordal graphs and clique trees including the clique intersection property
and the running intersection property described below.

Now suppose that G(N,E) is a connected block-clique graph. Then we know that
|Cq ∩ Cr| = 1 if (Cq, Cr) ∈ E . Hence, every spanning tree of G(N , E) is a clique tree. See
Figure 2. Let G(N , T ) be a clique tree of G(N,E). Choose an arbitrary maximal clique
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C  = {3,8,9}3
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C  = {3,8,9,10,11}3
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(b)

{11}

{3}
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{3}

Figure 2: Illustration of clique trees. (a) and (b) are clique trees G(N , T ) of the block-
clique graphs G(N,E) shown in (a) and (b) of Figure 1, respectively. The notation
{i} added on each edge (Cq, Cr) denotes the intersection of the two cliques Cq and Cr

of G(N,E); for example, (C1, C2) is an edge of the clique tree G(N , T ) in (a), and
C1 ∩ C2 = {3}.

as a root node, say C1. The rest of the maximal cliques C2, . . . , C` can be renumbered
such that for any pair of distinct Cq and Cr, if Cq is on the (unique) path from the
root node C1 to Cr then q < r holds by applying a topological sorting (ordering). In
this way, the renumbered sequence of maximal cliques C1, C2, . . . , C` satisfies the running
intersection property:

∀r ∈ {2, . . . , `}, ∃q ∈ {1, . . . , r − 1} such that (C1 ∪ · · · ∪ Cr−1) ∩ Cr ⊂ Cq.

Let r ∈ {2, . . . , `}, and Cs the (unique) parent of Cr. Then s ∈ {1, . . . , r − 1} and

{k} = Cs ∩ Cr ⊂ (C1 ∪ · · · ∪ Cr−1) ∩ Cr.

for some k ∈ N . If q ∈ {1, . . . , r− 1} satisfies (C1 ∪ · · · ∪ Cr−1)∩Cr ⊂ Cq in the running
intersection property above, then

{k} = Cs ∩ Cr ⊂ (C1 ∪ · · · ∪ Cr−1) ∩ Cr ⊂ Cq ∩ Cr = {k}.

Here, the last equality follows from the assumption that |Cq ∩ Cr| ≤ 1. Therefore, we
have shown the following result.

Lemma 2.1. (The running intersection property applied to a block-clique graph.) Let
G(N,E) be a connected block-clique graph with the maximal cliques C1, C2, . . . , C`. Choose
one of the maximal cliques arbitrary, say C1. Then, the rest of the maximal cliques can
be renumbered such that

∀r ∈ {2, . . . , `}, ∃q ∈ {1, . . . , r − 1}, ∃kr ∈ Cr such that
(C1 ∪ · · · ∪ Cr−1) ∩ Cr = Cq ∩ Cr = {kr}

}
(3)

holds.

2.4 Matrix completion

We call an n×n matrix array Xij = Xji ((i, j) ∈ N ×N) a partial symmetric matrix if a
part of its elements Xij = Xji ((i, j) ∈ F ) are specified for some symmetric F ⊂ N ×N
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and the other elements are not specified. We denote a partial symmetric matrix with
specified elements X̄ij = X̄ji ((i, j) ∈ F ) by [X̄ij : F ]. Given a property P characterizing
a symmetric matrix in Sn and a partial symmetric matrix [X̄ij : F ] for some symmetric
F ⊂ N ×N , the matrix completion problem with property P is to find values X̄ij = X̄ji

((i, j) 6∈ F ) of unspecified elements Xij = Xji ((i, j) 6∈ F ) such that the resulting n × n
symmetric matrix X̄ has property P. We say that the partial symmetric matrix [X̄ij : F ]
has a completion X̄ with property P.

We mainly consider CPP and DNN matrices in the subsequent discussions. In these
matrices, we may assume without loss of generality that (i, i) ∈ F (i ∈ N) since un-
specified diagonal elements can be given as sufficiently large positive values to realize
the property. Each partial symmetric matrix [X̄ij : F ] can be associated with a graph
G(N,F o). (Recall that F o = {(i, j) ∈ F : i 6= j}.) Let Cq (q = 1, . . . , `) be the
maximal cliques of G(N,F o). Then the partial symmetric matrix [X̄ij : F ] is decom-
posed into partial symmetric matrices [X̄ij : Cq], which can be consistently described as
X̄Cq , (q = 1, . . . , `). We say that a partial symmetric matrix [X̄ij : F ] is partially DNN

(partially CPP) if every X̄Cq is DNN (CPP, respectively) in SCq (q = 1, . . . , `).

Lemma 2.2. [10] Let F be a symmetric subset of N ×N such that (i, i) ∈ F for every
i ∈ N . Then every partial CPP (DNN) matrix [X̄ij : F ] has a CPP (DNN, respectively)
completion, i.e., a CPP (DNN, respectively) matrix X such that Xij = X̄ij (i, j) ∈ F , iff
G(N,F o) is a block clique graph.

2.5 A class of QOPs and their CPP and DNN relaxations

Any quadratic function in nonnegative variables x2, . . . , xn can be represented as 〈Q, xxT 〉
with x = (x1, x2, . . . , xn) ∈ Rn

+ and x21 = 1 for some Q ∈ Sn. By introducing a vari-
able matrix X ∈ Γn ≡ {xxT : x ∈ Rn

+}, the function can be rewritten as 〈Q, X〉
with X11 = 1. As a result, a general quadratically constrained QOP in nonnegative
variables x2, . . . , xn can also be represented as COP(Γn) introduced in Section 1. Since
Γn ⊂ CPPn ⊂ DNNn, ζ(DNNn) ≤ ζ(CPPn) ≤ ζ(Γn) holds in general.

On the equivalence between QOPs and their CPP relaxations, Burer’s reformulation
[8] for a class of QOPs with linear constraints in nonnegative and binary variables is
well-known. In this paper, we employ the following result, which is essentially equivalent
to Burer’s reformulation. See [17] for CPP reformulations of more general class of QOPs.

Lemma 2.3. [3, Theorem 3.1] For COP(Γn), assume that

Iineq = ∅, COP(Γn) is feasible,

〈Q0, X〉 ≥ 0 if X ∈ Γn, X11 = 0 and 〈Qp, X〉 = 0 (p ∈ Ieq),
Qp ∈ Sn

+ + Nn (the dual of DNNn) (p ∈ Ieq).

Then, ζ(Γn) = ζ(CPPn).

Example 2.4. Let A be a k × n matrx, Icomp ⊂ {(i, j) ∈ N × N : 1 < i < j} and
Q0 ∈ Sn. Consider a QOP with linear equality and complementarity constraints in
nonnegative variables x ∈ Rn

+.

ζQOP = inf
{
xTQ0x : x ∈ Rn

+, x1 = 1, Ax = 0, xixj = 0 ((i, j) ∈ Icomp)
}
.
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Define

Q1 = ATA ∈ Sn,

Qij = the n× n matrix with 1 at the (i, j)th and (j, i)th elements,

and 0 elsewhere.

Then, the QOP can be rewritten as

ζQOP = inf

{
〈Q0, X〉 :

X ∈ Γn, X11 = 1, 〈Q1, X〉 = 0,
〈Qij, X〉 = 0 ((i, j) ∈ Icomp)

}
.

