
1

Algorithm xxx: SFSDP: a Sparse Version of Full SemiDefinite
Programming Relaxation for Sensor Network Localization Problems

SUNYOUNG KIM, Ewha W. University
MASAKAZU KOJIMA, Tokyo Institute of Technology
HAYATO WAKI, The University of Electro-Communications
MAKATO YAMASHITA, Tokyo Institute of Technology

SFSDP is a Matlab package for solving sensor network localization (SNL) problems. These types of prob-
lems arise in monitoring and controlling applications using wireless sensor networks. SFSDP implements
the semidefinite programming (SDP) relaxation proposed in Kim et al. [2009] for sensor network localiza-
tion problems, as a sparse version of the full semidefinite programming relaxation (FSDP) by Biswas and Ye
[2004]. To improve the efficiency of FSDP, SFSDP exploits the aggregated and correlative sparsity of a sen-
sor network localization problem. As a result, SFSDP can handle much larger problems than other software
as well as three-dimensional anchor-free problems. SFSDP analyzes the input data of a sensor network lo-
calization problem, solves the problem, and displays the computed locations of sensors. SFSDP also includes
the features of generating test problems for numerical experiments.

Categories and Subject Descriptors: G.1.6 [Numerical Analysis]: Optimization-Nonlinear programming

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Sensor network localization problems, semidefinite programming relax-
ation, sparsity exploitation, Matlab software package

ACM Reference Format:
Kim, S., Kojima, M., Waki, H., and Yamashita, M. 2011. Algorithm xxx: SFSDP: a Sparse Version of
Full SemiDefinite Programming Relaxation for Sensor Network Localization Problems. ACM Trans. Math.
Softw. 1, 1, Article 1 (January 2011), 19 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
We introduce a Matlab package SFSDP for solving sensor network localization (SNL)
problems using semidefinite programming (SDP) relaxation. SNL problems arise in
monitoring and controlling applications using wireless sensor networks such as inven-
tory management and gathering environment data. Locating sensors accurately in a
wireless sensor network is an important problem for the efficiency of applications. It is
also closely related to distance geometry problems like predicting molecule structures
and to graph rigidity.

For a network of n sensors, the SNL problem is to locate m sensors of unknown
positions (m < n) that match the given distances if a subset of distances and ma = n−m

This work is supported by the National Research Fund, under grant KOSEF 2009-007-1314, and by Grant-
in-Aid for Scientific Research (B) 19310096, Grant-in-Aid for JSPS Fellows 20003236, and Grant-in-Aid for
Young Scientists (B) 21710148.
Author’s addresses: S. Kim, Department of Mathematics, Ewha W. University; M. Kojima and M. Yamashita,
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology; H. Waki, Department
of Computer Science, The University of Electro-Communications.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 0098-3500/2011/01-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:2 S. Kim et al.

sensors of known position (called anchors) are provided. Various approaches [Alfakih
et al. 1999; Doherty et al. 2001; Eren et al. 2004; Ganesan et al. 2002; Howard et al.
2001; Tseng 2007] have been proposed for the problem to approximate the solution.
Full semidefinite programming (FSDP) relaxation was introduced by Biswas and Ye
in [Biswas and Ye 2004], and a number of solution methods based on SDP relaxation
have followed [Biswas and Ye 2006; Biswas et al. 2006; Biswas et al. 2006; Nie 2009;
Wang et al. 2008].

The SNL problem was formulated as a quadratic optimization problem (QOP) by
Biswas and Ye [Biswas and Ye 2004], and was solved with SDP relaxation. We call
their method FSDP relaxation in this paper. Solving nonlinear optimization problems
using SDP relaxations has become a popular approach because of the accuracy of the
computed solutions and the efficiency of the computation. Software packages based
on the primal-dual interior-point methods [Fujisawa et al. 2008; Tütüncü et al. 2003;
Strum 1999] are used to solve SDP relaxations.

For the SNL problem with a large number of sensors, distributed methods in [Biswas
and Ye 2006] were introduced, and a method combined with a gradient method [Lian
et al. 2004] was proposed to improve accuracy. The second-order cone programming
(SOCP) relaxation was studied first in [Doherty et al. 2001] and then in [Tseng 2007].
The solution obtained by the SOCP relaxation is inaccurate compared to SDP re-
laxation [Tseng 2007]. Edge-based SDP (ESDP) and node-based SDP (NSDP) relax-
ations were introduced in [Wang et al. 2008] to improve the computational efficiency
of Biswas-Ye’s FSDP relaxation in [Biswas and Ye 2004]. These SDP relaxations are
weaker than the FSDP relaxation in theory, however, computational results show that
the quality of solution is comparable to that of FSDP. It has also been shown that much
larger problems can be handled.

SFSDP is an implementation of the SDP relaxation proposed in Kim et al. [Kim
et al. 2009a], which is called the sparse FSDP relaxation as opposed to the FSDP
relaxation in [Biswas and Ye 2004]. Both SDP relaxations are derived from the SNL
problem formulated as a QOP. When solving an SDP relaxation problem by the primal-
dual interior-point method, the size of SDP relaxation problem generated from an SNL
problem is one of the important factors that determines the computational efficiency.
As we try to solve an SNL problem with an increasing number of sensors or in higher
dimension, it is obvious that the size of SDP relaxation increases. Thus, reducing the
size of SDP relaxation is essential to solve large SNL problems. This motivates us to
utilize the sparsity of the problem, in particular, the aggregated and correlative spar-
sity [Fukuda et al. 2000; Kobayashi et al. 2008; Nakata et al. 2003] of SNL problems.

When we want to decrease the size of FSDP relaxation, the quality of the com-
puted solution becomes an important issue. For a QOP (such as the SNL problem)
it is shown in [Waki et al. 2006] that the solution quality of the sparse SDP relax-
ation is equivalent to that of FSDP relaxation. In fact, the quality of obtained solution
by SFSDP remains equivalent to that by FSDP (see Proposition 3.3 of [Kim et al.
2009a]). As a result, SFSDP can handle larger SNL problems, e.g., up to 20000 sensors
for 2-dimensional problems, than FSDP without deteriorating the quality of solutions.
SpaseLoc [Carter et al. 2006] solves a large SNL problem by applying FSDP to a se-
quence of subproblems. Since SFSDP solves the SNL problem as one problem, the
accuracy of the solution is maintained throughout the solution process.

For the SNL problem, distance data usually contain noise. SFSDP can solve the
problem with both exact and noisy distances. It is designed for users who want to solve
their own SNL problems and to experiment with various test problems generated by
SFSDP. One feature of SFSDP is that users can select a primal-dual interior-point
solver, either SDPA [Fujisawa et al. 2008] (available at [SDPA Homepage 2009]) or
SeDuMi [Strum 1999] (available at [SeDuMi Homepage]). SDPA is known to be faster

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

SFSDP 1:3

for solving large problems, hence, shorter execution times can be expected if SDPA is
used. When an SNL problem is given, SFSDP analyzes the input data, and calls SDPA
or SeDuMi to solve the SDP relaxation problem. It also displays the figures of location
of sensors at the end of computation.

The main features and capabilities of SFSDP are presented in the rest of the paper.
We provide some background information on SNL problems in Section 2. In Section 3,
we discuss FSDP and sparse SDP relaxations of the problem following a description
of how to extract the aggregated and correlative sparsity. Section 4 considers imple-
mentation issues for constructing the sparse SDP relaxations. Numerical results are
presented in Section 5 and concluding remarks in Section 6.

