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1 Introduction

Solving polynomial systems using polyhedral homotopy continuation methods is achieved
by tracing the solution paths of polyhedral homotopy systems [7, 11, 18]. Main parts in
implementation of polyhedral homotopy continuation methods are computation of the fine
mixed cells of a given polynomial system [5, 12, 16] from which we construct a family of
polyhedral (or polyhedral-linear) homotopy functions, and tracing the solution paths of the
homotopy systems [6, 9, 10, 11, 19]. Successful finding of all solutions of a polynomial system
depends on how efficiently and stably numerical methods used in path tracing perform.
Hence, their numerical stability is a critical issue for overall performance of polyhedral
homotopy continuation methods.

Three important factors to determine the numerical stability are magnitudes of powers
of the homotopy continuation parameter t, solving linear systems in predictor-corrector
procedures of tracing solution paths, and determining convergent and divergent paths in
the final stage of path tracing. The focus of this paper is on developing stable numerical
methods to deal with numerical challenges from large magnitudes of powers of t and ill-
conditioned linear systems. For details of the last factor, see the paper [8].

High powers of the continuation parameter t in polyhedral homotopy continuation meth-
ods have been an important issue to achieve numerical stability as described in [5]. When
polyhedral homotopy functions contain very high powers of the continuation parameter t,
values of the functions change very rapidly during path tracing, especially near the end of
t = 1. Then, it becomes necessary to take very small steps to trace, resulting in numerical
inefficiency. One way to handle the difficulty caused by large magnitudes of powers is to
balance the powers by computing new lifting values for the supports of a polynomial sys-
tem, which leads to balanced powers of the continuation parameter t [5, 6]. We can reduce
powers to some extent by this approach. However, as the dimension of a polynomial system
grows, magnitudes of powers of the continuation parameter become large. We encounter a
similar situation of large magnitudes of powers in larger dimensional problems again.

Tracing paths in polyhedral homotopy continuation methods is implemented using predictor-
corrector procedures, which involve solving linear systems with Jacobian matrices of a poly-
hedral homotopy system to obtain points in a solution path. Solving the linear systems
accurately is central to achieve numerical efficiency and stability for path tracing. The
accuracy of solutions of the linear systems may deteriorate by nearly singular Jacobian ma-
trices. While tracing solutions paths of polynomial systems, ill-conditioned linear systems
are often inevitable, for instance, when two solution paths come very closely or magnitudes
of some coordinates of a point on a solution path is extremely large. As a result, we obtain
inaccurate solution points and tracing the path becomes unsuccessful; it is impossible to
reach the end of the path with t = 1.

The purpose of this paper is to provide stable numerical algorithms to trace solution
paths in polyhedral homotopy methods. To resolve the issue arising from large magnitudes
of powers of the continuation parameter t, we introduce a modified homotopy with a new
continuation parameter s using a change of the parameter t, s = log t. This modified homo-
topy enables us to trace solution paths more accurately within available machine precision.
In particular, it provides a longer distance to travel than the one from t = 0 to t = 1.
Therefore, we can trace solution paths more carefully in the sense that sudden changes in
values of homotopy functions can be reduced by taking smaller step lengths and accidental
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jumps from one solution path to another can be prevented. Various scaling techniques to
increase the accuracy of solutions of linear systems in predictor-corrector procedures are
also presented.

Currently available software packages based on polyhedral homotopy continuation meth-
ods are PHCpack [20], CMPSm [9] and PHoM [6]. PHCpack has been one of the most
successful polynomial system solvers by polyhedral homotopy continuation written in Ada
language. The package offers various methods for computing fine mixed cells and several
modes to operate. PHoM is a software package in C++ implementing polyhedral homotopy
continuation methods from constructing of a family of polyhedral-linear homotopy functions
to tracing solution paths. CMPSm is a MATLAB code and CMPSc [10] a C++ program
for tracing solution paths. CMPSm served as a prototype for CMPSc, which is integrated
into PHoM. It is shown that PHoM can handle larger dimensional polynomial systems than
PHCpack [6]. Numerical experiments in this paper were done using a revised version of
CMPSm, which included the modified homotopy with the new continuation parameter s
and scaling techniques discussed in the succeeding sections.

This paper is organized as follows: After discussing basic polyhedral-linear homotopy
systems, we address numerical difficulties arising from tracing paths in implementation of
polyhedral-linear homotopy methods in Section 2. These include some effects of high powers
of the continuation parameter t and ill-conditioned Jacobian matrices during path tracing.
In Section 3, we propose a modified polyhedral-linear homotopy using a nonlinear scaling
s = log t of the continuation parameter t. The modified homotopy provides computational
advantages for a predictor step length control in tracing paths. Section 4 contains scal-
ing techniques for linear systems such as scalings based on function values, magnitudes of
variables, and Jacobian matrices. Next, we present numerical results obtained from the
modified polyhedral-linear homotopy and the scaling techniques in Section 5, and show
some effectiveness of the new continuation parameter s and the scaling strategies. Finally,
Section 6 is devoted to concluding discussions.

We introduce notation and symbols for the following discussions. Let R, C and Z+

denote the set of real numbers, the set of complex numbers and the set of nonnegative
integers, respectively. For every variable vector x = (x1, x2, . . . , xn) ∈ Cn and every a =
(a1, a2, . . . , an) ∈ Zn+, we use the notation xa for the term xa1

1 x
a2
2 · · ·xan

n . Then we can
write any polynomial φ(x) in the variable vector x = (x1, x2, . . . , xn) ∈ Cn as φ(x) =∑

a∈A c(a)xa for some finite subset A of Zn+ and some c(a) ∈ C (a ∈ A). We call A the
support of the polynomial φ(x).