Enumerate (i, j) ∈ Icomp from 2 through some integer m, and let Ieq = {1, . . . ,m} and
Iineq = ∅. Then QOP can be rewritten as COP(Γn). Obviously Q1 ∈ Sn

+ and Qij ∈ Nn

((i, j) ∈ Icomp). Hence, if the QOP is feasible and O = {X ∈ Γm : X11 = 0, 〈Q1, X〉 =
0} = {xxT : x ∈ Rn

+, x1 = 0, Ax = 0}, then all the assumptions in Lemma 2.3 are
satisfied. Consequently, ζ(Γn) = ζ(CPPn) holds. We note that the binary condition on
variable x can be represented as x, y ≥ 0, x + y = 1 and xy = 0 with a slack variable
y. Thus, binary variables can be included in the QOP above. This QOP model covers
various combinatorial optimization problems. See [3, 16] for more details.

It is well-known that a convex QOP can be reformulated as an SDP (see, for example,
[11]). The following result may be regarded as a variation of the SDP reformulation to
CPP and DNN reformulations of a convex QOP in nonnegative variables.

Lemma 2.5. Let Ñ = N\{1}. Assume that Q0
Ñ
∈ Sn−1

+ , Qp ∈ Sn
+ (p ∈ Ieq) and

Qp

Ñ
∈ Sn−1

+ (p ∈ Iineq). Then ζ(DNNn) = ζ(CPPn) = ζ(Γn). Furthermore, if X =(
1 yT

y Y

)
∈ DNNn with some y ∈ Rn−1

+ and Y ∈ DNNn−1 is an optimal solution of

COP(DNNn), then

(
1 yT

y yyT

)
is a common optimal solution of COP(Γn), COP(CPPn)

and COP(DNNn) with the objective value ζ(DNNn) = ζ(CPPn) = ζ(Γn).

Proof. The inequality ζ(DNNn) ≤ ζ(CPPn) ≤ ζ(Γn) follows from Γn ⊂ CPPn ⊆ DNNn.

It suffices to show ζ(Γn) ≤ ζ(DNNn). Let X =

(
1 yT

y Y

)
∈ DNNn with some y ∈ Rn−1

+

and Y ∈ DNNn−1 be an arbitrary feasible solution of COP(DNNn). Then,(
1
y

)
∈ Rn

+, X ≡X −
(

0 0T

0 Y − yyT

)
=

(
1 yT

y yyT

)
∈ Γn,

〈H0, X〉 = 1, Qp

Ñ
∈ Sn−1

+ (p ∈ {0} ∪ Ieq ∪ Iineq), Y − yyT ∈ Sn−1
+ ,

〈Qp, X〉 = 〈Qp, X〉 − 〈Qp

Ñ
, Y − yyT 〉 ≤ 〈Qp, X〉 (p ∈ {0} ∪ Ieq ∪ Iineq).

From the last inequality, the assumptions and X ∈ CPPn ⊂ Sn
+, we see that

0 ≤ 〈Qp, X〉 ≤ 〈Qp, X〉 = 0 (hence 〈Qp
, X〉 = 0) (p ∈ Ieq),

〈Qp, X〉 ≤ 〈Qp, X〉 ≤ 0 (p ∈ Iineq), 〈Q0, X〉 ≤ 〈Q0, X〉.

9



Thus we have shown that X is a feasible solution of COP(Γn) whose objective value
is not greater than that of the feasible solution X of COP(DNNn). Therefore ζ(Γn) ≤
ζ(DNNn) has been shown. The second assertion follows by choosing an optimal solution
of COP(DNNn) for X in the proof above.

Example 2.6. (Quadratically constrained convex QOPs) Let Ñ = {2, . . . , n} and Iineq =

{2, . . . ,m}. Let A be a k×n matrx and Qp ∈ Sn be such that Q0
Ñ
∈ SÑ

+ (p ∈ {0}∪Iineq).
Consider a QOP:

ζQOP = inf
{
xTQ0x : x ∈ Rn

+, x1 = 1, Ax = 0, xTQpx ≤ 0 (p ∈ Iineq)
}
,

which represents a general quadratically constrained convex QOP in nonnegative vari-
ables xi (i = 2, . . . , n). If we let Q1 = ATA ∈ Sn

+ and Ieq = {1}, we can represent the
QOP as COP(Γn). By Lemma 2.5, not only ζ(DNNn) = ζ(CPPn) = ζ(Γn) holds, but
also the DNN relaxation provides an optimal solution of the QOP.

2.6 Two types of sparsity

We consider two types of sparsity of the data matrices Qp (p ∈ {0}∪Ieq∪Iineq) of COP(K)
with K ∈ {Γn,CPPn,DNNn}, the aggregated sparsity [12] and the correlative sparsity [18].
We say that the aggregated sparsity of matrices Ap ∈ Sn (p = 1, . . . ,m) is represented
by a graph G(N,E) if

{
(i, j) ∈ N ×N : Ap

ij 6= 0
}
⊂ E ≡ E ∪ {(i, i) : i ∈ N} for every

p = 1, . . . ,m, and that their correlative sparsity is represented by a graph G(N,E) with
the maximal cliques Cq (q = 1, . . . , `) if

∀p ∈ {1, . . . ,m}, ∃q ∈ {q = 1, . . . , `} such that

{(i, j) ∈ N ×N : Ap
ij 6= 0} ⊂ Cq × Cq. (4)

Note that if C1, . . . , C` are the maximal cliques of G(N,E), then E = ∪n
q=1Cq. We

also note that a graph G(N,E) which represents the aggregate (correlative) sparsity of
Ap ∈ Sn (p = 1, . . . ,m) is not unique.

Our main interest in the subsequent discussion is a block-clique graph G(N,E) which
represents the aggregate (correlative) sparsity of Ap ∈ Sn (p = 1, . . . ,m). If we let
F =

{
(i, j) ∈ N ×N : Ap

ij 6= 0 for some p
}

, then G(N,F o) is “the smallest” graph which
represents their aggregate sparsity. Since it is not block-clique in general, a block-clique
extension G(N,E) of G(N,F o) is necessary. Assume that G(N,F o) is connected. It is
straightforward to verify that a node of a connected block-clique graph is a cut node iff
it is contained in at least two distinct maximal cliques of the graph. Therefore, if there
exists no cut node in G(N,F o), then the complete graph G(N, (N × N)o) is the only
block-clique extension of G(N,F o). Otherwise, take the maximal edge set E ⊂ (N ×N)o

such that the graph G(N,E) has the same cut nodes as G(N,F o). Then G(N,E) forms
the smallest block-clique extension of G(N,F o).

Obviously, if a graph G(N,E) represents the correlative sparsity of matrices Ap ∈ Sn

(p = 1, . . . ,m), then it also represents their aggregate sparsity. But the converse is not
true as we see in the following example.
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Example 2.7. Let n = 3, N = {1, 2, 3} and

A1 =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 , A2 =

0 0 0
0 ∗ ∗
0 ∗ ∗

 , A =

∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


where * denotes a nonzero element. We see that the aggregate sparsity pattern of the
two matrices A1 and A2 corresponds to A. Thus their aggregated sparsity is represented
by the graph with the maximal cliques C1 = {1, 2} and C2 = {2, 3}. But neither C1×C1

nor C2 × C2 covers the nonzero elements of A1. We need to take the complete graph
with the single maximal clique N = {1, 2, 3} to represent the correlative sparsity of A1

and A2.

3 Exploiting the aggregated sparsity characterized

by block-clique graphs

Throughout this section, we assume that the aggregate sparsity of the data matrices
Qp (p ∈ {0} ∪ Ieq ∪ Iineq) of COP(K) with K ∈ {Γn,CPPn,DNNn} is represented by a
block-clique graph G(N,E);

{(i, j) ∈ N ×N : Qp
ij 6= 0} ⊂ E (p ∈ {0} ∪ Ieq ∪ Iineq). (5)

Under this assumption, we provide sufficient conditions for ζ(DNNn) = ζ(CPPn) and
ζ(Γn) = ζ(DNNn) = ζ(CPPn).

