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1 Introduction

Polynomial optimization problems (POP) are nonlinear optimization problems whose ob-
jective and constraint functions involve only polynomials. They, however, provide a general
framework to represent various application problems in science and engineering. In par-
ticular, POPs include quadratic optimization problems with or without 0-1 constraints on
their variables. POPs are nonconvex in general, and they have served as a unified math-
ematical model for the study of global optimization of nonconvex continuous and discrete
optimization problems. See the book [Las10] and the references therein. A POP is described
as

minimize f0(x) subject to fk(x) ≥ 0 (k = 1, 2, . . . ,m), (1)

where fk(x) denotes a polynomial in x ∈ Rn (k = 0, 1, . . . ,m). Let f∗
0 be the optimal value

of the POP (1); f∗
0 may be −∞ if the POP (1) is unbounded and +∞ if it is infeasible.

A hierarchy of semidefinite programming (SDP) relaxations proposed by Lasserre in
[Las01] is known as a powerful method for computing a global optimal solution of the POP
(1). The hierarchy is arranged according to a positive integer, called the relaxation order in
this article. It determines qualities and sizes of SDP relaxation problems in the hierarchy.
Each SDP problem with a relaxation order ω provides a lower bound ζdω for the optimal
objective value f∗

0 of the POP (1). It was established in [Las01] that ζdω converges f∗
0 as

ω → ∞ under a moderate assumption that requires the compactness of the feasible region
of (1). The size of the SDP relaxation, however, increases very rapidly as the number of
variables of (1), the degree of polynomials involved in (1), and/or the relaxation order ω
increase. In practice, it is often difficult to obtain an approximation to the global optimal
solution of (1) because the resulting SDP relaxation is too large to solve. Without employing
techniques to reduce the size of SDP relaxations, an approximation to the global optimal
solution of a medium- to large-scale POP is difficult to obtain. One important technique to
cope with this difficulty is exploiting structured sparsity of POPs, which is the subject of
this article.

The purpose of this article is to present a survey of the sparse SDP relaxation, which was
originally proposed in [WKK06] as a sparse variant of Lasserre’s SDP relaxation [Las01].
We call Lasserre’s SDP relaxation the dense SDP relaxation. The focus is on the algorithmic
aspects of the sparse SDP relaxation. For its theoretical convergence, we refer to [Las06].
Figure 1 shows an overview of the dense and sparse SDP relaxations. We can describe these
SDP relaxations in two methods: A primal approach, which is our primary concern in this
article, and a dual approach.

In the primal approach, we first choose a relaxation order ω, and then, convert the
POP (1) into an equivalent polynomial SDP (PSDP) by adding valid polynomial matrix
inequalities. The relaxation order ω is used at this stage to restrict the degree of the valid
polynomial matrix inequalities added to at most 2ω. Thus, it controls the size and quality of
the SDP relaxation that will be derived. At this stage, we can also incorporate the sparsity
characterized by a chordal graph structure to construct a sparse PSDP. After expanding real
and matrix-valued polynomial functions in the dense (or sparse) PSDP, the linearization by
replacing each monomial by a single real variable is followed to obtain the sparse (or dense)
SDP relaxation.
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Dual

Choosing a Relaxation Order ω

Figure 1: Overview of Lasserre’s hierarchy of (dense) SDP relaxations [Las01] and its sparse
variant [WKK06].

In the dual approach, a generalized Lagrangian relaxation to the POP (1) is applied to
obtain a generalized Lagrangian dual [KKW05, Las01, Put93] of (1) that includes sums of
squares (SOS) polynomials for Lagrangian multipliers. After choosing a relaxation order ω,
we perform SOS relaxation for the Lagrangian dual. The relaxation order ω is chosen to
restrict the degrees of SOS polynomials used there by at most 2ω. As a result, it controls the
quality and the size of the SOS relaxation. As in the primal approach, the same structured
sparsity can be exploited at this stage to obtain a sparse SOS problem. Finally, the sparse
(or dense) SOS relaxation problem is reformulated as a sparse (or dense) SDP. We note that
the sparse (or dense) SDP obtained in the primal and dual approaches have a primal-dual
relationship.