2 Some difficulties in polyhedral homotopy continua-

tion methods

2.1 A polyhedral-linear homotopy system

We compute solutions of a system of n polynomial equations

f(x) ≡ (f1(x), . . . , fn(x))T = 0 (1)
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in an n-dimensional complex vector variable x ≡ (x1, . . . , xn) ∈ Cn. Throughout the paper,
we assume that each component fj(x) of f(x) is of the form

fj(x) =
∑

a∈Aj

cj(a)xa,

where cj(a) denotes a nonzero complex number and Aj ⊂ Zn+ the support of fj(x).
In homotopy continuation methods, we first define a smooth homotopy system with a

continuation parameter t ∈ [0, 1]

h(x, t) ≡ (h1(x, t), h2(x, t), . . . , hn(x, t))
T = 0

using the algebraic structure of the polynomial system. Among several variants of polyhedral
homotopy continuation methods, polyhedral-linear combined homotopy functions, which
were proposed by [11] as the name of cheater’s homotopy, are regarded as an efficient way
to implement polyhedral homotopy continuation methods. In original polyhedral homotopy
continuation methods, actual tracing of solution paths is executed twice: once for polyhedral
homotopy functions and once for linear homotopy functions, whereas tracing solution paths
is executed once in polyhedral-linear combined homotopy functions. The software packages
CMPSm [9] and CMPSc [10] employ a family of polyhedral-linear combined homotopy
functions hp : Cn × [0, 1] → Cn (p = 1, 2, . . . , `) satisfying the property that for each
isolated solution x1 of f(x) = 0, there exist an index p and a solution x0 of hp(x, 0) = 0
such that (x0, 0) is connected to (x1, 1) through a homotopy path, a solution path {(ξ(t), t) :
t ∈ [0, 1)} of hp(x, t) = 0 in the space Cn × R. This property is essential to compute all
isolated solutions of f(x) = 0. The construction of the family of polyhedral-linear combined
homotopy functions is based on computation of the fine mixed cells of the polynomial system
f(x). The number ` of the polyhedral-linear combined homotopy functions in the family
corresponds to the number of fine mixed cells.

Each component hpj(x, t) of hp(x, t) is of the form

hpj(x, t) =
∑

a∈Aj

(
(1− tβ/γp)c̃j(a) + tβ/γpcj(a)

)
xatρ

p
j (a)/γp

=
∑

a∈Aj

(
c̃j(a)tρ

p
j (a)/γp + (cj(a)− c̃j(a))t(ρ

p
j (a)+β)/γp

)
xa. (2)

(p = 1, 2, . . . , `). Here β and γp (p = 1, 2, . . . , `) are positive parameters which we describe
below; ρpj(a) (a ∈ Aj, j = 1, 2, . . . , n, p = 1, 2, . . . , `) are nonnegative numbers obtained
through computation of the fine mixed cells, and for each p and j, exactly two ρpj(a)’s among
ρpj(a) (a ∈ Aj) are zero and all others are positive. Hence, for each p = 1, 2, . . . , `, the initial
system from which homotopy solution paths starts is a system of binomial equations

∑

a∈A0

pj

c̃j(a)xa = 0 (j = 1, 2, . . . , n),

where A0
pj =

{
a ∈ Aj : ρpj(a) = 0

}
, so that the starting points of the homotopy solution

paths can be easily computed. We can also verify that hp(x, 1) = f(x) for all x ∈ Cn.
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Let

ρpmax = max
{
ρpj(a) : a ∈ Aj, j = 1, 2, . . . , n

}
(p = 1, 2, . . . , `),

ρmax = max {ρpmax : p = 1, 2, . . . , `} ,
ρpmin = min

{
ρpj(a) : a ∈ Aj\A0

pj, j = 1, 2, . . . , n
}

(p = 1, 2, . . . , `).

For computational purposes, we want to choose β ≥ 1 and γp ≥ 1 (p = 1, 2, . . . , `) such
that, for each p, the minimum of positive powers

ρpj(a)/γp (a ∈ Aj\A0
pj, j = 1, 2, . . . , n), (ρpj(a) + β)/γp (a ∈ Aj, j = 1, 2, . . . , n)

of t of the polyhedral-linear combined homotopy function hp(x, 0) = 0 is normalized to 1,
and that all the positive powers

ρpj(a)/γp (a ∈ Aj\A0
pj, j = 1, 2, . . . , n, p = 1, 2, . . . , `),

(ρpj(a) + β)/γp (a ∈ Aj, j = 1, 2, . . . , n, p = 1, 2, . . . , `)

}
(3)

become smaller. Given a β > 0, we choose γp = min{ρpmin, β} to meet the first requirement.
Through numerical experiments, we observed that the choice β ∈ [0.01, 0.05]×ρmax reduces
the positive powers (3) considerably.

On the other hand, we can take a very large β such as β = 1.0e10 or 1.0e20 to construct
polyhedral-linear homotopies with very large powers (3). We utilize such artificially highly
nonlinear homotopies to test effectiveness and robustness of the proposed techniques.

2.2 Powers of the continuation parameter t

Each term in hp(x, t) has a coefficient ctρ for some complex number c and nonnegative
number ρ. The power ρ of each term is a function of ρpj(a) (a ∈ Aj, j = 1, 2, . . . , n, p =
1, 2, . . . , `) determined by the fine mixed cells and β > 0. Its magnitude can be very large
when ρpmin is extremely small and/or ρpmax is extremely large; for example, when ρpmin = 0.01
and ρpmax = 1, 000, ρ = (ρpmax + β)/γp ≥ 100, 000 no matter how we choose β > 0 (recall
that γp = min {ρpmin, β}). Such huge powers may cause numerical inefficiency and affects
stability of tracing homotopy paths of hp(x, t) = 0. As a way to overcome the difficulty,
balancing the quantities ρpj(a) (a ∈ Aj, j = 1, 2, . . . , n, p = 1, 2, . . . , `) was proposed
in [5]. This approach is based on computing new lifting values, which maintain the fine
mixed cells, for the supports of the polynomial system. To balance the quantities ρpj(a)
(a ∈ Aj, j = 1, . . . , n, p = 1, . . . , `), we decrease the ratio of ρpmax and ρpmin. However,
the numerical difficulty remains for larger dimensional polynomials, even after balancing is
performed.