2. SNL PROBLEMS
We consider a problem with m sensors and ma (= n − m) anchors to describe a form
of the SNL problem that can be solved by SFSDP. Let ρ > 0 be a radio range, which
determines the set N ρ

x of pairs of sensors p and q such that their (Euclidean) distance
dpq is not greater than ρ, and the set N ρ

a of pairs of a sensor p and an anchor r such
that their distance dpr does not exceed ρ

N ρ
x = {(p, q) : 1 ≤ p < q ≤ m, ‖xp − xq‖ ≤ ρ},

N ρ
a = {(p, r) : 1 ≤ p ≤ m, m + 1 ≤ r ≤ n, ‖xp − ar‖ ≤ ρ},

}
where xp ∈ R` denotes the unknown location of sensor p and ar ∈ R` the known location
of anchor r. SFSDP can solve the problem of ` = 2 or 3.

Let N x be a subset of N ρ
x and N a a subset of N ρ

a. By introducing a zero objective
function and having the distance equations as constraints, we have the following form
of SNL problem with exact distances

minimize 0
subject to d2

pq = ‖xp − xq‖2 (p, q) ∈ N x,
d2

pr = ‖xp − ar‖2 (p, r) ∈ N a.

 (1)

For problems with noise, we consider

minimize
∑

(p,q)∈N x

(
ξ+
pq + ξ−pq

)
+

∑
(p,r)∈N a

(
ξ+
pr + ξ−pr

)
subject to d̂2

pq = ‖xp − xq‖2 + ξ+
pq − ξ−pq (p, q) ∈ N x,

d̂2
pr = ‖xp − ar‖2 + ξ+

pr − ξ−pr (p, r) ∈ N a,
ξ+
pq ≥ 0, ξ−pq ≥ 0, (p, q) ∈ N x, ξ+

pr ≥ 0, ξ−pr ≥ 0, (p, r) ∈ N a,

(2)

where ξ+
pq + ξ−pq (or ξ+

pr + ξ−pr) is the 1-norm error in the square of estimated distance d̂pq

between sensors p and q (or estimated distance d̂pr between sensor p and anchor r).
We use two kinds of subsets N x of N ρ

x and N a of N ρ
a instead of N ρ

x and N ρ
a for two

reasons. First, some of the distances dpq (or the estimated distances d̂pq) ((p, q) ∈ N ρ
x)

and dpr (or the estimated distances d̂pr) ((p, r) ∈ N ρ
a) may be unavailable in practice.

Second, for numerical efficiency, we use these smaller subsets even when N ρ
x and N ρ

a
are available. Using the smaller N x and N a for the SNL problems (1) and (2), reduces
the size of SDP relaxations although the computed accuracy of the locations of the
sensors may deteriorate. Thus, the way N x and N a are selected is an important issue
for both efficiency and accuracy. This will be discussed further in Section 4.1.

To transform problems (1) and (2) into SDP relaxation [Biswas and Ye 2004], we first
introduce an ` × m matrix variable X = (x1, . . . ,xm) ∈ R`×m. The system of equations

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:4 S. Kim et al.

(1) can then be written as

d2
pq =

∑̀
i=1

X2
ip − 2

∑̀
i=1

XipXiq +
∑̀
i=1

X2
iq (p, q) ∈ N x,

d2
pr =

∑̀
i=1

X2
ip − 2

∑̀
i=1

Xipair + ‖ar‖2 (p, r) ∈ N a,

 (3)

where Xip denotes the (i, p)th element of the matrix X or the ith element of xp. Now,
a QOP for the SNL without noise is obtained:

minimize 0 subject to the equality constraints (3). (4)

Using the matrix variable X, the problem (2) becomes

minimize
∑

(p, q) ∈ N x

(ξ+
pq + ξ−pq) +

∑
(p, r) ∈ N a

(ξ+
pr + ξ−pr)

subject to d̂2
pq =

∑̀
i=1

X2
ip − 2

∑̀
i=1

XipXiq +
∑̀
i=1

X2
iq + ξ+

pq − ξ−pq (p, q) ∈ N x,

d̂2
pr =

∑̀
i=1

X2
ip − 2

∑̀
i=1

Xipair + ‖ar‖2 + ξ+
pr − ξ−pr (p, r) ∈ N a,

ξ+
pq ≥ 0, ξ−pq ≥ 0 (p, q) ∈ N x, ξ+

pr ≥ 0, ξ−pr ≥ 0 (p, r) ∈ N a.

(5)

3. SDP RELAXATIONS OF THE SNL PROBLEM
We first describe the construction of FSDP for the SNL problem (4) with exact dis-
tances in Section 3.1, and then the exploitation of sparsity of FSDP, which leads to
SFSDP, in Section 3.2. Most of the discussion is valid for the problem (5) with noisy
distances.

3.1. The Biswas-Ye SDP Relaxation of the SNL Problem
Let

Ypq =
∑̀
i=1

XipXiq, or Y = XT X ∈ Sm.

where Sm denotes the set of m × m symmetric matrices. Then, the problem (4) can be
written as

minimize 0
subject to d2

pq = Ypp + Yqq − 2Ypq (p, q) ∈ N x,

d2
pr = ‖ar‖2 − 2

∑̀
i=1

Xipair + Ypp (p, r) ∈ N a,

Y = XT X.

We now relax the nonconvex equality constraint Y = XT X to the matrix inequality
constraint Y º XT X. Here, A º B means A − B is positive semidefinite for A, B ∈
Sm. Let I` denotes the ` × ` identity matrix and O the zero matrix. Using the relation

Y º XT X ⇐⇒
(

I` X
XT Y

)
º O,

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

SFSDP 1:5

we obtain the Biswas-Ye SDP relaxation [Biswas and Ye 2004] (called the FSDP relax-
ation) of the SNL problem (4) without noise

minimize 0
subject to d2

pq = Ypp + Yqq − 2Ypq (p, q) ∈ N x,

d2
pr = ‖ar‖2 − 2

∑̀
i=1

Xipair + Ypp (p, r) ∈ N a,(
I` X

XT Y

)
º O.

(6)

Similarly, we obtain the FSDP relaxation of the SNL problem (5) with noise

minimize
∑

(p, q) ∈ N x

(ξ+
pq + ξ−pq) +

∑
(p, r) ∈ N a

(ξ+
pr + ξ−pr)

subject to d̂2
pq = Ypp + Yqq − 2Ypq + ξ+

pq − ξ−pq (p, q) ∈ N x,

d̂2
pr = ‖ar‖2 − 2

∑̀
i=1

Xipair + Ypp + ξ+
pr − ξ−pr (p, r) ∈ N a,

ξ+
pq ≥ 0, ξ−pq ≥ 0 (p, q) ∈ N x, ξ+

pr ≥ 0, ξ−pr ≥ 0 (p, r) ∈ N a,(
I` X

XT Y

)
º O.

(7)

3.2. Exploiting Sparsity
The sparsity of the SNL problem (4) and its SDP relaxation (6) is first extracted and
then exploited. To describe the procedure, we introduce a graph G(Vx,N x) consisting
of the node set Vx = {1, 2, . . . ,m} (the index set of sensors) and the edge set N x. Let
G(Vx, Ñ x) be a chordal extension of G(Vx,N x), and C1, . . . , Ck be the maximal cliques
of G(Vx, Ñ x). For the definition of chordal graphs and maximal cliques, we refer to
[Blair and Peyton 1993; Golumbic 1980]. Recall that N x, a subset of N ρ

x, is chosen be-
fore constructing the SNL problem (4). Assume that the sizes of the maximum cliques
C1, . . . , Ck are small. Selecting N x that satisfies this assumption will be discussed in
Section 4.

Now, we derive the sparse SDP relaxation of the SNL problem; for details, we refer
to [Kim et al. 2009a]. Let Z ∈ S`+m be a variable matrix of the form

Z =
(

W X
XT Y

)
, W ∈ S`, X ∈ R`×m, Y ∈ Sm. (8)

We can rewrite the SDP (6) as a standard primal SDP form

minimize A0 • Z subject to At • Z = bt (t ∈ Λ) Z º O, (9)

where Λ denotes a finite index set. The constraint W = I` is included in the equality
constraint At •Z = bt. We then apply the conversion method [Nakata et al. 2003] to (9)
as follows. Consider the index set V of rows (and columns) of the matrix variable Z and
assume that the rows and columns of matrix Z in (8) are indexed in the lexicographical
order as 10, . . . , `0, ∗1, . . . , ∗m. Then, V = {10, . . . , `0, ∗1, . . . , ∗m} for (6), where ∗ denotes
a fixed symbol or integer larger than `, and each element of At can be written as [At]ipjq

with ip ∈ V and jq ∈ V.
We define the aggregated sparsity pattern E of the data matrices as in [Fukuda et al.