In Section 2, we describe Lasserre’s dense SDP relaxation of the POP (1) after in-
troducing notation and symbols used throughout the article. Section 3 is devoted to the
primal approach to (1). In Section 3.1, we present a class of SDP problems having multiple
but small-sized matrix variables that can be solved efficiently by primal-dual interior-point
methods [Bor99, SDPA, Str99, TTT03, YFN10]. This class of SDPs serves as target SDPs
into which POPs are aimed to be relaxed. In Section 3.2, a sparse Cholesky factorization
and a chordal graph are introduced. These are used in Section 3.3 for formulating structured
sparsity from POPs. The sparse SDP relaxation of the POP (1) is described in Section 3.4.
In Section 4, we present the dual approach for the POP (1). Section 5 contains additional
techniques used in the software package SparsePOP [WKK08, SPOP], which is an imple-
mentation of the sparse SDP relaxation. Numerical results on SparsePOP are reported in
Section 6, and the applications of the sparse SDP relaxation [KKW09a, KKW09b, SFSDP]
to the sensor network localization are presented in Section 7.
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2 Preliminaries

2.1 Notation and Symbols

Throughout the paper, we let R be the set of real numbers, and Z+ the set of nonnegative
integers. We use Rn for the n-dimensional Euclidean space, and Zn

+ for the set of nonnegative
integer vectors in Rn. Each element x of Rn is an n-dimensional column vector of xi ∈ R
(i = 1, 2, . . . , n), written as x = (x1, x2, . . . , xn) ∈ Rn, and xT denotes the n-dimensional
row vector. Let Sn denote the space of n×n real symmetric matrices and Sn+ ⊂ Sn the cone
of positive semidefinite matrices. We write Y � O if Y ∈ Sn+ for some n.

R[x] is the set of real-valued multivariate polynomials in xi (i = 1, 2, . . . , n). Each
f ∈ R[x] is expressed as f(x) =

∑
α∈F c(α)xα for some nonempty finite subset F of Zn

+ and
c(α) ∈ R (α ∈ F), where xα = xα1

1 x
α2
2 · · ·xαnn for every x = (x1, x2, . . . , xn) ∈ Rn and every

α = (α1, α2, . . . , αn) ∈ Zn
+. We define the support of f by supp(f) = {α ∈ F : c(α) 6= 0}

and the degree of f by deg(f) = max{
∑n

i=1 αi : α ∈ supp(f)}.
For every nonempty finite subset G of Zn

+, let RG denote the |G|-dimensional Euclidean
space whose coordinates are indexed by α ∈ G. Each vector of RG is denoted as a column
vector w = (wα : α ∈ G). The indices α ∈ G can be ordered arbitrary except for the
element 0 ∈ Zn

+, which is assumed to be the first index whenever 0 ∈ G. We use the symbol

SG for the set of |G| × |G| symmetric matrices with coordinates α ∈ G. Let SG+ be the set

of positive semidefinite matrices in SG ; V ∈ SG+ iff

wTV w =
∑

α∈G

∑

β∈G
Vαβwαwβ ≥ 0 for every w = (wα : α ∈ G) ∈ RG.

For every nonempty finite subset G of Zn
+, let u(x,G) denote the |G|-dimensional column

vector of elements xα (α ∈ G); u(x,G) = (xα : α ∈ G) ∈ RG for every x ∈ Rn. Obviously,

u(x,G)u(x,G)T ∈ SG+ for every x ∈ Rn. For every ψ ∈ Z+, let

Aψ =

{
α ∈ Zn

+ :
n∑

i=1

αi ≤ ψ

}
.

Then, we see that 0 ∈ Aψ. For any x ∈ Rn, the upper left element of the matrix

u(x,Aψ)u(x,Aψ)
T ∈ SAψ

+ is the constant x0 = 1. We also note that Aψ + Aψ = A2ψ

for every ψ ∈ Z+, where G + H denotes the Minkowski sum of two G, H ⊂ Zn
+, i.e.,

G + H = {α + β : α ∈ G, β ∈ H} . These facts are used in the next subsection.

We represent each polynomial fk in the POP (1) as

fk(x) =
∑

α∈F k

ck(α)xα for every x ∈ Rn (k = 0, 1, . . . ,m).