Note that the values of elements Xij (i, j) ∈ E determine the value of 〈Qp, X〉, i.e.,
〈Qp, X〉 =

∑
(i,j)∈E Q

p
ijXij (p ∈ {0}∪ Ieq ∪ Iineq). All other elements Xij (i, j) 6∈ E affect

only the cone constraint X ∈ K in COP(K). Thus, the cone constraint can be replaced
by “[Xij : E] has a completion X ∈ K”. More precisely, COP(K) can be written as

ζ(K) = inf


∑

(i,j)∈E

Q0
ijXij :

[Xij : E] has a completion X ∈ K, X11 = 1,∑
(i,j)∈E

Qp
ijXij = 0 (p ∈ Ieq),∑

(i,j)∈E

Qp
ijXij ≤ 0 (p ∈ Iineq)


. (6)

Let Cq (q = 1, . . . , `) be the maximal cliques of G(N,E). We now introduce a (sparse)
relaxation of COP (6) (= COP(K)).

η(K) = inf


∑

(i,j)∈E

Q0
ijXij :

XCq ∈ KCq (q = 1, . . . , `), X11 = 1,∑
(i,j)∈E

Qp
ijXij = 0 (p ∈ Ieq),∑

(i,j)∈E

Qp
ijXij ≤ 0 (p ∈ Iineq)


. (7)

Since we have been dealing with the case where K ∈ {Γn,CPPn,DNNn}, KCq stands
for ΓCq , DNNCq or CPPCq (q = 1, . . . , `). In either case, X ∈ K implies XCq ∈ KCq

(q = 1, . . . , `). Thus COP (7) serves as a relaxation of COP (6); η(K) ≤ ζ(K).
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Theorem 3.1. Let K ∈ {Γn,CPPn,DNNn}. Assume that (5) holds for a block-clique
graph G(N,E) with the maximal cliques Cq (q = 1, . . . , `). Then,

(i) η(K) = ζ(K).

(ii) If every clique Cq contains at most 4 nodes (q = 1, . . . , `), then COP (7) with
K = CPPn and COP (7) with K = DNNn are equivalent; more precisely they share
the same feasible solutions, the optimal solutions and the optimal value η(CPPn) =
η(DNNn).

(iii) If every clique Cq contains at most 4 nodes (q = 1, . . . , `) and the assumptions of
Lemma 2.3 are satisfied, then η(Γn) = ζ(Γn) = ζ(CPPn) = η(CPPn) = η(DNNn).

Proof. (i) Suppose that K ∈ {DNNn,CPPn}. By Lemma 2.2, the condition “[Xij : (i, j) ∈
E] has a completion X ∈ K” in COP (6) is equivalent to the condition “XCq ∈ KCq (q =
1, . . . , `)” in COP (7). Hence COPs (6) and (7) are equivalent, which implies that
η(K) = ζ(K). Now suppose that K = Γn. Since we already know that η(Γn) ≤ ζ(Γn), it
suffices to show that ζ(Γn) ≤ η(Γn). Choose a maximal clique that contains node 1 among
C1, . . . , C`, say C1. By Lemma 2.1, we can renumber the rest of the maximal cliques
such that the running intersection property (3) holds. Assume that (XC1 , . . . ,XC`

) is
a feasible solution of COP (7) with K = Γn. We will construct an x̄ ∈ Rn

+ such that
X ≡ x̄x̄T is a feasible solution of COP(Γn) with the same objective value of COP (7)
with K = Γn at its feasible solution (XC1 , . . . ,XC`

). Then ζ(Γn) ≤ η(Γn) follows. For
each r ∈ {1, . . . , `}, there exists an yCr

∈ RC
+ such that XCr = yCr

yT
Cr

. For r = 1, let
x̄i = [yC1

]i (i ∈ C1). By (3), for each r ∈ {2, . . . , `}, there exists a kr ∈ Cr such that
(C1∪· · ·∪Cr−1)∩Cr = {kr}. Hence, if we define x̄i = [yCr

]i (i ∈ Cr\{kr}) for r = 2, . . . , `,
then x̄ ∈ Rn

+ satisfies x̄i = [yCr
]i (i ∈ Cr, r ∈ {1, . . . , `}) and X = x̄x̄T ∈ Γn is a

completion of [X : E]. By construction, X is a feasible solution of COP(Γn), and attains
the same objective value of COP (7) with K = Γn at its feasible solution (XC1 , . . . ,XC`

).

(ii) By (1), CPPCq = DNNCq (q = 1, . . . , `), which implies the equivalence of COP (7)
with K = CPPn and COP (7) with K = DNNn.

(iii) The identity ζ(Γn) = ζ(CPPn) follows from Lemma 2.3, and all other identities
from (i) and (ii).

To decompose the COP (7) based on the maximal cliques C1, . . . , C`, we first decom-
pose each Qp (p ∈ {0} ∪ Ieq ∪ Iineq) such that

Qp =
∑̀
q=1

Q̂
pq
, Q̂pq

ij = 0 if (i, j) 6∈ Cq × Cq (q = 1, . . . , `).

(We note that the decomposition of Qp above is not unique.) Then COP (7) can be
represented as

η(K) = inf


∑̀
q=1

〈Q̂
0q

Cq
, XCq〉 :

XCq ∈ KCq (q = 1, . . . , `), X11 = 1,∑`
q=1〈Q̂

pq

Cq
, XCq〉 = 0 (p ∈ Ieq),∑`

q=1〈Q̂
pq

Cq
, XCq〉 ≤ 0 (p ∈ Iineq)

 . (8)
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Remark 3.2. (a) Note that under the assumption (5), if Qp ∈ Sn
+ (or Qp ∈ Sn

++Nn), then

we can take Q̂
pq
∈ Sn

+ (or Q̂
pq
∈ Sn

+ + Nn) for the decomposition; see [1, Theorem 2.3].

In this case, the equality constraints
∑`

q=1〈Q̂
pq

Cq
, XCq〉 = 0 (p ∈ Ieq) can be replaced

by 〈Q̂
pq

Cq
, XCq〉 = 0 (q = 1, . . . , `, p ∈ Ieq) since 〈Q̂

pq

Cq
, XCq〉 ≥ 0 for every X ∈ K ∈

{Γn,CPPn,DNNn} is known.

(b) Suppose that Cq (q = 1, . . . `) form a partition of N ; ∪`q=1Cq = N and Cq ∩ Cr = ∅
(q 6= r). Then we have Q̂

pq

Cq
= Qp

Cq
(q = 1, . . . , `, p ∈ {0} ∪ Ieq ∪ Iineq). In particular, if

Cq = {q} (q = 1, . . . , ` = n), then COP (8) turns out to be an LP of the form

η(K) = inf

∑̀
q=1

Q0
iiXii :

Xii ∈ R+, (i = 1, . . . , n), X11 = 1,∑n
i=1Q

p
iiXii = 0 (p ∈ Ieq),∑n

i=1Q
p
iiXii ≤ 0 (p ∈ Iineq)

 .

Here Γ1 = CPP1 = DNN1 = R+. Although this observation itself is trivial, it is important
in the sense that LPs can be embedded as subproblems in a QOP that can be reformulated
as its DNN relaxations, as we will see in (v) of Theorem 4.6 and Section 5.2.