2000] for the description of sparsity exploitation in the sparse SDP relaxation

E = {(ip, jq) ∈ V × V : ip 6= jq, [At]ipjq 6= 0 for some t ∈ Λ}.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:6 S. Kim et al.

A geometrical representation of the aggregated sparsity pattern is considered with
a graph G(V, E). To construct a chordal extension G(V, Ẽ) of G(V, E) by simulating a
chordal extension from G(Vx,N x) to G(Vx, Ñ x), we let

Ẽ = {(i0, j0) : 1 ≤ i < j ≤ `} ∪ {(i0, ∗p) : 1 ≤ i ≤ `, 1 ≤ p ≤ m}
∪{(∗p, ∗q) : (p, q) ∈ Ñ x},

C̃h = {10, . . . , `0} ∪ {∗p : p ∈ Ch} (1 ≤ h ≤ k).

Using the information on the chordal graph G(V, Ẽ) and its maximal cliques C̃1, . . . , C̃k,
application of the conversion method [Nakata et al. 2003] to (9) leads to an SDP prob-
lem

minimize A0 • Z
subject to At • Z = bt (t ∈ Λ), ZC̃h,C̃h

º O (1 ≤ h ≤ k),

}
(10)

where ZC̃h,C̃h

denotes a submatrix of Z consisting of the elements Zipjq (ip ∈ C̃h, jq ∈

C̃h).
Rewriting (10), we obtain the sparse SDP relaxation of the SNL problem (4) without

noise
minimize 0
subject to d2

pq = Ypp + Yqq − 2Ypq (p, q) ∈ N x,

d2
pr = ‖ar‖2 − 2

∑̀
i=1

Xipair + Ypp (p, r) ∈ N a,(
I` (xp : p ∈ Ch)

(xp : p ∈ Ch)T Y Ch,Ch

)
º O (1 ≤ h ≤ k),

(11)

where (xp : p ∈ Ch) denotes the ` × #Ch matrix variable with xp (p ∈ Ch) and Y Ch,Ch

a submatrix of Y with elements Y pq (p ∈ Ch, q ∈ Ch).
Note that (11) is not the standard SDP form because some of the variables xp (p ∈ Vx)

and Ypq ((p, q) ∈ N x) appear more than once in the positive semidefinite constraints. To
convert (11) to the standard SDP form, we use the domain-space conversion method
[Kim et al. 2011; 2009], which was successfully implemented in SparsePOP, a Mat-
lab package for polynomial optimization problems [Waki et al. 2006]. The resulting
SDP involves k small positive semidefinite matrix variables induced from the k pos-
itive semidefinite constraints in (11). In contrast, the SDP (6) involves a single large
(` + m)× (` + m) matrix variable Z given in (8). Furthermore, the resulting SDP is ex-
pected to satisfy the correlative sparsity which characterizes the sparsity of the Schur
complement matrix. We note that the Schur complement matrix is the coefficient ma-
trix of a system of linear equations that needs to be solved for a search direction by
Cholesky factorization at every iteration of the primal-dual interior-point methods.
These two properties for the resulting SDP, multiple (but small) positive-semidefinite
matrix variables and the correlative sparsity, greatly enhance the computational effi-
ciency (see [Kobayashi et al. 2008] for more details of the correlative sparsity).

Let us denote

Ld =
{

X ∈ R`×m : (X, Y) is a solution of (6)
for some Y ∈ Sm

}
.

and let Ls denote the set of solutions of the sparse SDP relaxation (11). From [Kim
et al. 2009a] we have Ld = Ls which indicates that the same quality of solutions can
be obtained by the sparse SDP relaxation as FSDP. Hence, the sparse SDP relaxation

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

SFSDP 1:7

can achieve better computational performance for the same quality of solutions as
FSDP.

The ESDP and NSDP relaxations of SNL problems were proposed in [Wang et al.
2008] as further relaxations of the FSDP relaxation. In essence, a generalization of
the sparse SDP relaxation (11) includes NSDP and ESDP. In other words, if we denote
the solution sets of the NSDP and ESDP relaxation by Ln and Le, respectively, then,
by construction, we know Ld ⊆ Ln ⊆ Le. It was shown in [Wang et al. 2008] that
if the underlying graph G(Vx,N x) is chordal, then Ld = Ln. In this case, we know
G(Vx,N x) = G(Vx, Ñ x) and that Ld = Ls = Ln also follows from Proposition 3.3 in
[Kim et al. 2009a]. For details, we refer to [Kim et al. 2009a]. We used ESDP for the
numerical experiments shown in Section 5 because it is known to be more efficient
than NSDP.

We mention that the technique described in this section is a fairly general tech-
nique for exploiting the sparsity of SDPs. The important feature of this technique is
to convert a sparse SDP into another equivalent SDP that can be solved efficiently by
exploiting its sparsity. From the construction of SDP relaxations, FSDP and SFSDP
can be expected to attain more accurate solutions than ESDP and NSDP. Moreover,
if the maximal cliques C1, C2, . . . , Ck of G(Vx, Ñ x) are small, then the performance of
SFSDP will be better than other SDP relaxations.

We conclude this section by describing the sparse SDP relaxation of the SNL problem
(5) with noise

minimize
∑

(p, q) ∈ N x

(ξ+
pq + ξ−pq) +

∑
(p, r) ∈ N a

(ξ+
pr + ξ−pr)

subject to d̂2
pq = Ypp + Yqq − 2Ypq + ξ+

pq − ξ−pq (p, q) ∈ N x,

d̂2
pr = ‖ar‖2 − 2

∑̀
i=1

Xipair + Ypp + ξ+
pr − ξ−pr (p, r) ∈ N a,

ξ+
pq ≥ 0, ξ−pq ≥ 0 (p, q) ∈ N x, ξ+

pr ≥ 0, ξ−pr ≥ 0 (p, r) ∈ N a,(
I` (xp : p ∈ Ch)

(xp : p ∈ Ch)T Y Ch,Ch

)
º O (1 ≤ h ≤ k).

(12)

4. SOME IMPLEMENTATION ISSUES
Let N x ⊂ N ρ

x be input set of pairs of sensors and N a ⊂ N ρ
a input set of pairs of a sensor

and an anchor, and the (noisy) distance information be given for N x and N a. Although
N x and N a can be used for N x and N a to construct the sparse SDP relaxations (11) and
(12) , we take a subset of N x for N x and a subset of N a for N a to reduce their sizes.
In general, more accurate locations of sensors are obtained in longer computational
time as the size of N x ⊂ N x and N a ⊂ N a increases. SFSDP incorporates a method
for selecting N x from N x and N a from N a so that the resulting sparse SDP relaxation
can be solved efficiently to find accurate locations of sensors.

In addition, SFSDP provides a regularization term [Leung and Toh 2009] in the
objective function to obtain accurate locations of sensors for anchor-free problems.

The method for selecting N a is presented in Section 4.1 and N x in Section 4.2. Four
types objective functions used in SFSDP are shown in Section 4.3. We use the notation
deg(p,N) for the number of edges incident to a sensor p ∈ Vx for N .