2.3 Ill-conditioned Jacobian matrices

Another obstacle to have stable numerical algorithms for polyhedral homotopy continuation
occurs when we solve a linear system

Dxhp(x, t)dx = −Dth
p(x, t) or − hp(x, t) (4)
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for dx ∈ Cn. Solving the linear system (4) is necessary when computing a predictor direction
or a corrector direction, respectively. The Jacobian matrix Dxhp(x, t) is likely to become
more ill-conditioned if the current point (x, t) gets closer to two different homotopy paths or
the magnitude of x grows larger. Very ill-conditioned Jacobian matrices appear in some of
polynomial systems. For instance, tracing a homotopy path of the economic-14 polynomial
system yielded the condition number of the Jacobian matrix larger than 1.0e20. In that
case, a solution of the linear system (4) is not accurate and tracing solution path fails.

To improve accuracy of solutions obtained from (4), we utilize the singular value decom-
position. Let Ady = b denote a target linear system to be solved, where A is an n × n
complex matrix and b ∈ Cn. We obtain the singular value decomposition of A = USV ,
where U and V are n×n orthogonal matrices, and S a diagonal matrices with nonnegative
real diagonal entries. When the minimum of nonnegative diagonal entries of S is nearly
zero (or zero), the matrix A is ill-conditioned (or singular). To cope with such a case, the
diagonal matrix S is perturbed as

S = diag (max{S11, ε},max{S22, ε}, . . . ,max{S22, ε}) .
Here ε denotes an extremely small positive number, say ε = 1.0e−20. Then, we compute the
solution of USV dy = b: dy = V ∗S−1U ∗b.

Unfortunately, this approach does not solve the ill-conditioning of the linear system (4)
completely. We need a method to reduce the condition number of the Jacobian matrix.

3 A change of the continuation parameter t

3.1 A modified polyhedral-linear homotopy

We introduce a modified polyhedral-linear homotopy in this section using a change of the
continuation parameter t ∈ [0, 1] as s = log t. The purpose of the modified polyhedral-linear
homotopy is to resolve numerical difficulty originated from high powers of the continuation
parameter t in the homotopy functions.

Let p ∈ {1, 2, . . . , `} be fixed. For simplicity of notation, we write the polyhedral-linear
homotopy function hp(x, t) in (2) as h(x, t) with no superscript p, and its component
hpj(x, t) as hj(x, t). Let

ϕj(a) = ρpj(a)/γp, ψj(a) = (ρpj(a) + β)/γp and ĉj(a) = cj(a)− c̃j(a)

(a ∈ Aj, j = 1, 2, . . . , n). Then, we have

hj(x, t) =
∑

a∈Aj

(
c̃j(a)tϕj(a) + ĉj(a)tψj(a)

)
xa. (5)

The homotopy (5) is general in the sense that it covers the classical linear [3, 4], polyhedral
[7, 11, 18] and polyhedral-linear homotopies (cheater’s homotopies) [11] as special cases. If
we take ϕj(a) = 0 and ψj(a) = 1, we have a classical linear homotopy. With the choices of
β = 1 and γp = 1, it represents a polyhedral-linear homotopy. And, ĉj(a) = 0 in (5) results
in a polyhedral homotopy.

For more general homotopies with coefficient-parameter continuation, see [14].
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We use a change of the parameter t in the interval [0, 1] such that s = log t or t = exp(s)
in hj(x, t). Then each term tϕj(a) and tψj(a) appeared in (5) are changed to exp(ϕj(a)s)
and exp(ψj(a)s), respectively. The modified homotopy becomes

h(x, s) = (h1(x, s), h2(x, s), . . . , hn(x, s))
T ,

hj(x, s) =
∑

a∈Aj

(c̃j(a) exp(ϕj(a)s) + ĉj(a) exp(ψj(a)s)) xa (j = 1, 2, . . . , n).

The initial parameter value 0 in the original continuation parameter t corresponds to −∞ in
the modified continuation parameter s in theory. We can take a sufficiently small negative
number s0 in practice such that

exp(ϕj(a)s0) (a ∈ Aj\A0
j , j = 1, 2, . . . , n) and exp(ψj(a)s0) (a ∈ Aj, j = 1, 2, . . . , n)

are all negligibly small positive numbers, and that we can employ

h(x, s0) = (h1(x, s
0), h2(x, s

0), . . . , hn(x, s
0))T ,

hj(x, s
0) =

∑

a∈A0

j

c̃j(a)xa exp(ϕj(a)s0) (j = 1, 2, . . . , n)

as a starting system of binomial equations; for example, take s0 = −20 or −50 in the double
precision arithmetic.

3.2 An advantage of the modified polyhedral-linear homotopy

We trace a solution path of the homotopy system of polynomial equations with the modified
polyhedral-linear homotopy,

hj(x, s) ≡
∑

a∈Aj

(c̃j(a) exp(ϕj(a)s) + ĉj(a) exp(ψj(a)s)) xa = 0 (j = 1, 2, . . . , n) (6)

by applying a predictor-corrector procedure. Now, the continuation parameter s starts from
s = s0 < 0 and terminates at s = 0. As the continuation parameter s < 0 approaches 0, a
smaller step length ds > 0 satisfying s + ds ≤ 0 is required. When a fixed finite precision
arithmetic for numerical computation is used, the new parameterization s ∈ (−∞, 0] works
effectively near 0. Namely, we can use an s < 0 very close to 0; for example, s = −1.0e-200
in the double precision arithmetic. Furthermore, we can take a smaller positive step length
than the magnitude of s < 0; when s = −1.0e-200, ds can be 1.23e-203 so that s + ds =
−9.9877e-201 is numerically meaningful in the double precision arithmetic.