We may assume without loss of generality that 0 6∈ F0. We also let ωk = ddeg(fk)/2e
(k = 0, 1, , . . . ,m) and ωmax = max{ωk : k = 0, 1, . . . ,m}. We use the following examples to
illustrate the dense and sparse SDP relaxations in the subsequent discussions.
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Example 2.1.

minimize f0(x) = x2 − 2x1x2 + x2x3

subject to f1(x) = 1 − x2
1 − x2

2 ≥ 0, f2(x) = 1 − x2
2 − x2

3 ≥ 0.

Notice that ω0 = ddeg(f0)/2e = 1, ω1 = ddeg(f1)/2e = 1, ω2 = ddeg(f2)/2e = 1 and ωmax =
1.

Example 2.2.

minimize f0(x) =
∑n

i=1(aix
γ
i + bix

γ−1
i ) + cx1xn

subject to fk(x) = 1 − x2
k − x2

k+1 ≥ 0 (k = 1, 2, . . . , n− 1),

where ai (i = 1, 2, . . . , n), bi (i = 1, 2, . . . , n) and c are real constants chosen randomly
from [−1, 1] and γ is a positive integer not less than 2. We see that ω0 = ddeg(f0)/2e =
dγ/2e, ωk = ddeg(fk)/2e = 1 (k = 1, 2, . . . , n− 1) and ωmax = dγ/2e.

2.2 Lasserre’s Dense SDP Relaxation of a POP

Lasserre’s SDP relaxation method [Las01] for a POP generates a hierarchy of SDP problems,
parametrized by an integer parameter ω ≥ ωmax. Solving the hierarchy of SDP problems
provides a sequence of monotonically nondecreasing lower bounds {ζdω : ω ≥ ωmax} for the
optimal value of the POP. We call each problem in the hierarchy the dense SDP relaxation
problem with the relaxation order ω in this article. After choosing a relaxation order ω ≥
ωmax, we first transform the POP (1) into an equivalent polynomial SDP (PSDP)

minimize f0(x)

subject to u(x,Aω−ωk )u(x,Aω−ωk )
Tfk(x) ∈ SAω−ωk

+

(k = 1, 2, . . . ,m),

u(x,Aω)u(x,Aω)
T ∈ SAω

+ .





(2)

To verify the equivalence between the POP (1) and the PSDP (2), we first observe that they
have the same objective function. If x ∈ Rn is a feasible solution of the POP (1), then it is a
feasible solution of the PSDP (2) because the symmetric matrices u(x,Aω−ωk )u(x,Aω−ωk )

T

and u(x,Aω)u(x,Aω)
T are positive semidefinite for any x ∈ Rn. The converse is also

true because the symmetric matrices u(x,Aω−ωk )u(x,Aω−ωk )
T (k = 1, 2, . . . ,m) have the

element x0 = 1 in their upper-left corner. This confirms the equivalence.

Let Fd = (Aω + Aω) = A2ω denote the set of all monomials involved in the PSDP (2).
Since the objective function is a real-valued polynomial and the left-hand side of the matrix
inequality constraints are real symmetric matrix-valued polynomials, we can rewrite the
PSDP (2) as

minimize
∑

α∈Fd

cd0(α)xα

subject to
∑

α∈Fd

Ld
k(α, ω)xα ∈ SAω−ωk

+ (k = 1, . . . ,m),

∑

α∈Fd

Md(α, ω)xα ∈ SAω
+ ,
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for some cd0(α) ∈ R (α ∈ Fd), real symmetric matrices Ld
k(α, ω) (α ∈ Fd, k = 1, . . . ,m)

and M d(α, ω) (α ∈ Fd). Replacing each monomial xα by a single variable yα ∈ R provides
the dense SDP relaxation problem of the POP (1):

minimize
∑

α∈Fd

cd0(α)yα

subject to
∑

α∈Fd

Ld
k(α, ω)yα ∈ SAω−ωk

+ (k = 1, . . . ,m),

∑

α∈Fd

M d(α, ω)yα ∈ SAω
+ , y0 = 1.