4.1. Selecting edges from N a for N a

Given exact distances, we need to select at least ` + 1 edges, incident to each sensor,
from N x ∪ N a to locate all the sensors. In case of problems with noisy distances, more
edges are needed to obtain the accurate location of sensors. We also note that the total

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:8 S. Kim et al.

number of elements in N x and N a is equal to the number of equality constraints in
the sparse SDP relaxations (11) and (12). In addition, the construction of k positive
semidefinite constraints in (11) and (12) does not depend on N a because the maximal
cliques C1, C2, . . . , Ck of a chordal extension of the graph G(Vx,N x) determine the pos-
itive semidefinite constraints as shown in Section 3.2. As the number of edges selected
from N a for N a increases, the number of edges that need to be selected from N x for N x

decreases. Thus, selecting edges from N a first leads to smaller maximal cliques than
selecting edges from N x first. Since it is more efficient to solve the resulting sparse
SDP relaxation with smaller maximal cliques, we give priority to the selection of edges
of N a for the construction of the sparse SDP relaxations (11) and (12). Let ν = ` + 1 if
all distances are exact and ν = 2× (` + 1) otherwise. SFSDP selects min{ν, deg(p,N a)}
edges from N a for each p ∈ Vx to form N a.

4.2. Selecting edges from N x for N x

Assume that N a has been constructed by the method described in Section 4.1 and
fixed. For selection of edges for N x, we try to satisfy two conditions whenever possible:
(i) at least κ edges from N x ∪N a are incident to each sensor, where κ is taken to be at
least ` + 1 and (ii) at least one edge from N x needs to be selected to form N x for each
sensor. Define

κp = κ − min{deg(p,N a), `} for every sensor p ∈ Vx.

We consider a family Gκ of subgraphs G(Vx,N x) of G(Vx,N x) satisfying deg(p,N x) ≥ κp

for every sensor p ∈ Vx. SFSDP selects edges for N x, such that G(Vx,N x) is a minimal
graph in the class Gκ, by applying the heuristic method

. Step 0: Let Vx = {1, 2, . . . ,m}, p = 1 and N x = ∅.

. Step 1: If p = m, stop.

. Step 2: For every edge (p, q) ∈ N x with q ≥ p + 1, if either deg(p,N x) <
κp or deg(q,N x) < κq, then let N x = N x ∪ {(p, q)}.
. Step 3: Let p = p + 1 and go to Step 1.

This heuristic is easy to implement and from the numerical experiments in Sec-
tion 5, we have confirmed the effectiveness of the method. More precisely, this method
constructs a graph G(Vx,N x) that leads to a chordal extension with small maximal
cliques C1, C2, . . . , Ck, even when the original graph G(Vx,N x) is dense. We can ver-
ify that if G(Vx,N x) is a complete graph, as an extreme case, the method generates
N x = {(p, q) : p < q ≤ m, 1 ≤ p ≤ κ}. Thus, the graph G(Vx,N x) induces a chordal
extension G(Vx, Ñ x) having maximal cliques {1, 2, . . . , κ, q} (q = κ + 1, . . . ,m) of size
κ + 1.

As an example, we considered a two-dimensional SNL problem of 1000 sensors and
4 anchors at the corners of the square [0, 1] × [0, 1] with exact distances and 0.1 radio
range. Numerical results are reported for this case in Table 6.1. We used κ = 4. Before
the selecting process, the number of cliques was 381, and the maximum, minimum and
average size of cliques were 91, 8 and 31.7, respectively. After the selecting process, the
number of cliques became 912, and the maximum, minimum and average of the cliques
were 30, 4 and 6, respectively. Thus, we observe that the selecting process provides an
increased number of cliques of smaller sizes, which can be dealt with more efficiently.

With an increasingly large value for κ, we can expect to obtain more accurate lo-
cations of sensors, although it takes longer to solve the sparse SDP relaxation prob-
lem. Some applications of the SNL problem (e.g., molecular conformation) do not have
enough distance information to obtain accurate solutions. For these applications, κ can
be set so as not to reduce the size of N x. In SFSDP, a parameter named pars.minDegree

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

SFSDP 1:9

Functions Description
SFSDPplus.m A function that analyzes the given input data and calls SFSDP.m.

SFSDP.m A solver that solves the problem and returns the locations of
sensors. It may be called directly by users.

generateProblem.m A function that generates an SNL problem with the given
parameters.

test SFSDP.m A function that solves the problem generated by
generateProblem.m using SFSDPplus.m.

Functions provided in SFSDP

can be specified for the value of κ. If users choose pars.minDegree = κ ≥ 100, then
N x = N x and N a = N a are used. The default value for pars.minDegree is ` + 2.

4.3. Selecting Objective Functions
SFSDP provides four objective functions to select depending on whether the problem
contains noise and whether the number of anchors is small or there are no anchors.
One of the four objective functions may be selected by setting a value of 0-3 for the
parameter called pars.objSW.

Users can set pars.objSW = 0 for the zero objective function to solve the SNL prob-
lem (4) with exact distances, and pars.objSW = 1 for the sum of the 1-norm error to
solve the SNL problem (5) with noisy distances. But these objective functions often fail
to provide accurate locations of sensors if no or only a small number of anchors are
available. In such cases, an objective function with the regularization term [Biswas
et al. 2008; Leung and Toh 2009]

−
∑

(p, q) ∈ Ñ x

‖xp − xq‖2 (13)

gives more accurate locations. Recall that Ñ x denotes the edge set of a chordal exten-
sion G(Vx, Ñ x) of the graph of G(Vx,N x), which was introduced for constructing the
sparse SDP relaxations (11) and (12) in Section 3. Setting pars.objSW = 2 or 3 adds the
regularization term described in (13) to the zero objective function or the sum of the
1-norm error, respectively.

5. NUMERICAL RESULTS
SFSDP includes four Matlab functions whose names and functionality are described
in Table 5. See the user’s guide [Kim et al. 2009b] for more details.

One feature of SFSDP is that either of SDPA and SeDuMi can be used for solving
the SDP relaxation. We first compare the performance of

— ESDP using SDPA and SeDuMi
— FSDP using SDPA and SeDuMi
— SFSDP using SDPA and SeDuMi

applied to 2-dimensional SNL problems with 1000 to 5000 sensors. This compari-
son shows that SFSDP using SDPA is more efficient for computing the locations of
sensors with higher accuracy than the other methods. We then compare the perfor-
mance of SFSDP with SDPA on larger 2-dimensional problems with 20000 sensors, 3-
dimensional problems with 3000 to 5000 sensors, and 3-dimensional anchor-free prob-
lems with 3000 to 5000 sensors. Numerical experiments (except for those reported in
Section 5.2) were performed on 2.8GHz Quad-Core Intel Xeon with 4GB memory using
SDPA 7.3.1 and SeDuMi 1.1R3. The problems with 20000 sensors in Section 5.2 were

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:10 S. Kim et al.

solved on 2.8GHz Quad-Core Intel Core i7 with 16GB memory using SDPA 7.3.1 and
SeDuMi 1.21. We used Matlab version 7.9. (R2009b).