For most of polynomial systems, such an extremely small step length ds may not be
necessary. However, there exist some homotopy systems whose ϕj(a) and ψj(a) can be
extremely large positive numbers. For instance, suppose that ψj(a) = 1.0e10. If we take
s = −1.0e-20 and ds = 1.0e-22, then ψj(a)s = −1.0e-10 and the values tψj(a) = exp(ψj(a)s)

and t
ψj(a)
+ = exp(ψj(a)(s + ds)) in the t-space corresponding to s and s+ = s + ds in the

s-space become 9.999999999000000e-01 and 9.999999998990000e-01, respectively. Thus,
taking such small s and ds are necessary and effective in this case. It should be noted
that neither t nor t+ can not be numerically distinguishable from 1 in the double precision
arithmetic. Hence the original polyhedral-linear homotopy system with the continuation
parameter t ∈ [0, 1] would encounter a difficulty in dealing with such a case effectively.
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3.3 Bounding changes of the coefficients depending on the con-
tinuation parameter in predictor iterations

An additional important feature of the new parameterization using s ∈ (−∞, 0] is that
it can provide an effective technique to bound changes of the numbers exp(ϕj(a)s) and
exp(ψj(a)s) (a ∈ Aj, j = 1, 2, . . . , n) in the coefficients, depending on the continuation
parameter s in predictor iterations. Suppose that (x̄, s̄) ∈ Cn × (−∞, 0) be the current
iterate that lies approximately on a homotopy solution path;

hj(x̄, s̄) ≡
∑

a∈Aj

(c̃j(a) exp(ϕj(a)s̄) + ĉj(a) exp(ψj(a)s̄)) x̄a ≈ 0 (j = 1, 2, . . . , n).

Then, we compute a direction (dx, 1) by solving the linear system of equations

Dxh(x̄, s̄)dx + Dsh(x̄, s̄) = 0.

Now we want to choose a step length ds > 0 that determines a predicted point (x+, s+) =
(x̄, s̄) + ds(dx, 1). Note that s+ needs to remain nonpositive. From (x+, s+), we apply
the corrector iteration to find a point on the homotopy solution path. In general, the
predicted point (x+, s+) deviates more from the homotopy solution path as we take a larger
ds = s+− s̄. Although we want to take a larger step length ds = s+− s̄ to reduce the number
of predictor iterations, we need to choose a step length ds = s+ − s̄ so that the corrector
procedure from (x+, s+) securely generates a sequence of {(xk, s̄)} converging to a point on
the same homotopy solution path. For this purpose, we derive below an upper bound for
ds so that the changes

exp(ϕj(a)s+)− exp(ϕj(a)s̄), exp(ψj(a)s+)− exp(ψj(a)s̄) (a ∈ Aj, j = 1, 2, . . . , n) (7)

of the coefficients

exp(ϕj(a)s), exp(ψj(a)s) (a ∈ Aj, j = 1, 2, . . . , n),

do not exceed a given fixed positive number κ. Notice that all the changes in (7) are
nonnegative whenever ds ≥ 0.

Let us consider the term exp(ρs) and investigate how it changes from s = s̄ to s =
s̄+ λ(−s̄) = (1− λ)s̄, where ρ ≥ 1 and λ ∈ [0, 1). Then we observe that

0 ≤ exp(ρs̄(1− λ))− exp(ρs̄) ≤ −ρs̄λ exp(ρs̄(1− λ)).

We now regard ζ(ρ) ≡ −ρs̄λ exp(ρs̄(1− λ)) as a function of ρ, then

ζ ′(ρ) = −s̄λ (1 + ρs̄(1− λ)) exp (ρs̄(1− λ)) ,

ζ ′(ρ) > 0 if ρ < 1/ (−s̄(1− λ)) ,

ζ ′(ρ) = 0 if ρ = 1/ (−s̄(1− λ)) ,

ζ ′(ρ) < 0 if ρ > 1/ (−s̄(1− λ)) .

Hence, ζ(ρ) attains the maximum λ/ ((1− λ) exp(1)) at the solution ρ = 1/ (−s̄(1− λ))
over the set of nonnegative numbers, and for every ρ ∈ [1, ρmax] and every λ ∈ [0, 1),

ζ(ρ) ≤
{
λ/ ((1− λ) exp(1)) if 1/(−s̄) ≤ ρmax,
−ρmaxs̄λ exp(ρmaxs̄(1− λ)) ≤ −ρmaxs̄λ if ρmax ≤ 1/(−s̄)
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Therefore, if s̄ < 0 and λ ∈ [0, 1) satisfy the set of inequalities

1 ≤ −ρmaxs̄ and λ/ ((1− λ) exp(1)) ≤ κ (i.e. λ ≤ κ exp(1)/ (1 + κ exp(1)))

or the set of inequalities

−ρmaxs̄ ≤ 1 and λ ≤ κ/(−ρmaxs̄),

then

0 ≤ exp(ρs̄(1− λ))− exp(ρs̄) ≤ ζ(ρ) ≤ κ

holds independent of ρ ≥ 1.

4 Scaling strategies for linear systems

In this section, we address numerical aspects of solving linear systems. As discussed in
Section 2, we encounter ill-conditioned linear systems frequently in predictor-corrector pro-
cedures. To improve the numerical stability of path tracing, we present three scaling tech-
niques; a scaling based on function values, a scaling based on magnitudes of variables and
a scaling based on Jacobian matrices.

Two types of scalings called variable scaling and equation scaling were described in
[13]. In essence, they scale using the coefficients and powers of a given polynomial system
before starting to solve the polynomial system. As a result, they would not be dependent
on homotopy functions nor homotopy paths if they were used in the implementation of
polyhedral homotopy continuation methods.