(3)

(Note that 0 ∈ Fd = A2ω and x0 = 1). If x ∈ Rn is a feasible solution of the PSDP (3),
(yα : α ∈ Fd) = (xα : α ∈ Fd) is a feasible solution of (3) with the same objective value∑

α∈F d cd0(α)yα as the objective value
∑

α∈Fd cd0(α)xα of the PSDP. This implies that (3)

is a relaxation of the PSDP, hence, a relaxation of (1).

Using Example 2.1, we illustrate the dense SDP relaxation. If we take the relaxation
order ω = ωmax = 1, then

Aω−ω1 = A0 = {(0, 0, 0)},
u(x,Aω−ω1) = u(x,A0) = u(x, {(0, 0, 0)}) = 1,

Aω−ω2 = A0 = {(0, 0, 0)},
u(x,Aω−ω2) = u(x,A0) = u(x, {(0, 0, 0)}) = 1,

Aω = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)},
u(x,Aω) = (1, x1, x2, x3).





(4)

The PSDP (2) is

minimize x2 − 2x1x2 + x2x3

subject to 12 · (1 − x2
1 − x2

2) ≥ 0, 12 · (1 − x2
2 − x2

3) ≥ 0,


x000 x100 x010 x001

x100 x200 x110 x101

x010 x110 x020 x011

x001 x101 x011 x002


 =




1 x1 x2 x3

x1 x2
1 x1x2 x1x3

x2 x1x2 x2
2 x2x3

x3 x1x3 x2x3 x2
3


 ∈ SAω

+ .

Here we simply write xα1α2α3 instead of x(α1,α2,α3). Replacing each xα by yα, we obtain an
SDP relaxation problem:

minimize y010 − 2y110 + y011

subject to y000 − y200 − y020 ≥ 0, y000 − y020 − y002 ≥ 0,


y000 y100 y010 y001

y100 y200 y110 y101

y010 y110 y020 y011

y001 y101 y011 y002


 ∈ SAω

+ , y000 = 1.

Let

Fd = A2ω

= {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0),

(1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)} .
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Then, we can rewrite the previous SDP relaxation problem as

minimize y010 − 2y110 + y011

subject to y000 − y200 − y020 ≥ 0, y000 − y020 − y002 ≥ 0,∑

α∈Fd

Md(α, ω)yα ∈ SAω
+ , y000 = 1,





(5)

for some Md(α, ω) ∈ SAω (α ∈ Fd); for example,

Md((1, 0, 0), ω) =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , M d((0, 1, 1), ω) =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0


 .

Let ζdω denote the optimal value of (3). Then, ζdω ≤ ζdω+1 ≤ f∗
0 for every ω ≥ ωmax, where

f∗
0 denotes the optimal value of the POP (1). Under a moderate assumption that requires

the compactness of the feasible region of (1), ζdω converges f∗
0 as ω → ∞ [Las01].

We note that

the size of Ld
k(α, ω) = |Aω−ωk | =

(
n+ ω − ωk
ω − ωk

)

(k = 1, 2, . . . , n− 1),

the size of M d(α, ω) = |Aω| =

(
n + ω
ω

)
,

the number of variables =
∣∣Fd
∣∣ =

(
n+ 2ω

2ω

)
,

which increase rapidly with n and/or ω. Therefore, solving the dense SDP relaxation
problem (3) becomes increasingly time-consuming and difficult as n and/or ω grow.

Numerical results are presented in Table 1 to show the growth of the three numbers of
the dense SDP relaxation applied to Example 2.2. We needed to take ω ≥ ωmax = dγ/2e. In
Table 1, notice that the size of Ld

k(α, ω), the size of M d(α, ω) and the number of variables
|Fd| increase rapidly as n and/or ω becomes large. Large values of n and ω often resulted
in out-of-memory error, as a result, SDPA could not solve the SDP relaxation problem. We
were able to obtain an accurate approximation to the optimal solution when SDPA could
solve its SDP relaxation problem.