4 Exploiting correlative sparsity characterized by block-

clique graphs

We consider COP(K) with K ∈ {Γn,CPPn,DNNn}. Throughout this section, we assume
that the correlative sparsity [18] of the data matrices Qp (p ∈ Ieq ∪ Iineq) of the linear
equality and inequality constraints of COP(K) is represented by a connected block-clique
graph G(N,E) with the maximal cliques Cq (q = 1, . . . , `) and that the aggregate sparsity
of Q0 is represented by the same block-clique graph G(N,E), i.e.,

∀p ∈ Ieq ∪ Iineq, ∃q ∈ {q = 1, . . . , `} such that

{(i, j) ∈ N ×N : Qp
ij 6= 0} ⊂ Cq × Cq, (9)

{(i, j) ∈ N ×N : Q0
ij 6= 0} ⊂ E ≡ ∪`i=1Cq × Cq. (10)

In addition, we assume that COP(K) has an optimal solution. It should be noted that (9)
and (10) imply (5), thus, all the results discussed in the previous section remain valid.
In particular, by (i) of Theorem 3.1, COP(K) is equivalent to COP (7).

Choose a clique that contains node 1 among Cq (q = 1, . . . , `), say C1. By Lemma 2.1,
the maximal cliques C2, . . . , C` can be renumbered such that the running intersection
property (3) holds. Let Fr = ∪rq=1Cq × Cq (r = 1, . . . , `). We then obtain from (3) that

∀r ∈ {2, . . . , `},∃kr ∈ Cr such that

Fr−1 ∩ (Cr × Cr) =
(
∪r−1

q=1Cq × Cq

)
∩ (Cr × Cr) = {(kr, kr)}. (11)

By (9), there exists a partition L1, . . . , L` of Ieq ∪ Iineq (i.e., ∪`q=1Lq = Ieq ∪ Iineq and
Lq∩Lr = ∅ if 1 ≤ q < r ≤ `) such that {(i, j) ∈ N×N : Qp

ij 6= 0} ⊂ Cq×Cq if p ∈ Lq (q =
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1, . . . , `). Hence, we can rewrite COP (7), which is equivalent to COP(K), as

COP(K): ζ̄(K) = inf


∑

(i,j)∈F`

Q0
ijXij :

XCq ∈ KCq (q = 1, . . . , `), X11 = 1,∑
(i,j)∈Cq×Cq

Qp
ijXij = 0

(p ∈ Iqeq, q = 1, . . . , `),∑
(i,j)∈Cq×Cq

Qp
ijXij ≤ 0

(p ∈ Iqineq, q = 1, . . . , `)


. (12)

Here Iqeq = Lq ∩ Ieq and Iqineq = Lq ∩ Iineq (q = 1, . . . , `). In particular, (XC1 , . . . ,XC`
)

is an optimal solution of COP(K) with the objective value ζ̄(K) = ζ(K) > −∞ if X is
an optimal solution of COP(K).

4.1 Recursive reduction of COP(K) to a sequence of smaller-
sized COPs

We first describe the basic idea on how to reduce COP(K) to smaller COPs by recursively
eliminating variable matrices XCr (r = `, . . . , 2). The constraints of COP(K) except
X11 = 1 can be decomposed into ` families of constraints∑

(i,j)∈Cq×Cq

Qp
ijXij = 0 (p ∈ Iqeq) and

∑
(i,j)∈Cq×Cq

Qp
ijXij ≤ 0 (p ∈ Iqineq) (13)

in the variable matrix XCq ∈ KCq (q = `, . . . , 1). Although they may look independent,
they are weakly connected in the sense that

(XC1 , . . . ,XCr−1) and XCr share only one scalar variable Xkrkr

(r = `, . . . , 2). This relation follows from (11).

Let r = `. Then, the linear objective function of COP(K) can be decomposed into
two non-interactive terms such that∑

(i,j)∈F`−1

Q0
ijXij +

∑
(i,j)∈C`×C`\{(k`,k`)}

Q0
ijXij. (14)

Hence, if the value of Xk`k` ≥ 0 is specified, the subproblem of minimizing the sec-
ond term

∑
(i,j)∈C`×C`\{(k`,k`)}Q

0
ijXij over the decomposed constraint (13) with q = ` in

XC`
∈ KC` can be solved independently from COP(K). (This subproblem corresponds

to P̃`(KC` , Xkrkr) defined later in (19)). Since all equalities and inequalities in the con-
straint (13) are homogeneous, the optimal value is proportional to the specified value
Xk`k` ≥ 0, i.e., equal to η̃`(C`, 1)Xk`k` , where η̃`(C`, 1) denotes the optimal value of the
subproblem with Xk`k` specified to 1. Thus, the constraint (13) with q = ` in the varible
matrix XC`

can be eliminated from COP(K) by replacing the objective function (14)
with ∑

(i,j)∈F`−1

Q0
ijXij + η̃`(C`, 1)Xkrkr =

∑
(i,j)∈F`−1

Q0`−1
ij Xij,
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where Q0`−1
ij = Q0

ij + η̃`(C`, 1) if i = j = kr and Q0`−1
ij = Q0

ij otherwise. (The resulting
problem will be represented as P`−1(K) in later discussion). We continue this elimination
process and updating Q0r

ij to Q0r−1
ij for r = `− 1, . . . 2, till we obtain

inf


∑

(i,j)∈C1×C1

Q01
ijXij :

XC1 ∈ KC1 , X11 = 1,∑
(i,j)∈C1×C1

Qp
ijXij = 0 (p ∈ I1eq),∑

(i,j)∈C1×C1

Qp
ijXij ≤ 0 (p ∈ I1ineq)


,

which has the same optimal value as COP(K). (The above problem corresponds to P1(K)
to be defined later).

In the above brief description of the elimination process, we have implicitly assumed
that the subproblem with Xkrkr specified to 1 has an optimal solution, but it may be
infeasible or unbounded. We need to deal with such cases. In the subsequent discussion,
we also show how an optimal solution of COP(K) is retrieved in detail.

To embed a recursive structure in COP(K), we introduce some notation. Let k1 = 1,
and let

Φr(K) =

(XC1 , . . . ,XCr) :

XCq ∈ KCq (q = 1, . . . , r), X11 = 1,∑
(i,j)∈Cq×Cq

Qp
ijXij = 0 (p ∈ Iqeq, q = 1, . . . , r)∑

(i,j)∈Cq×Cq

Qp
ijXij ≤ 0 (p ∈ Iqineq, q = 1, . . . , r)

 ,

Ψr(KCr , λ) =

XCr ∈ KCr :

Xkrkr = λ,∑
(i,j)∈Cr×Cr

Qp
ijXij = 0 (p ∈ Ireq)∑

(i,j)∈Cr×Cr

Qp
ijXij ≤ 0 (p ∈ Irineq)

 ,

(r = `, . . . , 1). By (11), each Φr(K) (r = `, . . . , 2) can be represented as

Φr(K) =

{
(XC1 , . . . ,XCr) :

(XC1 , . . . ,XCr−1) ∈ Φr−1(K),
XCr ∈ Ψr(KCr , Xkrkr)

}
. (15)

This recursive representation of Φr(K) (r = `, . . . , 2) plays an essential role in the dis-
cussions below.