The aim of scalings presented here is to minimize numerical instability that might occur
while tracing homotopy paths. As we have seen in many numerical experiments, homotopy
paths can vary very much. One homotopy path needs scalings at some points, even if
the path can be traced stably at other points without any scaling. This is why we need
scaling techniques dependent on homotopy functions and each point of paths. In view of
varying nature of the scalings on points from s = −∞ to s = 0, we call the scalings in this
paper dynamic scalings, as opposed to static nature of the scalings discussed in [13]. These
dynamic scalings are used to improve ill-conditioned linear systems. The first scaling, a
dynamic scaling based on function values, is also used in a stopping criterion for corrector
iterations. The effectiveness of these scalings are shown with numerical results in Section 5.
Throughout this section, let (x̃, s̃) ∈ Cn× (−s0, 0] be a fixed point at which we perform the
scalings.

4.1 A dynamic scaling based on function values

We investigate how much accuracy we require to stop iterations in our corrector procedure,
and derive a way to scale the homotopy function in this subsection. Recall that each
component of the value of the homotopy function h(x̃, s̃) is of the form

hj(x̃, s̃) ≡
∑

a∈Aj

(c̃j(a) exp(ϕj(a)s̃) + ĉj(a) exp(ψj(a)s̃)) x̃a (j = 1, 2, . . . , n).
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For every j, let σfj denote the maximum of the absolute values of all the terms appeared in
the sum:

σfj = max
a∈Aj

{∣∣(c̃j(a) exp(ϕj(a)s̃) + ĉj(a) exp(ψj(a)s̃)) x̃a∣∣} .

Roundoff errors in the evaluation of hj(x̃, s̃) are expected to be proportional to σfj . Given
a sufficiently small positive ε, it is reasonable to require for an approximate solution (x̃, s̃)
of h(x, s) = 0 to satisfy

hj(x̃, s̃)/max
{
σfj , 1

}
≤ ε (j = 1, 2, . . . , n) or

∥∥Σfh(x̃, s̃)
∥∥
∞ ≤ ε,

where
Σf = diag

(
1/max{σf1 , 1}, 1/max{σf2 , 1}, . . . , 1/max{σfn, 1}

)
.

We use the diagonal matrix Σf when evaluating the homotopy function h(x̃, s̃).

4.2 A dynamic scaling based on magnitudes of variables

Define the diagonal matrix

Σv = diag (max {|x̃1|, 1} ,max {|x̃2|, 1} , . . . ,max {|x̃n|, 1}) ,

and consider the linear scaling x ∈ Cn → y ∈ Cn such that

x = Σvy or y = (Σv)−1x.

Then,

Dyh(Σvy, s̃) = Dxh(Σvy, s̃)Σv = Dxh(x, s̃)Σv.

Thus the linear scaling x ∈ Cn → (Σv)−1y ∈ Cn induces a column scaling with the diagonal
matrix Σv for the Jacobian matrix of h(x, s̃) with respect to x.

4.3 A dynamic scaling based on Jacobian matrices

The Newton system for a corrector direction dx is of the form

Dxh(x̃, s̃)dx = −h(x̃, s̃). (8)

We first apply the row scaling Σf and the column scaling Σv to the system as follows:

ΣfDxh(x̃, s̃)Σvdy = −Σfh(x̃, s̃), dx = Σvdy. (9)

For each j = 1, 2, . . . , n, let

σrj = the maximum of the absolute values of all the n terms in the jth row of

the coefficient matrix ΣfDxh(x̃, s̃)Σv,

σrj = max{σrj 1}.

9



We further apply another row scaling matrix

Σr = diag (1/σr1, 1/σ
r
2, . . . , 1/σ

r
n) .

to (9). Finally, we obtain the scaled Newton system

ΣrΣfDxh(x̃, s̃)Σvdy = −ΣrΣfh(x̃, s̃), dx = Σvdy. (10)

As a stopping criterion for corrector iterations, the following is used.

∥∥Σfh(x̃, s̃)
∥∥
∞ ≤ εh and ‖dx‖ ≤ εx, (11)

where εh > 0 and εx > 0.
Now, we focus our attention to the Newton system for the predictor direction (dx, 1)

Dxh(x̃, s̃)dx = −Dsh(x̃, s̃). (12)

We apply the same scalings as the ones in the predictor procedure:

ΣrΣfDxh(x̃, s̃)Σvdy = −ΣrΣfDsh(x̃, s̃), dx = Σvdy. (13)

5 Numerical experiments

We show numerical results obtained from numerical experiments focused on high powers of
the continuation parameter t and ill-conditioned Jacobian matrices. All the tests were done
using a revised version of CMPSm [9], which is a MATLAB program for tracing solution
paths of the polyhedral-linear homotopies hp(x, t) given in (2). The original CMPSm served
as a prototype for CMPSc [9], a C++ program for tracing solution paths of the same homo-
topies, and PHoM [6], a C++ program package, including CMPSc, for solving polynomial
systems.

For numerical tests on very high powers of the continuation parameter t, we used prob-
lems as reimer-4 [17], noon-5 [15], katsura-7 [1] and economic-14 [13] polynomials. The
original polyhedral-linear homotopies (2) with β = 1 and γp = 1 for these polynomials con-
tain some powers of t ranging up to the order of magnitude 1.0e5, which are large enough
to cause possible numerical difficulties when implementing polyhedral-linear homotopy con-
tinuation method in a naive way. We expect to have much larger magnitudes of powers of t,
as the dimension n of the polynomials increase. To test the effects of extremely high powers
of t, we create highly nonlinear homotopy using (2). Specifically, huge powers are created
artificially without applying any balancing technique and/or by choosing a large β such as
β = 1.0e10, 1.0e20 in the modified homotopy (2); the original CMPSm can not correctly
work on those resulting homotopies.

We have noticed from various numerical experiments that very ill-conditioned Jacobian
matrices occur at a point x with a huge magnitude, e.g., ‖x‖ > 1.0e10. To observe the
effectiveness of the dynamic scaling techniques, we similarly made the magnitude of powers
of t very large by changing the values of β in (2).