3 Sparse SDP Relaxations of a POP

3.1 Semidefinite Programming Problems That Can Be Efficiently

Solved by the Primal-Dual Interior-Point Method

As shown in Section 2, POPs are transformed and relaxed into SDPs. The class of SDPs
described in this section are the target SDPs into which POPs with sparsity are aimed to
be relaxed for computational efficiency.
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γ n ω = ωmax Size Ld
k Size M d |Fd| eTime

2 10 1 1 11 66 0.05
2 20 1 1 21 231 0.08
2 40 1 1 41 861 1.08
4 10 2 11 66 1,001 2.23
4 20 2 21 231 10,626 1063.16
4 40 2 41 861 135,751 Out-of-memory
6 10 3 66 286 8,008 721.21
6 20 3 231 1771 230,230 Out-of-memory
6 40 3 861 12,341 9,366,819 Out-of-memory

Table 1: Numerical results on the dense SDP relaxation applied to Example 2.2. eTime
denotes the elapsed time to solve the SDP problem by the Matlab version of SDPA 7.3.1
[SDPA] on 3.06 GHz Intel Core 2 Duo with 8HB memory.

Consider the equality standard form of SDP and its dual

minimize A0 • X
subject to Ap • X = bp (p = 1, 2, . . . ,m), X � O,

}
(6)

maximize
∑m

p=1 bpyp
subject to A0 −

∑m
p=1 Apyp � O,

}
(7)

where Ap ∈ Sn (p = 0, 1, . . . ,m). We call the SDP (7) the linear matrix inequality (LMI)
form of SDP. If no assumption is made on the sparsity of the coefficient matrices Ap ∈ Sn
(p = 0, 1, . . . ,m), the efficiency of solving the SDP by the primal-dual interior-point method
[Bor99, Str99, TTT03, YFN10] mainly depends on two factors. The first is the size n of the
matrix variable X in (6) (or the size of the LMI constraint in (7)), and the second is the
number m of equalities in (6) (or the number of the real variables yp (p = 1, 2, . . . .m)). We
note that the number m determines the size of the Schur complement matrix, the m ×m
positive definite coefficient matrix of the Schur complement equation, which is solved at each
iteration of the primal-dual interior-point method. If either n or m increases, more elapsed
time and memory are required to solve the SDP. See [FFK00], for example. Increasing the
efficiency of the primal-dual interior-point method can be achieved by exploiting sparsity.
We discuss this issue in detail with the LMI form of SDP (7).

The simplest structured sparsity that makes the primal-dual interior-point method work
efficiently is a block-diagonal structure of the coefficient matrices. Suppose that each Ap is
of the form

Ap = diag (Ap1,Ap2, . . . ,Ap`) =




Ap1 O · · · O
O Ap2 · · · O
...

...
. . .

...
O O · · · Ap`


 (8)

(p = 0, 1, . . . ,m), where

Apj ∈ Snj (j = 1, 2, . . . , `, p = 0, 1, . . . ,m).
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Note that for each j, the matrices A0j,A1j, . . . ,Amj are of a same size nj × nj, and that∑`
j=1 nj = n. In this case, we can rewrite the LMI form SDP (7) as

maximize
∑m

p=1 bpyp
subject to A0j −

∑m
p=1 Apjyp � O (j = 1, 2, . . . , `).

}
(9)

If we compare the original LMI form of SDP (7) with the transformed SDP (9), we notice
that the single n × n matrix inequality is decomposed into multiple matrix inequalities of
reduced size. Thus, if their sizes are small, the SDP (9) can be solved more efficiently than
the SDP (7).

Notice that the SDP (9) involves the same number of real variables yp (p = 1, 2, . . . ,m)
as in the original SDP (7), which indicates that the size of the Schur complement equation
remains the same. Nevertheless, the SDP (9) can have a considerable advantage over the
SDP (7). To see this clearly, let us assume without loss of generality that all coefficient
matrix Ap (p = 1, 2, . . . ,m) are nonzero in (7). In fact, if some Ap = O, then we must
have bp = 0 since otherwise the SDP (7) is unbounded. On the other hand, some of the
block matrices Ap1,Ap2, . . . ,Ap` can be zero in (8), although the entire matrix Ap is not,
for each p = 1, 2, . . . ,m. Then, the Schur complement matrix often becomes sparse so that
the sparse Cholesky factorization can be applied to the Schur complement matrix.