Throughout our numerical experiments, we generated sensors ap (p = 1, 2, . . . , m)
randomly in the unit square [0, 1]2 for 2-dimensional problems or in the unit cube [0, 1]3
for 3-dimensional problems. The number of sensors ranged from 1000 to 20000 for 2-
dimensional problems, and 3000 to 5000 for 3-dimensional problems. Two types of ra-
dio ranges were used. The first type is a constant radio range ρ = 0.1 for 2-dimensional
problems (or ρ = 0.250 for 3-dimensional problems) which is independent of the number
of sensors. The second type is ρ =

√
10/m for 2-dimensional problems (or ρ = (15/m)1/3

for 3-dimensional problems) where m denotes the number of sensors. The second type
indicates that each square of size ρ in [0, 1]2 contains 10 randomly generated sensors
on average for 2-dimensional problems or each cube of size ρ in [0, 1]3 contains 15 ran-
domly generated sensors on average for 3-dimensional problems. Anchors were either
randomly distributed in the unit square/cube or they were placed at the corners of the
unit square/cube. In problems with randomly distributed anchors, the number of an-
chors was set to 10% or 5% of the number of sensors. The noisy factor was changed
from 0.0 to 0.2. The distances were perturbed to create problems with noise

d̂pq = max{(1 + σεpq), 0.1}‖ap − aq‖ ((p, q) ∈ N x = N ρ
x),

d̂pr = max{(1 + σεpr), 0.1}‖ap − ar‖ ((p, r) ∈ N a = N ρ
a),

(14)

where σ ≥ 0 denotes a noisy factor, εpq and εpr are chosen from the standard normal
distribution N(0, 1), and ap denotes the true location of the pth sensor. Note that we
set N x = N ρ

x and N a = N ρ
a when generating the test problems. As in [Biswas and Ye

2004; 2006; Biswas et al. 2006; Tseng 2007; Wang et al. 2008], the root mean square
distance (RMSD) (

1
m

m∑
p=1

‖xp − ap‖2

)1/2

,

where xp denotes the computed locations of the pth sensor, is used to measure the
accuracy of locations of m sensors computed by SDPA or SeDuMi, and the accuracy of
refined solutions by the gradient method.

In the numerical experiments, each type of the test problems was generated 5 times
and tested. The values of elapsed time in the tables below are the average of values
from those 5 experiments, and the value of RMSD was computed by(

1
5m

5∑
k=1

m∑
p=1

‖xk
p − ak

p‖2

)1/2

,

where ak
p and xk

p denote the true and computed locations of the pth sensor of the kth
instance of test problems.

5.1. Comparison of SFSDP with FSDP and ESDP for Two-dimensional Problems
In Table 5.1, the RMSD and elapsed time for ESDP, FSDP and SFSDP are compared
for problems with 1000 sensors and ρ = 0.1. We let λ and κ denote upper and lower
bounds respectively for the degree of any sensor node in ESDP described in Section
4.2 (see also Section 4.1 of [Kim et al. 2009a] for their precise definitions and the
comparison). FSDP, ESDP and SFSDP were tested with SDPA and SeDuMi. After
obtaining a solution by an SDP solver, the solution was refined using the gradient
method. The two columns under RMSD indicate the values of RMSD before and after
the refinement. In all tested problems, we observe that SDPA provides a solution much

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

SFSDP 1:11

faster than SeDuMi with comparable values of RMSD, and FSDP is much slower than
ESDP and SFSDP. Notice that SFSDP attains solutions as accurately as FSDP. From
these observations, we compare ESDP and SFSDP both using SDPA in the rest of this
section.

Numerical tests with increasing values of the parameters λ and κ for ESDP and
SFSDP, respectively, were performed and the results are shown in the lower part of Ta-
ble 5.1. As the parameters increase, both ESDP and SFSDP with the gradient method
showed an increase in execution time but produced more accurate values of RMSD.
Notice that SFSDP(3) resulted in more accurate RMSD than ESDP(8).

Test problems RMSD Elapsed time
m, ma, ρ σ SDP(λ|κ) Solver SDP w.Grad. Solver Grad. Total
m = 1000, 0.0 FSDP(4) SeDuMi 4.2e-5 7.1e-6 2907.2 0.1 2910.3
ma = 100 SDPA 5.0e-4 1.0e-5 53.8 0.2 56.9

distributed ESDP(5) SeDuMi 1.2e-3 1.4e-4 56.3 0.6 78.5
randomly. SDPA 1.0e-3 1.5e-4 19.4 0.6 43.2
ρ = 0.100 SFSDP(4) SeDuMi 6.4e-6 2.1e-6 7.4 0.1 12.1

SDPA 4.9e-5 6.0e-6 2.3 0.3 7.3
0.1 FSDP(4) SeDuMi 1.7e-2 7.1e-3 5285.7 1.5 5294.0

SDPA 1.7e-2 7.1e-3 308.6 1.5 317.3
ESDP(5) SeDuMi 1.6e-2 7.9e-3 42.5 1.7 66.3

SDPA 1.6e-2 7.7e-3 13.2 1.5 39.1
SFSDP(4) SeDuMi 1.7e-2 7.0e-3 20.2 6.1 34.9

SDPA 1.7e-2 7.1e-3 5.1 5.0 18.9
m = 1000, 0.0 FSDP(4) SeDuMi 3.0e-5 1.3e-5 2186.3 0.2 2189.9

ma = 4 SDPA 5.5e-5 2.1e-5 45.4 0.3 48.8
at corners, ESDP(5) SeDuMi 3.9e-2 1.7e-2 47.9 13.6 80.9

ρ = 0.100 SDPA 3.7e-2 1.3e-2 16.7 13.6 49.9
SFSDP(4) SeDuMi 1.6e-5 9.0e-6 29.3 0.1 34.4

SDPA 5.8e-5 2.5e-5 12.6 0.3 17.8
0.1 FSDP(4) SeDuMi 4.5e-2 1.0e-2 2921.6 14.6 2943.4

SDPA 4.5e-2 1.0e-2 157.2 14.9 179.5
ESDP(5) SeDuMi 4.8e-2 2.0e-2 43.2 13.5 75.7

SDPA 4.8e-2 1.9e-2 16.8 13.8 50.5
SFSDP(4) SeDuMi 4.5e-2 1.0e-2 45.6 12.2 66.9

SDPA 4.5e-2 1.0e-2 18.3 12.5 39.8
ESDP(4) SDPA 4.7e-02 2.4e-02 13.6 8.9 40.1
ESDP(6) SDPA 4.9e-02 1.5e-02 20.7 10.9 52.9
ESDP(8) SDPA 5.2e-02 1.3e-02 31.6 12.6 70.0

SFSDP(3) SDPA 5.1e-02 1.2e-02 7.8 10.9 25.6
SFSDP(5) SDPA 4.3e-02 1.0e-02 39.9 8.8 56.5
SFSDP(7) SDPA 4.0e-02 7.8e-03 142.9 6.6 158.5

Comparing FSDP(4), ESDP(5) and SFSDP(5) with SeDuMi and SDPA to solve 2-
dimensional problems with 1000 sensors and ρ = 0.1.

Numerical results from test problems with 3000 and 5000 sensors are shown in
Table 5.1. The number of anchors was changed from 4 to 10% of m, the radio range
was fixed to 0.1 or computed by

√
10/m, and the noisy factor was changed from 0.0 to

0.2. SDPA was used to solve the SDPs. We observe

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:12 S. Kim et al.

(1) Total time spent by SFSDP and elapsed time by SDPA are shorter for the problems
with exact distances (σ = 0.0) than noisy distances (σ = 0.1 or 0.2). As mentioned
in Section 4.3, the objective function is set to zero for the problems with exact
distances. This makes the size of SDP relaxations smaller.

(2) The timings obtained using SFSDP with SDPA decreased as the number of anchors
increased. Recall that as the number of anchors decreases the candidates for N a

decreases and more edges need to be selected from N ρ
x for N x in the construction

of the SDP relaxation. Thus, the graph G(Vx,N x) becomes denser and the sizes
of the positive semidefinite constraints in the resulting SDP relaxation grow (see
Sections 4.1 and 4.2).

(3) A smaller value of the radio range ρ increases the total time used by SFSDP and
the elapsed time required by SDPA. Note that, as ρ decreases, the number of edges
in N ρ

x decreases and selecting edges from N ρ
x for N x becomes more restricted. As a

result, the chordal extension G(Vx, Ñ x) of the graph G(Vx,N x) becomes denser and
the sizes of the positive semidefinite constraints in the resulting SDP relaxation
increases. See also Sections 4.1 and 4.2.

Table 5.1 shows that SFSDP took longer to solve an SDP by SDPA than ESDP for the
three problems: (a) m = 3000, ma = 4, ρ =

√
10/m ≈ 0.058 and σ > 0, (b) m = 5000,

ma = 5% of m = 250, ρ =
√

10/m ≈ 0.045 and σ > 0, and (c) m = 5000, ma = 4,
ρ =

√
10/m ≈ 0.045 and σ > 0. These are due to (1), (2) and (3).