We now construct a sequence of COPs:

Pr(K): ηr(K) = inf

 ∑
(i,j)∈Fr

Q0r
ijXij : (XC1 , . . . ,XCr) ∈ Φr(K)

 (16)

(r = `, . . . , 1) such that

if X is an optimal solution of COP(K), then (XC1 , . . . ,XCq) is
an optimal solution of Pq(K) with the optimal value ηq(K) = ζ̄(K) > −∞

}
, (17)
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where Q0r
ij ∈ R ∪ {∞} ((i, j) ∈ Fq) (r = `, . . . , 1). We note that every Q0q

ij is fixed to

Q0
ij ∈ R for i 6= j, but Q0q

ii ∈ R ∪ {∞} ((i, i) ∈ Fq) (q = `, . . . , 1) are updated in the

sequence. If we assign Q0q
ii = +∞ for some (i, i) ∈ Fq, then the objective quadratic

function
∑

(i,i)∈Fq
Q0q

ijXij takes ∞ at (XC1 , . . . ,XCq) ∈ Φq(K) unless Xii = 0. Thus, if

Q0q
ii = +∞, then we must take Xii = 0 in Pq(K).

As r decreases from ` to 1 in the sequence, we obtain at the final iteration:

P1(K): η1(K) = inf

 ∑
(i,j)∈C1×C1

Q0r
ijXij : XC1 ∈ Φ1(K)

 ,

which is equivalent to COP(K), i.e., (17) holds for q = 1.

To construct the sequence Pr(K) (r = `, . . . , 1), we first set

Q0`
ij = Q0

ij ((i, j) ∈ F`). (18)

Obviously, P`(K) coincides with COP(K). Hence (17) holds for q = `. As the induction
hypothesis, we assume that for r ∈ {`, . . . , 2}, the objective coefficients Q0q

ij ∈ R ((i, j) ∈
Fq) of Pq(K) (q = `, `− 1, . . . , r) have been computed so that (17) holds for q = `, . . . , r.

To show how Q
0(r−1)
ij ∈ R ((i, j) ∈ Fr−1) of Pr−1(K) are computed so that (17) holds for

q = r − 1, we consider the following subproblem of Pr(K):

P̃r(KCr , λ): η̃r(KCr , λ) = inf
{
Gr(XCr) : XCr ∈ Ψr(KCr , λ)

}
, (19)

where Gr(XCr) := 〈Q0r
Cr
, XCr〉 − Q0r

krkrXkrkr =
∑

(i,j)∈(Cr×Cr)\{(kr,kr)}

Q0r
ijXij, and λ ≥ 0

denotes a parameter. By (15), we observe that

ηr(K) = inf

 ∑
(i,j)∈Fr−1

Q0r
ijXij +Gr(XCr) :

(XC1 , . . . ,XCr−1) ∈ Φr−1(K),
XCr ∈ Ψr(KCr , Xkrkr)


= inf

{ ∑
(i,j)∈Fr−1

Q0r
ijXij + inf

{
Gr(XCr) : XCr ∈ Ψr(KCr , Xkrkr)

}
:

(XC1 , . . . ,XCr−1) ∈ Φr−1(K)

}

= inf

 ∑
(i,j)∈Fr−1

Q0r
ijXij + η̃r(KCr , Xkrkr) : (XC1 , . . . ,XCr−1) ∈ Φr−1(K)

(20)

=
∑

(i,j)∈Fr−1

Q0r
ijX ij + η̃r(KCr , Xkrkr)

for every optimal solution X of COP(K). (21)

Here the last equality follows from the induction assumption.

We now focus on the inner problem P̃r(KCr , Xkrkr) with the optimal value η̃r(KCr , Xkrkr).
Define

X̃
Cr

=

{
an optimal solution of P̃r(KCr , 1) if it exists,
O ∈ SCr otherwise.

(22)
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Lemma 4.1. For a fixed r, assume that (17) holds for q = `, . . . , r. Let (X∗
C1
, . . . ,X∗

Cr−1
) ∈

Φr−1(K) be an optimal solution of COP (20), i.e., there exists an optimal solution X∗
Cr

of P̃(KCr , X∗krkr) with the optimal value η̃(KCr , X∗krkr) such that∑
(i,j)∈Fr−1

Q0r
ijX

∗
ij + η̃r(KCr , X∗krkr) = ηr(K).

Then XCr = X∗krkrX̃Cr is an optimal solution of P̃r(KCr , X∗krkr) with the optimal value

X∗krkr η̃r(K
Cr , 1), where 0 × η̃r(KCr , 1) = 0 is assumed even when η̃r(KCr , 1) = ∞, and

(X∗
C1
, . . . ,X∗

Cr−1
, X∗krkrX̃Cr) is an optimal solution of Pr(K) with the optimal value

ηr(K).

Proof. We consider two cases separately: X∗krkr = 0 and X∗krkr > 0. First, assume

that X∗krkr = 0. In this case, X ′
Cr

is a feasible solution of P̃r(KCr , 0) iff λX ′
Cr

is a

feasible solution of P̃r(KCr , 0) for every λ > 0. This implies that η̃r(KCr , 0) is either
0 or −∞. It follows from ηr(K) > −∞ that η̃r(KCr , 0) = −∞ cannot occur. Hence
η̃r(KCr , 0) = 0 = X∗krkr η̃r(K

Cr , 1) follows (even when η̃r(KCr , 1) = ∞). We also see that

XCr = O = X∗krkrX̃Cr is a trivial optimal solution with the objective value 0. Now

assume that X∗krkr > 0. By assumption, P̃r(KCr , X∗krkr) has an optimal solution X∗
Cr

. It

is easy to see that X ′
Cr

is an optimal solution of P̃r(KCr , X∗krkr) with the objective value

ξ iff X ′
Cr
/X∗krkr is an optimal solution of P̃r(KCr , 1) with the objective value ξ/X∗krkr .

We also see from the definition that X̃Cr is an optimal solution of P̃r(KCr , 1) with the

objective value η̃r(KCr , 1). Hence X∗krkrX̃Cr is an optimal solution of P̃r(KCr , X∗krkr) with

the objective valueX∗krkr η̃r(K
Cr , 1). Finally, we observe that (X∗

C1
, . . . ,X∗

Cr−1
, X∗krkrX̃

Cr

)
is a feasible solution of Pr(K) with the objective value ηr(K). Therefore it is an optimal
solution of Pr(K).

By Lemma 4.1, η̃r(KCr , Xkrkr) in (20) can be replaced with Xkrkr η̃r(KCr , 1) and
η̃r(KCr , Xkrkr) in (21) with Xkrkr η̃r(KCr , 1). Therefore, by defining

Q0r−1
ij =

{
Q0r

krkr
+ η̃r(KCr , 1) if (i, j) = (kr, kr),

Q0r
ij otherwise,

(23)

we obtain

ηr(K) = inf

 ∑
(i,j)∈Fr−1

Q0r−1
ij Xij : (XC1 , . . . ,XCr−1) ∈ Φr−1(K)


= ηr−1(K) =

∑
(i,j)∈Fr−1

Q0r−1
ij X ij for every optimal solution X of COP(K).

(We note that if Q0r−1
kk + η̃r(KCr , 1) =∞ occurs in (23), then X̃Cr is set to be O ∈ SCr).

Thus we have shown that (17) holds for q = r − 1 under the assumption that (17) holds
for q = `, . . . , r.

Consequently, we obtain the following theorem by induction with decreasing r from
` to 2.
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Theorem 4.2. Let K ∈ {Γn,CPPn,DNNn}. Initialize the objective coefficients Q0r
ij

((i, j) ∈ Fr) of the sequence Pr(K) (r = `, . . . , 1) by (18) for r = `, and update them
by (23) for r = `, . . . , 2. Then each Pr(K) in the sequence is equivalent to COP(K), more
precisely, (17) holds for q = `, . . . , 1.

4.2 An algorithm for solving COP(K)

By Theorem 4.2, we know that COP(K) in (12) is equivalent to P1(K), i.e., η1(K) = ζ̄(K).
Hence, the optimal value ζ̄(K) of COP(K) can be obtained by solving P1(K).