In the primal-dual interior-point method [Bor99, Str99, TTT03, YFN10], each element
Bpq of the m×m Schur complement matrix B is given by

Bpq =
∑̀

j=1

T jApjU j • Aqj (p, q = 1, 2, . . . .m).

for fully dense T j ∈ Snj , U j ∈ Snj (j = 1, 2, . . . , `). For details, we refer to [FFK00]. Notice
that Bpq is nonzero if and only if there is a j such that both the coefficient matrix Apj of
the variable yp and the coefficient matrix Aqj of the variable yq are nonzero matrices. Thus,
if we define the m×m symbolic matrix R by

Rpq =

{
? if Apj 6= O and Aqj 6= O for some j = 1, 2, . . . , `,
0 otherwise.

R represents the sparsity pattern of the Schur complement matrix B. The matrix R is
called the correlative sparsity pattern matrix (abbreviated as the csp matrix) of the SDP
(9). A class of SDPs of the form (9) that can be solved efficiently by the primal-dual
interior-point method is characterized by the conditions:

(A) The sizes of the coefficient matrices Apj (j = 1, 2, . . . , `, p = 1, 2, . . . ,m) are small.

(B) The csp matrix R allows a (symbolic) sparse Cholesky factorization.

Let us consider the dense SDP relaxation problem for these conditions. The dense
SDP relaxation problem (3) of the POP (1) is of the form (9). As discussed at the end of
Section 2.2, the size of each coefficient matrix increases rapidly as n or ω becomes large. See
Table 1. Furthermore, its csp matrix is fully dense, resulting in the dense Schur complement
matrix. This was a main reason for “out-of-memory” error in Table 1. Thus, the dense SDP
relaxation problem (3) satisfies neither of the conditions (A) and (B).
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3.2 A Sparse Cholesky Factorization and a Chordal Graph

Let R be a symbolic symmetric matrix that represents the sparsity pattern of a class of
n × n symmetric matrices introduced in the previous subsection. We assume that the
nonzero symbol ? is assigned to all diagonal elements and some off-diagonal elements. It
is well-known that a sparse Cholesky factorization is characterized in terms of a chordal
graph. We call an undirect graph chordal if every cycle of length ≥ 4 has a chord, i.e., an
edge joining two nonconsecutive vertices of the cycle. For R, an undirected graph G(N,E)
is defined with the node set N = {1, 2, . . . , n} and the edge set E such that (i, j) ∈ E
if and only if Rij = ? and i > j. Note that edge (j, i) is identified with (i, j). The
graph G(N,E) is called the sparsity pattern graph of R. If the graph G(N,E) is chordal,
then there exists a permutation matrix P such that the matrix PRP T can be factorized
(symbolically) as PRP T = LLT with no fill-in, where L denotes a lower triangular matrix.
The matrix P is obtained from a perfect elimination ordering. The maximal cliques of a
chordal graph are computed with reference to the perfect elimination ordering. In fact, let
Ck = {i : [P TL]ik = ?} ⊂ N (k = 1, 2, . . . , n). Then, the maximal sets of the family of sets
Ck (k = 1, 2, . . . , n) form the maximal cliques of the chordal graph G(N,E).

If the graph G(N,E) is not chordal, a chordal extension of G(N,E) can be constructed
using the sparse Cholesky factorization. Define the n× n symbolic sparsity pattern matrix
R by

Rpq =

{
? if p = q, (p, q) ∈ E or (q, p) ∈ E,
0 otherwise.

A simultaneous row and column permutation to R such as the symmetric minimum degree
ordering can be applied before the factorization of R. Let P be the permutation matrix
corresponding to such a permutation. Applying the Cholesky factorization to PRP T , we
obtain a lower triangular matrix L such that PRP T = LLT . Then the edge set E of a
chordal extension G(N,E) of G(N,E) is obtained by E = {(i, j) : i 6= j, [P TL]ij = ?}, and
its maximal cliques can be chosen from the family of cliques Ck = {i : [P TL]ik = ?} ⊂ N
(k = 1, 2, . . . , n) as described previously. For the basic definition and properties of chordal
graphs, we refer to [Gol80].