The RMSD values reported in Table 5.1 and Figures 5.1 and 5.1 were obtained after
refinement using the gradient method. We see that SFSDP provides more accurate
values of RMSD than ESDP in Table 5.1. Figure 5.1 and 5.1 show the differences
in the values of RMSD from SFSDP and ESDP for the problems with 1000 to 5000
sensors in the presence of noise. Figure 5.1 displays the results for the problems where
the number of anchors is 10% of the number of sensors. For the experiments with the
noisy factor 0.1 and 0.2, the values of RMSD from SFSDP are smaller than those from
ESDP for all test problems. In Figure 5.1, we observe similar results for the problems
with 4 anchors at the corner of the unit square.

5.2. Two-dimensional Larger-scale Problems
In Table 5.2, we show the numerical results for the problems with 20000 sensors. An-
chors are randomly generated or placed at the corners of the unit square and the noisy
factor σ, was changed from 0.0 to 0.2 when generating the problems. SFSDP solved
the problems efficiently with accurate values of RMSD. Numerical results in Table 5.2
support remarks in (1), (2) and (3) in Section 5.1. We note that the test problems shown
in [Pong and Tseng 2010] involve σ up to 0.01.

5.3. Three-dimensional Problems
Numerical results for three-dimensional problems are shown in Table 5.3. Test prob-
lems include 3000 to 5000 sensors with various anchor distributions. SFSDP efficiently
solves three-dimensional problems with 3000 and 5000 sensors, providing accurate
values of RMSD in all but two cases. Once again the results support remarks (1), (2)
and (3) in Section 5.1.

Figure 1 displays the locations of sensors from SFSDP after refining with the gradi-
ent method for the 3-dimensional problems with 3000 sensors, 8 anchors at the corners,
and a radio range of 0.25. The noisy factor of the problem on the left is 0.0 and on the
right 0.1.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

SFSDP 1:13

ESDP(5) SFSDP(4)
Test problems Elapsed time Elapsed time

m, ma ρ σ SDPA Total RMSD RMSD Total SDPA
m = 3000, 0.100 0.0 68.0 359.2 1.7e-3 2.3e-7 36.9 6.2

ma = 10% of m 0.1 71.3 351.3 4.3e-3 2.3e-3 95.8 15.9
= 300 distributed 0.2 70.1 348.0 8.1e-3 4.8e-3 98.8 15.1

randomly
√

10/m 0.0 69.3 241.2 8.1e-4 4.0e-6 43.5 12.3
≈ 0.058 0.1 47.5 216.9 4.2e-3 1.9e-3 88.2 22.4

0.2 47.0 216.2 7.9e-3 4.4e-3 88.9 21.5
m = 3000, 0.100 0.0 61.8 251.6 2.1e-3 1.3e-6 37.9 7.0

ma = 5% of m 0.1 60.3 251.1 5.6e-3 2.5e-3 88.6 15.3
= 150 distributed 0.2 58.8 248.9 1.1e-2 5.2e-3 91.8 14.4

randomly
√

10/m 0.0 68.1 211.1 1.4e-3 9.5e-6 60.8 28.5
≈ 0.058 0.1 44.9 194.7 7.3e-3 4.5e-3 112.0 39.9

0.2 44.6 192.0 1.1e-2 5.8e-3 115.7 40.1
m = 3000, 0.100 0.0 84.6 274.0 1.2e-2 6.7e-6 74.2 36.8

ma = 4 at corners 0.1 76.3 261.8 1.7e-2 5.6e-3 177.9 62.9
0.2 76.3 263.4 3.3e-2 9.3e-3 176.7 63.3√

10/m 0.0 71.1 258.3 7.2e-3 7.6e-5 206.6 167.5
≈ 0.058 0.1 72.8 260.8 1.2e-2 7.1e-3 297.2 172.3

0.2 77.2 265.4 3.3e-2 1.1e-2 312.4 176.4
m = 5000, 0.1 0.0 175.8 1791.1 1.1e-7 2.7e-7 94.7 11.2

ma = 10% of m 0.1 160.2 1776.2 3.2e-3 2.2e-3 244.7 30.5
= 500 distributed 0.2 159.4 1779.1 6.6e-3 4.5e-3 241.4 28.9

randomly
√

10/m 0.0 112.9 585.3 9.5e-4 4.4e-6 111.8 26.7
≈ 0.045 0.1 88.0 562.3 4.2e-3 3.4e-3 219.1 28.5

0.2 85.2 560.5 6.5e-3 4.7e-3 230.9 29.3
m = 5000, 0.100 0.0 140.1 916.6 6.6e-5 5.9e-7 93.6 11.5

ma = 5% of m 0.1 123.1 899.6 4.2e-3 2.5e-3 229.8 31.3
= 250 distributed 0.2 121.1 911.4 8.9e-3 4.8e-3 231.3 27.5

randomly
√

10/m 0.0 115.6 508.6 2.7e-3 1.5e-4 156.1 68.3
≈ 0.045 0.1 83.3 481.0 6.8e-3 5.1e-3 283.0 98.9

0.2 81.7 476.1 1.0e-2 6.3e-3 281.7 103.4
m = 5000, 0.100 0.0 164.9 668.5 1.3e-2 2.2e-5 153.6 56.7

ma = 4 at corners 0.1 145.4 657.6 1.7e-2 5.4e-3 374.9 79.4
0.2 145.3 658.0 3.1e-2 9.6e-3 328.6 79.5√

10/m 0.0 145.3 644.8 8.1e-3 1.5e-4 604.6 502.2
≈ 0.045 0.1 149.9 645.8 1.6e-2 6.0e-3 908.8 566.2

0.2 155.4 659.7 4.2e-2 1.3e-2 1040.4 584.6

Comparison between ESDP(5) and SFSDP(4) with SDPA to solve 2-dimensional prob-
lems with 3000 and 5000 sensors.

Figure 2 shows the locations of sensors before and after refining the solution with
the gradient method for the 3-dimensional problems with 3000 sensors, 8 anchors at
the corners, the radio range 0.25, and noisy factor 0.2.

5.4. Anchor-free Problems in Three Dimensions
SFSDP handles anchor-free problems in ` dimensions, ` = 2 or 3, by first fixing ` + 1
sensors as anchors, which form a clique, and then applying the sparse SDP relaxation
to the resulting problem. More precisely, if an anchor-free SNL problem with n sensors

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:14 S. Kim et al.

1000 2000 3000 4000 5000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

The number of sensors

 R
M

S
D

 SFSDP and ESDP for noisy problems

−−−−− ESDP(5)
−−−−− SFSDP(4)

 :σ = 0.1

 :σ = 0.2
 radio range = 0.1

1000 2000 3000 4000 5000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

The number of sensors

 R
M

S
D

 SFSDP and ESDP for noisy problems

−−−−− ESDP(5)

−−−−− SFSDP(4)

 :σ = 0.1

 :σ = 0.2

 radio range = 10/m

The number of anchors is 10 % of the number of sensors. The anchors are distributed
randomly. The radio range used for the left figure is 0.1, and for the right

√
10/m.