Lemma 4.1 suggests how to retrieve an optimal solution of COP(K). Let X∗
C1

be
an optimal solution of P1(K). For r ∈ {2, . . . , `}, assume that an optimal solution

(X∗
C1
, . . . ,X∗

Cr−1
) of Pr−1(K) has been computed. Let X∗

Cr
= X̃CrX

∗
krkr

, which is an op-

timal solution of P̃r(KCr , X∗krkr) with the objective value η̃(KCr , 1)X∗krkr . By Lemma 4.1,
(X∗

C1
, . . . ,X∗

Cr
) is an optimal solution of Pr(K). We can continue this procedure until

an optimal solution of P`(K) is obtained. Note that P`(K) is equivalent to COP(K).

Algorithm 4.3.

Step 1: (Initialization for computing Q0r
ij ((i, j) ∈ Fr, r = `, . . . , 1) and X̃Cr (r =

`, . . . , 2)) Let r = ` and Q0r
ij = Q0

ij ((i, j) ∈ F`).

Step 2: If r = 1, go to Step 4. Otherwise, choose kr ∈ Cr such that (C1 ∪ · · · ∪
Cr−1) ∩ Cr = {kr}. Solve P̃r(KCr , 1). If P̃r(KCr , 1) is infeasible, let X̃Cr = O and

η̃r(KCr , 1) =∞. Otherwise, let X̃Cr be an optimal solution of P̃r(KCr , 1) with the
optimal value η̃r(KCr , 1). Define Q0r−1

ij ((i, j) ∈ Fr−1) by (23).

Step 3: Replace r by r − 1 and go to Step 2.

Step 4: (Initialization for computing an optimal solution of COP(K)) Solve P1(K).
Let ζ̄(K) = η1(K) and X∗

C1
be an optimal solution of P1(K). Let r = 1.

Step 5: If r = `, then output the optimal value ζ̄(K) and an optimal solution
(X∗

C1
, . . . ,X∗

C`
) of COP(K). Otherwise go to Step 6.

Step 6: Replace r by r + 1. Let X∗
Cr

= X∗krkrX̃Cr . Go to Step 5.

Remark 4.4. In Steps 1 through 3 of Algorithm 4.3, the problems P̃r(KCr , 1) are solved
sequentially from ` to 2. This sequential order has been determined by the running inter-
section property (11), which is induced from a clique tree of the block-clique graph
G(N,E). Recall that G(N,E) represents the aggregated and correlative sparsity of
COP(K). If Cr other than C` is also a leaf node of the clique-tree, then the problem

P̃r(KCr , 1) can be solved independently from the other problems and the objective coeffi-
cient Q0r

krkr
can be updated to Q0r−1

krkr
by (23), where it is assumed that having chosen C1 as

the root node of the clique tree naturally determines all leaf nodes. In fact, the problems
associated with leaf nodes of the clique-tree can be solved in parallel. Furthermore, if we
remove (some of) those nodes from the clique tree after solving their associated problems
and updating the coefficients of the corresponding objective function by (23), then new
leaf nodes may appear. Then, the procedure of solving the problems associated with
those new leaf nodes in parallel and updating the objective coefficients can be repeatedly
applied until we solve P1(K).
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4.3 Equivalence of COP(K1) and COP(K2) for K1, K2 ∈ {Γn,CPPn,
DNNn}

Let K1, K2 ∈ {Γn,CPPn,DNNn}. For each of s = {1, 2}, initialize the objective coeffi-
cients Q0r

ij ((i, j) ∈ Fr) of the sequence of Pr(Ks) (r = `, . . . , 1) by (18) for r = `, and

update them by (23) for r = `, . . . , 2. Then P̃r(KCr
1 , 1) and P̃r(KCr

2 , 1) share the same
linear equality and inequality constraints, although the cone constraints XCr ∈ KCr

1

and XCr ∈ KCr
2 differ. Moreover, if r = `, the objective coefficients of P̃r(KCr

1 , 1) and

P̃r(KCr
2 , 1) are the same as Q0

C`
. Thus, it is natural to investigate the equivalence be-

tween P̃`(KC`
1 , 1) and P̃`(KC`

2 , 1) or whether η̃`(KC`
1 ) = η̃`(KC`

2 ) holds. Let r ∈ {`, . . . , 2}.
Assume that the objective coefficients of P̃q(K

Cq

1 , 1) and P̃q(K
Cq

2 , 1) are the same, and

they are equivalent, i.e., η̃q(K
Cq

1 ) = η̃q(K
Cq

2 ) holds (q = `, . . . , r). Then P̃r−1(KCr−1

1 , 1)

and P̃r−1(KCr−1

2 , 1) share common objective coefficients and constraints except for the

cone constraints XCr−1 ∈ KCr−1
1 and XCr−1 ∈ KCr−1

2 . Thus, the pair of P̃r(KCr
1 , 1) and

P̃r(KCr
2 , 1) can be compared for their equivalence recursively from r = ` to r = 2. When

all the pairs are equivalent, we can conclude by Theorem 4.2 that η1(KC1
1 ) = ζ̄(K1) and

η1(KC1
2 ) = ζ̄(K2). We also see that P1(K1) and P1(K1) share common objective coeffi-

cients. Consequently, the question on whether COP(K1) and COP(K2) are equivalent is

reduced to the question on whether the pair of P̃r(KCr
1 , 1) and P̃r(KCr

2 , 1) is equivalent
(r = `, . . . , 2) and whether the pair of P1(K1) and P1(K2) is equivalent.

For the convenience of the subsequent discussion, we introduce the sequence of the
following COPs:

P̃ ′r(K
Cr) : η̃′r(K

Cr) = inf
{
〈Q0r

Cr
, X〉 : X ∈ Ψr(KCr , 1)

}
= inf

〈Q0r
Cr
, X〉 :

X ∈ KCr , Xkrkr = 1,
〈Qp

Cr
, XCr〉 = 0 (p ∈ Ireq),

〈Qp
Cr
, XCr〉 ≤ 0 (p ∈ Irineq)

 .

(r = `, . . . , 1). For each r ∈ {`, . . . , 2}, P̃ ′r(KCr) and P̃r(KCr , 1) share a common feasible
region Ψr(KCr , 1) and their objective values differ by a constant Q0r

krkr
for every XCr ∈

Ψr(KCr , 1), which shows that they are essentially the same. For r = 1, P̃ ′1(K
C1) coincides

with P1(K). Thus, P̃r(KCr , 1) (r = `, . . . , 2) and P1(K) can be dealt with as P̃ ′r(K
Cr)

(r = `, . . . .1). In particular, the question on the equivalence of COP(K1) and COP(K2)

can be stated as whether the pair of P̃ ′r(K
Cr
1 ) and P̃ ′r(K

Cr
2 ) are equivalent for r = `, . . . , 1.

Summarizing the discussions above, we obtain the following results.

Theorem 4.5. Let Ks ∈ {Γn,CPPn,DNNn} (s = 1, 2) and K1 6= K2. For each s = 1, 2,
initialize the objective coefficients Q0r

ij ((i, j) ∈ Fr) of the sequence Pr(Ks) (r = `, . . . , 1)

by (18) for r = `, and update them by (23) for r = `, . . . , 2. Assume that η̃′r(K
Cr
1 ) =

η̃′r(K
Cr
2 ) (r = `, . . . , 1). Then ζ̄(K1) = ζ̄(K2).