In the following tables, we use the notation in Table 1. We compute the average and
maximum of several quantities obtained while tracing all the paths used for tests. More
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Av.max.power the average of maximum powers of t of each path.
Max.max.power the maximum of powers of t of each path.
Conv.div convergence to nonsingular or singular solutions, or divergence.
Av.pred.it the average number of predictor iterations per path.
Av.cor.it the average number of corrector iterations per path.
Max.pred.it the maximum number of predictor iterations per path.
Max.cor.it the maximum number of corrector iterations per path.
Av.last.s the average of the last points of s < 0 of all the paths.
Max.last.s the maximum of the last points of s < 0 of all the paths.
Av.‖f(x̂)‖∞ the average of ‖f(x̂)‖∞’s at solution x̂’s.
Max.‖f(x̂)‖∞ the maximum of ‖f(x̂)‖∞’s at solution x̂’s.
Av.min.σ the average of the minimum singular values of Df(x̂)’s
Max.min.σ the maximum of the minimum singular values of Df(x̂)’s
Av.max.K(Df) the average of the maximum condition numbers of Df(x̂)’s
Max.max.K(Df) the maximum of the maximum condition numbers of Df(x̂)’s

Table 1: Notation

precisely, tracing one path provides the information such as the maximum power of t, the
number of predictor iterations, the last value of the continuation parameter s used before
reaching s = 0, ‖f(x̂)‖∞ at a solution x̂, and the minimum singular value of Df(x̂) at x̂.
After tracing all the paths, we find the average and the maximum of these values of all the
paths.

5.1 Tracing with increased powers of t

We summarize numerical results for increased powers of t in Tables 2, 3, 4 and 5. Each
table contains increased powers of t up to 1.0e20. We mention that all the paths were traced
correctly to the same solutions for the three different cases. In particular, we could trace
the paths in the row Max.power = 1.0e20 of all the tables, and arrived safely at the end of
path tracing. Even with the increased powers of t, we notice that the growth in the numbers
of predictor and corrector iterations was not very large as indicated in the second and third
columns of the tables. The fourth column of the tables shows the last point of the new
continuation parameter s that was used in the last corrector iteration before reaching s = 0.
The average and the maximum values of s for increased powers of t shown in the second
and third rows are very near to 0, (e.g., −8.72e-30 in the last row of Table 5) which means
that tracing path can continue to very close to the terminal value 0 in the continuation
parameter s. This is an advantage of tracing with the parameter s because we have not
been able to trace with the original parameter t such close to the terminal value 1.

5.2 Obtaining singular solutions

We tested whether the modified polyhedral-linear homotopy with the continuation param-
eter s would be effective to find singular solutions. The test problems included cyclic-8,
cyclic-9 and cyclic-13 polynomials that are known to have singular solutions. Tables 6, 7
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Av.power Av.pred.it Av.cor.it Av.last.s Av.‖f(x̂)‖∞
(Max.power) (Max.pred.it) (Max.cor.it) (Max.last.s) (Max.‖f(x̂)‖∞)

2.22e1 (2.22e1) 77.2 (126) 159.5 (276) -6.92e-7 (-9.57e-16) 1.16e-15 (2.12e-15)
1.00e10 (1.00e10) 127.2 (183) 203.6 (344) -1.10e-15 (-2.32e-24) 2.33e-15 (1.79e-14)
1.00e20 (1.00e20) 158.5 (211) 200.3 (321) -1.12e-25 (-2.04e-34) 1.23e-15 (3.20e-15)

Table 2: The reimer-4 polynomial: 36 paths among 120 paths converged to nonsingular
solutions.

Av.power Av.pred.it Av.cor.it Av.last.s ‖f(x̂)‖∞
(Max.power) (Max.pred.it) (Max.cor.it) (Max.last.s) (Max.‖f(x̂)‖∞)

5.53e2 (1.36e3) 85.6 (154) 168.3 (329) -1.30e-8 (-3.91e-10) 1.88e-15 (3.97e-15)
2.01e9 (1.00e10) 121.6 (208) 205.5 (417) -1.13e-15 (-3.60e-18) 1.89e-15 (4.37e-15)
2.01e19 (1.00e20) 154.1 (237) 200.9 (408) -1.19e-25 (-3.54e-28) 1.81e-15 (5.18e-15)

Table 3: The noon-5 polynomial: 233 paths converged to nonsingular solutions

Av.power Av.pred.it Av.cor.it Av.last.s Av.‖f(x̂)‖∞
(Max.power) (Max.pred.it) (Max.cor.it) (Max.last.s) (Max.‖f(x̂)‖∞)

1.03e2 (1.15e2) 81.9 (142) 168.3 (295) -2.65e-8 (-4.13e-9) 5.39e-16 (1.05e-15)
1.51e9 (1.00e10) 161.6 (256) 297.0 (510) -1.11e-16 (-3.26e-18) 9.25e-16 (1.88e-15)
1.51e19 (1.00e20) 194.7 (291) 289.8 (496) -1.20e-26 (-3.86e-28) 9.31e-16 (2.05e-15)

Table 4: The katsura-7 polynomial: 128 paths converged to nonsingular solutions

Av.power Av.pred.it Av.cor.it Av.last.s Av.‖f(x̂)‖∞
(Max.power) (Max.pred.it) (Max.cor.it) (Max.last.s) (Max.‖f(x̂)‖∞)

3.99e4 (2.185) 155.8 (363) 328.5 (837) -4.10e-11 (-9.68e-17) 2.73e-11 (1.03e-8)
2.66e9 (1.00e10) 216.1 (406) 431.1 (859) -1.34e-16 (-8.13e-21) 2.47e-11 (6.49e-9)
1.91e18 (1.00e20) 244.7 (424) 425.6 (861) -3.07e-25 (-8.72e-30) 2.04e-11 (4.12e-9)