1000 2000 3000 4000 5000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

The number of sensors

 R
M

S
D

 SFSDP and ESDP for noisy problems with 4 anchors

−−−−− ESDP(5)
−−−−− SFSDP(4)
 :σ = 0.1
 :σ = 0.2
 radio range = 0.1

1000 2000 3000 4000 5000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

The number of sensors

 R
M

S
D

 SFSDP and ESDP for noisy problems with 4 anchors

−−−−− ESDP(5)
−−−−− SFSDP(4)
 :σ = 0.1
 :σ = 0.2
 radio range = /10/m

Four anchors are placed at the corner of [0, 1]2. The radio range used for the left figure
is 0.1, and for the right

√
10/m.

in the `-dimensional space is given, SFSDP first chooses ` + 1 sensors, e.g., sensors
n − `, n − ` + 1, . . . , n, which are adjacent to each other, and forms a nondegenerate `-
simplex. After temporarily fixing their locations, say xr = ar (r = n−`, n−`+1, . . . , n),
as anchors, SFSDP applies the sparse SDP relaxation described in Sections 3 and 4
to the resulting SNL problem with m = n − ` + 1 sensors and ma = ` + 1 anchors.
Then, it computes the location of sensors xp (p = 1, 2, . . . ,m) relative to the sensors
fixed as anchors. Finally, the gradient method is applied to refine the locations xp

(p = 1, 2, . . . , m).
We can measure the accuracy of computed solutions when the true locations ap

(p = 1, 2, . . . , n) of all sensors are known. In the numerical experiments whose re-

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

SFSDP 1:15

Test problems RMSD Elapsed time
ma, m ρ σ SDPA w.Grad. SDPA Grad. Total

m = 20000, 0.100 0.0 1.44e-06 3.09e-07 93.4 0.7 326.9
ma = 10% of m 0.1 9.54e-03 2.21e-03 159.2 16.8 877.3

= 2000 distributed 0.2 1.97e-02 4.43e-03 148.2 23.5 882.1
randomly

√
10/m 0.0 1.10e-04 4.07e-06 466.2 4.4 708.0

≈ 0.022 0.1 3.19e-03 7.86e-04 301.5 35.9 823.0
0.2 6.27e-03 1.50e-03 237.6 41.4 773.1

m = 20000, 0.100 0.0 1.44e-06 3.09e-07 88.0 0.7 320.2
ma = 5% of m 0.1 9.54e-03 2.21e-03 158.5 14.6 877.8

= 1000 distributed 0.2 1.97e-02 4.44e-03 150.1 17.1 880.0
randomly

√
10/m 0.0 1.96e-04 8.56e-06 1487.6 6.4 1752.8

≈ 0.022 0.1 3.69e-03 8.76e-04 1879.2 45.5 2388.4
0.2 7.28e-03 1.96e-03 1577.9 46.6 2096.3

m = 20000, 0.100 0.0 4.01e-05 6.92e-06 182.9 2.0 469.2
ma = 4 at corners 0.1 4.18e-02 7.57e-03 403.0 137.7 1140.0

0.2 6.63e-02 1.08e-02 402.6 146.0 1150.5√
10/m

≈ 0.022 Requires more than 16Gb of memory

Numerical results on SFSDP(4) with SDPA applied to 2-dimensional problems with
20000 sensors.

sults are shown in Table 5.4, the values of RMSD for the computed locations of sen-
sors xp (p = 1, 2, . . . , n) are evaluated after applying a linear transformation (transla-
tion, reflection, orthogonal rotation, and scaling) T , provided by the Matlab program
procrustes.m [Biswas et al. 2008; Leung and Toh 2009]. This function minimizes the
total squared errors

∑n
p=1 ‖T (xp) − ap‖2 between the true and transformed approxi-

mate locations of sensors. We also observe that the location of sensors, as shown by the
values of RMSD is found accurately using SFSDP.

6. CONCLUDING REMARKS
We have described the Matlab package SFSDP. It is designed to solve larger SNL
problems than other available software. SFSDP can be used for problems with various
anchor locations and anchor-free problems in both two and three dimensions.

SFSDP demonstrates the computational advantages over other methods in solving
large SNL problems as shown in Section 5. These come from utilizing the aggregated
and correlative sparsity of the problem, which reduces the size of FSDP relaxation.
One advantage of SFSDP is that it is equipped with both SDPA and SeDuMi. Incor-
porating SFSDP with SDPA allows faster solutions that using SeDuMi. However, in
our experience, the accuracy of the computed solution is better with SeDuMi for some
problems.

The SNL problem has a number of applications where computational efficiency is an
important issue. The SDP approach has been known to be effective in locating sensors,
however, solving large problems with this approach has been a challenge. We hope
to improve the performance of the sparse SDP relaxation implemented in SFSDP, in
particular, when the original problem does not provide enough distance information
between sensors and/or no or few anchors are available.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:16 S. Kim et al.

Test problems RMSD Elapsed time
m, ma ρ σ SDPA w.Grad. SDPA Grad. Total

m = 3000, 0.250 0.0 6.2e-06 9.8e-07 12.1 0.4 48.1
ma = 10% of m 0.1 3.6e-02 9.5e-03 20.9 19.5 138.2

= 300 0.2 6.1e-02 1.7e-02 20.3 26.3 144.7
distributed (15/m)1/3 0.0 1.0e-04 2.9e-06 49.3 1.2 87.3

randomly ≈ 0.171 0.1 3.2e-02 7.0e-03 51.3 27.8 164.4
0.2 4.9e-02 1.6e-02 51.6 25.3 162.0

m = 3000, 0.250 0.0 2.6e-05 1.2e-06 13.5 0.7 51.1
ma = 5% of m 0.1 5.0e-02 1.0e-02 20.6 17.9 134.2

=150 0.2 7.5e-02 1.9e-02 20.4 25.6 142.0
distributed (15/m)1/3 0.0 1.4e-04 6.3e-06 260.4 2.4 301.0

randomly ≈ 0.171 0.1 4.8e-02 1.8e-02 190.3 40.9 312.5
0.2 6.7e-02 2.7e-02 194.0 41.5 315.8

m = 3000, 0.250 0.0 1.0e-04 7.5e-06 368.4 1.2 413.0
ma = 8 at corners 0.1 9.1e-02 1.4e-02 428.4 64.8 589.5

0.2 1.4e-01 2.6e-02 422.2 45.9 563.6
(15/m)1/3

≈ 0.171 Requires more than 16Gb of memory
m = 5000, 0.250 0.0 1.4e-06 4.2e-07 17.5 0.5 112.2

ma = 10% of m 0.1 3.2e-02 7.9e-03 41.9 30.1 337.8
=500 0.2 6.1e-02 1.6e-02 37.5 31.8 331.8

distributed (15/m)1/3 0.0 8.8e-05 2.1e-06 194.5 2.8 295.4
randomly ≈ 0.144 0.1 2.8e-02 5.8e-03 166.2 51.4 445.8

0.2 4.2e-02 1.2e-02 170.1 54.4 452.2
m = 5000, 0.250 0.0 1.8e-05 7.7e-07 18.7 1.2 117.3

ma = 5% of m 0.1 3.7e-02 8.3e-03 40.8 34.7 337.8
= 250 0.2 6.3e-02 1.7e-02 39.3 42.6 348.9

distributed (15/m)1/3

randomly ≈ 0.144 Requires more than 16Gb of memory

Numerical results on SFSDP(5) with SDPA applied to 3-dimensional problems.

Test problems RMSD Elapsed time
m, ma ρ σ SDPA w.Grad. SDPA Grad. Total

m = 3000, 0.250 0.0 5.0e-05 5.1e-06 441.8 0.6 490.3
ma = 0 0.1 1.6e-01 9.4e-03 504.6 11.4 612.3

0.2 1.8e-01 2.5e-02 497.0 13.4 607.4
m = 3000, (15/m)1/3 Requires more than 16Gb of memory

ma = 0 ≈ 0.171
m = 5000, 0.250 0.0 5.2e-05 7.6e-06 723.6 0.9 852.0

ma = 0 0.1 8.1e-02 9.3e-03 790.3 16.2 1060.3
0.2 1.3e-01 1.9e-02 776.3 16.4 1046.5

Numerical results on SFSDP(5) with SDPA applied to 3-dimensional anchor-free prob-
lems.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

SFSDP 1:17

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

O : Sensor true locations vs * : the ones computed by SFSDP

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

O : Sensor true locations vs * : the ones computed by SFSDP

Fig. 1. A 3-dimensional problem with 3000 sensors, 8 anchors at the corners, ρ = 0.25, and σ = 0.0 on the
left and σ = 0.1 on the right. The locations of sensors from SFSDP(κ = 4) after the refinement. A circle
denotes the true location of a sensor, ? the computed location of a sensor, and a line segment a difference
between true and computed location.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

O : Sensor true locations vs * : the ones computed by SFSDP

Fig. 2. A 3-dimensional problem with 3000 sensors, 8 anchors at the corners, ρ = 0.25, and σ = 0.2. The
locations of sensors from SFSDP(κ = 4) after the refinement using the gradient method. A circle denotes
the true location of a sensor, ? the computed location of a sensor, and a line segment a difference between
true and computed location.