4.4 Equivalence of P̃ ′r(K1) and P̃ ′r(K2) for K1, K2 ∈ {Γn,CPPn,
DNNn}

Theorem 4.6. Let r ∈ `, . . . , 1 be fixed.
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(i) Assume that the aggregated sparsity of the data matrices Q0r
Cr

and Qp
Cr

(p ∈ Ireq∪Irineq)
is represented by a block-clique graph G(C,EC) with the maximal cliques of size at
most 4. Then η̃′r(CPP

Cr) = η̃′r(DNN
Cr).

(ii) Assume that Irineq = ∅, Ψr(Γ
Cr , 1) 6= ∅, 〈Q0r

Cr
, X〉 ≥ 0 if XCr ∈ Ψr(Γ

Cr , 0) and Qp
Cr
∈

SCr
+ + NCr (the dual of DNNCr). Then η̃′r(Γ

Cr) = η̃′r(CPP
Cr).

(iii) If the assumptions in (i) and (ii) above are satisfied, then η̃′r(Γ
Cr) = η̃′r(CPP

Cr) =
η̃′r(DNN

Cr).

(iv) Let C̃r = Cr\{krkr}. Assume that Q0r
C̃r
∈ SC̃r

+ , Qp
Cr
∈ SCr

+ (p ∈ Ireq) and Qp

C̃r
∈ SC̃r

+

(p ∈ Irineq). Then η̃′r(Γ
Cr) = η̃′r(CPP

Cr) = η̃′r(DNN
Cr).

(v) Assume that the data matrices Q0r
Cr

and Qp
Cr

(p ∈ Ireq∪ Irineq) are all diagonal. Then

η̃′r(Γ
Cr) = η̃′r(CPP

Cr) = η̃′r(DNN
Cr).

Proof. (i), (ii) and (iv) follow directly from (ii) of Theorem 3.1, Lemma 2.3 and Lemma 2.5,
respectively. (i) and (ii) imply (iii). (v) follows from the discussion in Remark 3.2 (b).

We note that the aggregated sparsity of the updated objective coefficient Q0r
Cr

is the
same as the the original objective coefficient Q0

Cr
since only the diagonal elements Q0

krkr

(r = `, . . . , 2) are updated by (23). Thus the assumption in (i) can be verified from the
original data matrices Q0

Cr
and Qp

Cr
(p ∈ Ireq ∪ Irineq) before solving COP(DNNn)(K) by

Algorithm 4.3. On the other hand, the assumptions “〈Q0r
Cr
, X〉 ≥ 0 if XCr ∈ Ψr(Γ

Cr , 0)”

in (ii) and Q0r
C̃r
∈ SC̃r

+ in (iv) depend on Q0r
Cr

(r = `, . . . , 1) in general. If we know that

Ψr(KCr , 0) = {O}, then “〈Q0r
Cr
, X〉 ≥ 0 if XCr ∈ Ψr(Γ

Cr , 0)” obviously holds. In this
case, the assumptions in (ii) can be verified from the original data matrices. On the other
hand, each element Q0r

ij of the matrix Q0r
C̃r

is determined recursively by (23) such that

Q0`
ij = Q0

ij,

Q0q−1
ij =

{
Q0q

kqkq
+ η̃q(KCq , 1) if (i, j) = (kq, kq),

Q0q
ij otherwise

(q = `, . . . , r).

 (24)

As a result, only some of the diagonal elements of Q0r
C̃r

can differ from Q0
C̃r

. For example,

if Q0
C̃r

is positive semidefinite and Q0
Cq
∈ NCq for all q = `, . . . , r + 1, then Q0r

C̃r
is

guaranteed to be positive semidefinite, since then η̃r(KCq) ≥ 0 (q = `, . . . , r+ 1). In such
a case, the assumptions in (iv) can be verified from the original data matrices. By (24),
if the data matrices Q0

Cr
and Qp

Cr
(p ∈ Ireq ∪ Irineq) are all diagonal, then the assumption

of (v) is satisfied.

5 Examples of QOPs

We present two examples of QOPs that can be reformulated as their DNN relaxations.
The problem in Section 5.1 is a nonconvex QOP with linear and complementarity con-
straints, and the one in Section 5.2 is a partially convex QOP with quadratic inequality
constraints. They are constructed as follows. First, choose a block-clique graph G(N,E)
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with the maximal cliques Cq (q = 1, . . . , `). For the first example in Section 5, we use the
block-clique graph in Figure 1 (a), and for the second example in Section 5.2, the one in
Figure 1 (b). As the block-clique graph G(N,E) induces a clique tree (see Figure 2 (a)
and see Figure 2 (b), respectively), we renumber its ` maximal cliques so that they can
satisfy the running intersection property (3).

Using the definitions of Φr(K), Ψr(K, λ) (r = `, . . . , 1) and (15), we can rewrite
COP(K) as

ζ̄(K) = η`(K) = inf

 ∑
(i,j)∈F`

Q0
ijXij : (XC1 , . . . ,XC`

) ∈ Φ`(K)


= inf

 ∑
(i,j)∈F`

Q0
ijXij : XC1 ∈ Φ1(K), XCr ∈ Ψ(KCr , Xkrkr) (r = `, . . . , 2)


= inf

 ∑
(i,j)∈F`

Q0
ijXij : XCr ∈ Ψr(KCr , Xkrkr) (r = `, . . . , 1), X11 = 1


Instead of COP(K) itself, we describe the problem with its subproblems

P̂r(KCr , λ) : η̂r(KCr , λ) = inf
{
〈Q0

Cr
, XCr〉 : XCr ∈ Ψr(KCr , λ)

}
using

Cr : kr ∈ Cr, Q
0
Cr
∈ SCr (and its property if any) and Ψr(Γ

Cr , λ)

for (r = 1, . . . , `), where λ ≥ 0 denotes a parameter. Notice that P̂(KCr , λ) is similar

to the problem P̃r(KCr , λ) introduced in Section 4.1. We also note that the objective
coefficient Q0r

Cr
is updated from Q0

Cr
in the construction of the sequence Pr(K) (r =

`, . . . , 1) by (23), while the objective coefficient of P̂(KCr , λ) is fixed to Q0
Cr

. Indeed,

the description P̂(KCr , λ) is sufficient and more convenient to execute Algorithm 4.3 for
computing the optimal value ζ̄(K) of COP(K) and also to apply Theorems 4.5 and 4.6
to establish ζ(Γn) = ζ(CPPn) = ζ(DNNn).

5.1 A QOP with linear and complementarity constraints

Consider the block-clique graph G(N,E) given in Figure 1 (a). In this case, n = 11 and
N = {1, . . . , 11}. To represent a QOP as COP(Γn), let

C1 = {1, 2, 3, 4} : k1 = 1, Q0
C1
∈ SC1 ,

Ψ1(Γ
C1 , λ) =

{
xC1x

T
C1

:
xC1 ∈ RC1

+ , x1 = λ,
−8x1 + x2 + x3 + 2x4 = 0

}
,

C2 = {3, 5, 6, 7} : k2 = 3, Q0
C2
∈ SC2 ,

Ψ1(Γ
C2 , λ) =

{
xC2x

T
C2

:
xC2 ∈ RC2

+ , x3 = λ, x5x6 = 0,
−x3 + x5 + 2x6 + x7 = 0

}
,
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C3 = {3, 8, 9} : k3 = 3, Q0
C3
∈ SC3 ,

Ψ1(Γ
C3 , λ) =

{
xC3x

T
C3

:
xC3 ∈ RC3

+ , x3 = λ,
−2x3 + 3x8 + x9 = 0

}
,

C4 = {5, 10, 11} : k4 = 5, Q0
C4
∈ SC4 ,

Ψ1(Γ
C4 , λ) =

{
xC4x

T
C4

:
xC4 ∈ RC4

+ , x5 = λ,
−x5 + x10 + x11 = 0

}
.