Table 5: The economic-14 polynomial: 4096 paths converged to nonsingular solutions
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Conv.div Av.pred.it Av.cor.it Av.last.s Av.‖f(x̂)‖∞ Av.min.σ
(Max.pred.it) (Max.cor.it) (Max.last.s) (Max.‖f(x̂)‖∞) (Max.min.σ)

Nonsingular 104.6 227.2 -3.60e-8 8.52e-15 7.68e-1
solutions (170) (370) (-5.06e-9) (8.47e-14) (2.19e)
Singular 117.1 296.5 -4.61e-16 4.52e-10 1.55e-7
solutions (172) (452) (-1.27e-16) (5.04e-8) (5.10e-7)
Divergent 125.0 281.0 -1.36e-6 - -
paths (199) (437) (-6.07e-7) - -

Table 6: The cyclic-8 polynomial: the average and the maximum powers of t for the paths
traced were 1.20e2 and 3.32e2, respectively. Total 320 paths, among which 144 paths con-
verged to nonsingular solutions, 112 paths converged to singular solutions and 64 paths
diverged.

and 8 show summarized results for cyclic-8, cyclic-9 and cyclic-13, respectively. The rows
of the tables contain information for nonsingular, singular solutions and divergence.

The mixed volumes of them are 2,560, 11,016 and 2,704,156, which amount to the
total numbers of homotopy paths, respectively. Using a symmetric structure [2] of the
cyclic polynomials, we only have to trace 320 = 2560/8, 1, 224 = 11016/9 and 208, 012 =
2, 704, 156/13 homotopy paths, respectively, to approximate all of their isolated solutions.

It is known that the cyclic-8 polynomial has 1152 isolated nonsingular solutions. Hence,
taking account of the symmetry, 144 = 1, 152/8 homotopy paths among 320 = 2560/8
converge to isolated nonsingular solutions, which coincides with the numerical experiments
shown in Table 6. The cyclic-8 problem also has solution components with a positive dimen-
sion. The singular solutions obtained in Table 6 are points on those solution components.

The cyclic-9 polynomial has 5, 994 isolated nonsingular solutions, and 162 isolated sin-
gular solutions with multiplicity 4. In Table 7, 666 = 5, 994/9 paths correctly reach to
nonsingular solutions, and 72 = (162/9) × 4 paths correctly attain isolated singular solu-
tions with multiplicity 4.

Even if we utilize the symmetric structure, the number of homotopy paths to be traced
for computing all isolated solutions of the cyclic-13 polynomial is 208, 012. This is too many
for CMPSm to handle on a single machine, so that we chose 1618 paths from 1000 mixed
cells using the symmetric structure for the numerical experiments shown in Table 8.

As shown in the last columns of Tables 6, 7 and 8, singular solutions have much smaller
minimum singular values of Jacobian matrices than nonsingular solutions. (e.g., 7.68e-1
and 1.55e-7, respectively in Table 6) In addition, the values of the continuation parameter
s from which s proceeded to its terminal value s = 0 in the fourth columns of the tables
are very small in the cases of singular solutions, compared with the cases of nonsingular
solutions and divergent paths. We note that singular solutions achieve a relatively good
accuracy in terms of function values, indicated under the column of ‖f(x̂)‖∞. We observe
that improved numerical stability through the new continuation parameter s makes tracing
path possible to extremely small values of s and enables us to compute singular solutions
with higher accuracy.
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Conv.div Av.pred.it Av.cor.it Av.last.s Av.‖f(x̂)‖∞ Av.min.σ
(Max.pred.it) (Max.cor.it) (Max.last.s) (Max.‖f(x̂)‖∞) (Max.min.σ)

Nonsingular 125.1 263.4 -9.42e-11 1.60e-14 8.62e-1
solutions (655) (1189) (-1.25e-11) (1.68e-13) (1.56e0)
Singular 122.3 353.9 -1.11e-21 3.37e-13 4.53e-7
solutions (199) (500) (-2.45e-22) (8.40e-13) (7.81e-7)
Divergent 187.5 448.6 -2.18e-9 - -
paths (787) (1503) (-2.07e-14) - -

Table 7: The cyclic-9 polynomial: total 1224 paths, among which 666 paths converged to
nonsingular solutions, 72 paths converged to singular solutions and 486 paths diverged. The
average of the maximum powers (the maximum of the maximum powers) is 4.86e4 (1.30e5)
of all paths.

Conv.div Av.pred.it Av.cor.it Av.last.s Av.‖f(x̂)‖∞ Av.min.σ
(Max.pred.it) (Max.cor.it) (Max.last.s) (Max.‖f(x̂)‖∞) (Max.min.σ)

Nonsingular 222.0 427.8 -1.51e-15 3.90e-14 5.64e-1
solutions (1516) (2997) (-3.09e-16) (1.83e-12) (1.87e0)
Singular 258.4 678.8 -1.39e-21 2.12e-13 1.92e-8
solutions (621) (1411) (-9.62e-22) (2.60e-13) (2.57e-8)

Table 8: The cyclic-13 polynomial: total 1618 paths from 1000 cells, among which 1613
paths converged to nonsingular solutions, 4 paths converged to singular solutions. The
average of the maximum powers (the maximum of the maxium powers) is 5.32e4 (1.85e5)
of all paths.
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5.3 Computing with ill-conditioned Jacobian matrices

Effectiveness of the dynamic scaling techniques described in Section 4 were tested numer-
ically. The cyclic-13 and economic-14 polynomials were chosen as test problems because
they often yield ill-conditioned Jacobian matrices while tracing homotopy paths. For each
numerically traced homotopy path Ξ in Table 5 for the economic-14 polynomial and Table 8
for the cyclic-13 polynomial, we computed

max.norm(Ξ) = max {‖x‖ : (x, s) ∈ Ξ} .