ACKNOWLEDGMENTS

The authors would like to thank Professor Yinyu Ye for the original version of FSDP, Professor Kim Chuan
Toh for Matlab programs, refineposition.m, procrustes.m, and helpful comments, and Mr. Zizhuo Wang for
ESDP code.

REFERENCES
ALFAKIH, A. Y., KHANDANI, A., AND WOLKOWICZ, H. 1999. Solving euclidean matrix completion problem

via semidefinite programming. Comput. Opt. Appl. 12, 13–30.
BISWAS, P., LIANG, T.-C., TOH, K.-C., WANG, T.-C., AND YE, Y. 2006. Semidefinite programming ap-

proaches for sensor network localization with noisy distance measurements. IEEE Transactions on
Automation Science and Engineering 3, 360–371.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:18 S. Kim et al.

BISWAS, P., LIANG, T.-C., WANG, T.-C., AND YE, Y. 2006. Semidefinite programming based algorithms for
sensor network localization. ACM Tran. Sensor Networks 2, 188–220.

BISWAS, P., TOH, K., AND YE, Y. 2008. A distributed sdp approach for large scale noisy anchor-free graph
realization with applications to molecular conformation. SIAM J. Scientific Computing 30, 1251–1277.

BISWAS, P. AND YE, Y. 2004. Semidefinite programming for ad hoc wireless sensor network localization. In
Proceedings of the third international symposium on information processing in sensor networks. ACM,
Berkeley, California.

BISWAS, P. AND YE, Y. 2006. ‘a distributed method for solving semidefinite programs arising from ad hoc
wireless sensor network localization. In Multiscale Optimization Methods and Applications. Springer.

BLAIR, J. R. S. AND PEYTON, B. 1993. An introduction to chordal graphs and clique trees. In A. George,
J. R. Gilbert and J. W. H. Liu des, Graph Theory and Sparse Matrix Computation. Springer, New York,
1–29.

CARTER, M. W., JIN, H. H., SAUNDERS, M. A., AND YE, Y. 2006. Spaseloc: an adaptive subproblem algo-
rithm for scalable wireless sensor network localization. SIAM J. Optim. 17, 4, 1102–1128.

DOHERTY, L., PISTER, K. S. J., AND GHAOUI, L. E. 2001. Convex position estimation in wireless sensor
networks. In Proceedings of 20th INFOCOM. Vol. 3. 1655–1663.

EREN, T., GOLDENBERG, D. K., WHITELEY, W., WANG, Y. R., MORSE, A. S., ANDERSON, B. D. O., AND
BELHUMEUR, P. N. 2004. Rigidity, computation, and randomization in network localization. In in Pro-
ceedings of IEEE Infocom.

FUJISAWA, K., FUKUDA, M., KOBAYASHI, K., KOJIMA, M., NAKATA, K., NAKATA, M., AND YAMASHITA,
M. 2008. Sdpa (semidefinite programming algorithm) user’s manual — version 7.0.5. Tech. Rep. Re-
search Report B-448, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology,
Oh-Okayama, Meguro, Tokyo 152-8552, Japan.

FUKUDA, M., KOJIMA, M., MUROTA, K., AND NAKATA, K. 2000. Exploiting sparsity in semidefinite pro-
gramming via matrix completion i: General framework. SIAM J. Optim. 11, 647–674.

GANESAN, D., KRISHNAMACHARI, B., WOO, A., CULLER, D., ESTRIN, D., AND S.WICKER. 2002. An empir-
ical study of epidemic algorithms in large scale multihop wireless network. Tech. Rep. IRB-TR-02-003,
Intel Corporation.

GOLUMBIC, M. C. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.
HOWARD, A., MATARIĆ, M., AND SUKHATME, G. 2001. Relaxation on a mesh: a formalism for generalized

localization. In IEEE/RSJ International conference on intelligent robots and systems. Wailea, Hawaii,
1055–1060.

KIM, S., KOJIMA, M., MEVISSEN, M., AND YAMASHITA, M. 2009. User’s manual for sparsecolo: Conversion
methods for sparse conic-form linear optimization problems. Tech. Rep. Research Report B-453, Dept.
of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo
152-8552, Japan.

KIM, S., KOJIMA, M., MEVISSEN, M., AND YAMASHITA, M. 2011. Exploiting sparsity in linear and nonlin-
ear matrix inequalities via positive semidefinite matrix completion. Math. Program. 129, 1, 33–68.

KIM, S., KOJIMA, M., AND WAKI, H. 2009a. Exploiting sparsity in sdp relaxation for sensor network local-
ization. SIAM J. Optim. 20, 1, 192–215.

KIM, S., KOJIMA, M., AND WAKI, H. 2009b. User’s manual for sfsdp: a sparse version of full semidefinite
programming relaxation for sensor network localization problems. Tech. Rep. Research Report B-449,
Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro,
Tokyo 152-8552, Japan.

KOBAYASHI, K., KIM, S., AND KOJIMA, M. 2008. Correlative sparsity in primal-dual interior-point methods
for lp, sdp and socp. Appl. Math. Opt. 58, 1, 69–88.

LEUNG, N.-H. Z. AND TOH, K.-C. 2009. An sdp-based divide-and-conquer algorithm for large scale noisy
anchor-free graph realization. SIAM J. Sci. Comput. 31, 4351–4372.

LIAN, T.-C., WANG, T.-C., AND YE, Y. 2004. A gradient search method to round the semidefinite program-
ming relaxation solution for ad hoc wireless sensor network localization. Tech. Rep. Technical report,
Dept. of Management Science and Engineering, Stanford University.

NAKATA, K., FUJISAWA, K., FUKUDA, M., KOJIMA, M., AND MUROTA, K. 2003. Exploiting sparsity in
semidefinite programming via matrix completion ii: Implementation and numerical results. Math. Pro-
gram. 95, 303–327.

NIE, J. 2009. Sum of squares method for sensor network localization. Comput. Opt. Appl. 43, 151–179.
PONG, T. K. AND TSENG, P. 2010. (robust) edge-based semidefinite programming relaxation of sensor net-

work localization. To appear in Math. Program..
SDPA Homepage 2009. SDPA 7.3.1, http://sdpa.sourceforge.net/.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

SFSDP 1:19

SeDuMi Homepage. http://sedumi.mcmaster.ca.
STRUM, J. F. 1999. Sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods

Soft. 11, 625–653.
TSENG, P. 2007. Second order cone programming relaxation of sensor network localization. SIAM J. Op-

tim. 18, 156–185.
TÜTÜNCÜ, R. H., TOH, K. C., AND TODD, M. J. 2003. Solving semidefinite-quadratic-linear programs using

sdpt3. Math. Program. 95, 189–217.
WAKI, H., S. KIM, M. K., AND MURAMATSU, M. 2006. Sums of squares and semidefinite programming

relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim 17, 218–242.
WANG, Z., ZHENG, S., BOYD, S., AND YE, Y. 2008. Further relaxations of the sdp approach to sensor network

localization. SIAM J. Optim. 19, 2, 655–673.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article 1, Publication date: January 2011.