The assumption in (i) of Theorem 4.6 is satisfied since Cr (r = 1, 2, 3, 4) are of size
at most 4. All assumptions in (ii) of Theorem 4.6 are also satisfied. In fact, Irineq = ∅,
Ψr(Γ

Cr , 1) 6= ∅ and Ψr(Γ
Cr , 0) = {O}, which implies that 〈Q0r

Cr
, X〉 ≥ 0 if XCr ∈

Ψr(Γ
Cr , 0), (r = 1, 2, 3, 4). As shown in Example 2.4, each linear equality constraint can

be rewritten in Ψr(Γ
Cr , λ) (r = 1, 2, 3, 4) as 〈QCr

, xCrx
T
Cr
〉 = 0 for some QCr

∈ SCr
+

and the complementarity constraint x5x6 = 0 in Ψ2(Γ
Cr , λ) as 〈QCr

, xCrx
T
Cr
〉 = 0 for

some QCr
∈ NCr . By (i) and (ii) of Theorem 4.6, η̃′r(Γ

Cr) = η̃′r(CPP
Cr) = η̃′r(DNN

Cr)
(r = 1, 2, 3, 4). Therefore, by Theorem 4.5, it follows that ζ̄(Γn) = ζ̄(CPPn) = ζ̄(DNNn)
holds.

5.2 A partially convex QOP

Consider the block-clique graph G(N,E) given in Figure 1 (b). In this case, n = 13 and
N = {1, . . . , 13}. To represent a QOP as COP(Γn), let

C1 = {1, 2, 3} : k1 = 1, Q0
C1
∈ SC1 ,

Ψ1(Γ
C1 , λ) =

{
xC1x

T
C1

:
xC1 ∈ RC1

+ , x1 = λ,
−x1 + x2 + x3 = 0

}
,

C2 = {3, 4, 5, 6, 7} : k2 = 3, Qp
C2
∈ SC2 : diagonal (p = 0, 1, 2),

Ψ2(Γ
C2 , λ) =

xC2x
T
C2

:
xC2 ∈ RC2

+ , x3 = λ,
〈Q1

C2
, xC2x

T
C2
〉 = 0

〈Q2
C2
, xC2x

T
C2
〉 ≤ 0

 6= ∅,
C3 = {3, 8, 9, 10, 11} : k3 = 3, Qp

C3
∈ SC3 , C̃3 = {8, 9, 10, 11}, Qp

C̃3
∈ SC̃3

+ (p = 0, 3, 4),

Ψ3(Γ
C3 , λ) =

xC3x
T
C3

:
xC3 ∈ RC3

+ , x3 = λ,
−x3 − 2x8 + x9 + x10 = 0,
〈Qp

C3
, xC3x

T
C3
〉 ≤ 0 (p = 3, 4)

 6= ∅,
C4 = {11, 12, 13} : k4 = 11, Q0

C4
∈ SC4 ,

Ψ4(Γ
C4 , λ) =

{
xC4x

T
C4

:
xC4 ∈ RC4

+ , x11 = λ,
−x11 + x12 + 2x13 = 0

}
.

For r = 1, 4, we similarly see that all assumptions in (i) and (ii) of Theorem 4.6 are
satisfied as in the example in Section 5.1. Thus, the identity η̃r(Γ

Cr) = η̃r(CPPCr) =
η̃r(DNNCr) holds (r = 1, 4).

Since the data matrices Qp
C2
∈ SC2 (p = 0, 1, 2) are diagonal, P̂2(KC2 , λ) becomes an
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LP of the form

η̂r(KC2 , λ) = inf

{∑
i∈C2

Q0
iiXii :

Xii ∈ R+ (i ∈ C2), X33 = λ,∑
i∈C2

Q1
iiXii = 0,

∑
i∈C2

Q1
iiXii ≤ 0

}
.

Hence (v) of Theorem 4.6, η̃2(Γ
C2) = η̃2(CPPC2) = η̃2(DNNC2) holds.

To see whether the identity holds for r = 3, we need to apply (iv) of Theorem 4.6
since Ψ3(KC3 , λ) involves convex quadratic inequality. It suffices to check whether Q03

C̃3
is

positive semidefinite. By the assumption and the updating formula (24), we know that

Q03
ij =

{
Q0

11,11 + η̃4(Γ
C4) if (i, j) = (11, 11),

Q0
ij otherwise.

For example, if η̃4(Γ
C4) is nonnegative, then Q03

C̃3
∈ SC̃3

+ and the identity η̃3(Γ
C3) =

η̃3(CPPC3) = η̃3(DNNC3) holds. Therefore, by Theorem 4.5, it follows that ζ̄(Γn) =
ζ̄(CPPn) = ζ̄(DNNn) holds.

6 Concluding remarks

Nonconvex QOPs and CPP problems are known to be NP hard and/or numerically
intractable in general, as opposed to computationally tractable DNN problems. Thus,
finding some classes of QOPs or CPP problems that are equivalent to DNN problems
is an essential problem in the study of the theory and applications of nonconvex QOPs.
Two major obstacles to finding such classes are: (A) CPPn is a proper subset of DNNn

if n ≥ 5 and (B) general quadratically constrained nonconvex QOPs are NP hard and
numerically intractable. As a result, CPP reformulations of a class of QOPs with linear
equality, binary and complementarity constraints in nonnegative variables still remain
numerically intractable. One way to overcome these obstacles is to “decompose” the
cone CPPn into cones with size at most 4 and/or to “decompose” a QOP into convex
QOPs of any size and linearly constrained nonconvex QOPs with variables at most 4. To
obtain such decompositions, a fundamental method is exploiting structured sparsity.

To describe a QOP, its CPP and DNN relaxations, COP(K) with K ∈ {Γn,CPPn,
DNNn} has been introduced in Section 1. In Section 3, we have provided a method to
decompose the cone CPPn of the CPP relaxation, COP(CPPn) of the QOP described
as COP(Γn) into cones with size at most 4 by exploiting the aggregated sparsity of the
data matrices Qp (p ∈ {0} ∪ Irmeq ∪ Iineq) of COP(CPPn) which have been represented
by a block-clique graph G(N,E). In Section 4, a method to decompose the QOP itself
into convex QOPs of any size and linearly constrained nonconvex QOPs with variables
at most 4 has been presented by exploiting their correlative sparsity.

As for the structured sparsity that leads to the equivalence among COP(Γn), COP(CPPn)
and COP(DNNn), the aggregated and/or correlative sparsity of the data matrices repre-
sented with a block-clique graph have played a crucial role in our discussion. We should
mention that block-clique graphs may not be frequently observed in a wide class of QOPs.
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It is interesting, however, to construct a new optimization model based on the structure
provided by a block-clique graph.

For further development of such an optimization model, we emphasize that if a QOP
described as COP(Γn) can be solved exactly then it can be incorporated in the model as
a subproblem. In [15], it was shown that the exact solutions of nonconvex QOPs with
nonnpositive off-diagonal data matrices can be found. The result has been applied to
the optimal power flow problems [19]. More precisely, assume that Ieq = ∅ and that all
off-diagonal elements of Qp (p ∈ {0} ∪ Iineq) are nonpositive. Then the QOP described
as COP(Γn) can be solved exactly by its SDP and SOCP relaxation [15, Theorem 3.1].
Thus, the QOP can be incorporated in our model as a subproblem. The details are
omitted here.
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