We selected 20 homotopy paths Ξ with max.norm(Ξ) ≥ 1.0e12 from Table 5, and 20
homotopy paths Ξ with max.norm(Ξ) ≥ 1.0e6 from Table 8. The averages (the maximum)
of max.norm(Ξ) over those 20 paths are 7.60e16 (8.08e17) and 3.47e6 (3.66e7), respectively.
Tables 9 and 10 show the effectiveness of the three scalings presented in Section 4 when
they are applied to those 20 paths, respectively. Each row in Tables 9 and 10 indicates (a)
no scaling, (b) the scaling based on function values described in subsection 4.1, (c) the two
scalings based on function values and magnitudes of variables, in subsections 4.1 and 4.2,
respectively, and (d) the three scalings based on function values, magnitudes of variables
and Jacobian matrices in subsections 4.1, 4.2 and 4.3, respectively.

Table 9 shows that (a) no scaling resulted in failure to obtain solutions. However,
we could find nonsingular solutions successfully in cases (b), (c) and (d). As we applied
more scaling techniques from (a) to (d), the numbers of predictor and corrector iterations
were reduced, and/or the maximum of the condition numbers of the Jacobian matrices
decreased. The last points of s < 0 were much closer to s = 0 for (b), (c) and (d) than for
(a). Consequently, we can say that the scalings helped to stabilize the numerical algorithms
and increase the efficiency for the problems.

In Table 10, with (a) no scaling and (b) the scaling based on function values, only 6
paths out of the 20 paths converged to nonsingular solutions and tracing the rest 14 paths
ended in the middle, resulting too small predictor step lengths to continue in the adaptive
path tracing. When we used the two scalings based on function values and magnitudes
of variables as in (c) and (d), we succeeded to find all twenty nonsingular solutions. The
condition numbers of the Jacobian matrices for (c) and (d) were smaller than those of (a)
and (b), and the values of s < 0 were closer to s = 0 for (c) and (d). The two scalings
used in (c) and (d) provided stability in tracing. The effectiveness of the scaling based on
Jacobian matrices is not clear in Table 10 except that it slightly improves the condition
numbers of Jacobian matrices.

In the case (a) and/or (b) in Tables 9 and 10, tracing all or some paths were failed. We
can conclude from the numerical results that the two scalings based on function values and
magnitudes of variables work effectively, and that the scaling based on Jacobian matrices
improves condition numbers of the Jacobian matrix.

6 Concluding discussions

Polyhedral homotopy continuation methods have been known as an efficient and reliable
way to compute all isolated solutions of a polynomial system of equations. However, an
implementation without a proper handling of large magnitudes of powers of t limits the
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Scalings Av.pred.it Av.cor.it Av.last.s Av.‖f(x̂)‖∞ Av.max.K(Df)
(Max.pred.it) (Max.cor.it) (Max.last.s) (Max.‖f(x̂)‖∞) (Max.max.K(Df))

(a) 271.8 866.4 -6.09e-5 - -
(360) (1233) (-6.80e-11) - -

(b) 303.9 710.0 -6.80e-18 9.90e-11 5.83e28
(390) (869) (-1.46e-19) (7.54e-10) (9.66e29)

(c) 303.4 699.0 -6.80e-18 8.95e-11 2.65e11
(390) (859) (-1.25e-19) (8.43e-10) (4.12e12)

(d) 303.4 699.0 -6.80e-18 7.20e-11 1.45e8
(390) (859) (-1.25e-19) (5.87e-10) (1.40e9)

Table 9: 20 homotopy paths from the economic-14 polynomial: (a) no scaling, (b) the scaling
based on function values, (c) the two scalings based on function values and magnitudes of
variables, and (d) the three scalings based on function values, magnitudes of variables and
Jacobian matrices.

Scalings Av.pred.it Av.cor.it Av.last.s Av.‖f(x̂)‖∞ Av.max.K(Df)
(Max.pred.it) (Max.cor.it) (Max.last.s) (Max.‖f(x̂)‖∞) (Max.max.K(Df))

(a) 625.3 2099.9 -4.38e-5 1.56e-14 7.74e17
(1001) (4167) (-1.20e-11) (9.87e-14) (6.55e18)

(b) 820.8 1253.7 -5.60e-5 4.88e-14 2.04e18
(1861) (2206) (-3.21e-12) (1.05e-13) (1.31e19)

(c) 652.6 1330.9 -5.31e-11 5.81e-14 5.57e12
(1185) (2206) (-1.93e-18) (2.67e-13) (5.13e13)

(d) 652.2 1330.0 -5.76e-11 6.56e-14 3.40e12
(1185) (2206) (-1.93e-18) (2.57e-13) (3.86e13)

Table 10: 20 homotopy paths from the cyclic-13 polynomial: (a) no scaling, (b) the scaling
based on function values, (c) the two scalings based on function values and magnitudes of
variables, and (d) the three scalings based on function values, magnitudes of variables and
Jacobian matrices.
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capability to solve various polynomial systems. The highest power of t that we were able to
deal with so far is about 1.0e5 in the cyclic-13 polynomial. We have presented a modified
polyhedral-linear homotopy function with the continuation parameter s using a change of
the continuation parameter t. Although the polyhedral-linear homotopy function obtained
from this change is equivalent to the original one mathematically, it provides a convenient
tool to improve the numerical stability in path tracing with extremely high powers of t.

The proposed polyhedral-linear homotopy function has shown to be successful for tracing
paths with powers of the original parameter t up to 1.0e20.

Therefore, we can challenge polynomials with larger dimensions (e.g. the cyclic-14 and
economic-15 polynomials) employing the modified homotopy function from the viewpoint
of powers of t.

As shown in Section 3, we can use extremely small step lengths at the end of tracing
near s = 0 with the new continuation parameter s, and singular solutions are obtained with
high accuracy. The dynamic scaling techniques in Section 4 have been effective to resolve
numerical difficulties in solving ill-conditioned linear systems associated with predictor-
corrector procedures. For some cases, the scaling based on Jacobian matrices does not always
decrease condition numbers of Jacobian matrices greatly as we have seen in Table 10. We
may need to develop more effective techniques to improve ill-conditioning of linear systems.
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