Example 3.1. Consider the sparsity pattern matrix

R =




? ? 0 0 0 0
? ? ? ? 0 0
0 ? ? ? 0 ?
0 ? ? ? ? 0
0 0 0 ? ? ?
0 0 ? 0 ? ?



,

which yields the sparsity pattern graph G(N,E) on the left of Fig. 2. This graph is not
chordal because the cycle consisting of 4 edges (3, 4), (4, 5), (5, 6), (6, 3) does not have a
chord. A chordal extension G(N,E) of the graph G(N,E) is shown on the right of Fig. 2.
In this case, if the identity matrix is chosen for P and the Cholesky factorization is applied

9
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Figure 2: G(N,E) on the left vs. G(N,E) on the right

to R, the lower triangular matrix satisfying R = LLT is

L =




? 0 0 0 0 0
? ? 0 0 0 0
0 ? ? 0 0 0
0 ? ? ? 0 0
0 0 0 ? ? 0
0 0 ? ? ? ?



.

Note that a fill-in occurs in the (6, 4)th element, which corresponds to the edge (6, 4) of the
chordal extension G(N,E). Each column of L leads a clique, thus, the resulting 6 cliques
are

{1, 2}, {2, 3, 4}, {3, 4, 6}, {4, 5, 6}, {5, 6} and {6}.

Choosing the maximal ones from them, we have the 4 maximal cliques

{1, 2}, {2, 3, 4}, {3, 4, 6} and {4, 5, 6} (10)

of the chordal extension G(N,E).

3.3 Formulating Structured Sparsity

The sparsity that can be extracted from the POP (1) for a sparse SDP relaxation is discussed
in this subsection. We call this sparsity the correlative sparsity. Let N = {1, 2, . . . , n}. For
every k = 1, 2, . . . ,m, the set of indices i of variables xi in the kth inequality fk(x) ≥ 0 is
defined:

Fk = {i ∈ N : ck(α) 6= 0 and αi ≥ 1 for some α ∈ Fk} .

We construct an undirected graph G(N,E) to represent the sparsity structure of (1) by
connecting a pair (i, j) with i 6= j selected from the node set N as an edge, i.e., (i, j) ∈ E,
if and only if either there is an α ∈ F0 such that c0(α) 6= 0, αi > 0 and αj > 0 or i, j ∈ Fk
for some k = 1, 2, . . . ,m. We identify each edge (i, j) with i > j with the edge (j, i). The
graph G(N,E) constructed this way is called the correlative sparsity pattern (csp) graph.
Let G(N,E) be a chordal extension of G(N,E), and C1, C2, . . . , C` be its maximal cliques.

Since each Fk is a clique of G(N,E), we can take a maximal clique C̃k ∈ {C1, C2, . . . , C`}
such that

Fk ⊂ C̃k (k = 1, 2, . . . ,m). (11)

10



1 2 3

Figure 3: The csp graph G(N,E) of the POP in Example 2.1.

For Example 2.1,

N = {1, 2, 3}, F1 = {1, 2}, F2 = {2, 3} and E = {(1, 2), (2, 3)}.

Fig. 3 shows the csp graph G(N,E), which is apparently chordal because there is no cycle,

and the maximal cliques are C1 = {1, 2} and C2 = {2, 3}. Hence, we can take C̃1 = {1, 2} =

F1 and C̃2 = {2, 3} = F2.

Example 3.2.

minimize −
∑6

i=1 x
2
i

subject to x2
1 + x2

2 ≤ 1, x2 + x2
3 + x2

4 ≤ 1,
x4 + x2

5 ≤ 1, x3 + x2
6 ≤ 1, x2

5 + x2
6 ≤ 1.

In this case, we have

F1 = {1, 2}, F2 = {2, 3, 4}, F3 = {4, 5}, F4 = {3, 6} and F5 = {5, 6}.

We also see that the csp graph G(N,E) coincides with the one on the left of Fig. 2. Thus,
the graph on the right of Fig. 2 is a chordal extension of the csp graph G(N,E), and its

maximal cliques are given in (10). Consequently, we can take C̃k (k = 1, 2, . . . , 5) as

C̃1 = {1, 2}, C̃2 = {2, 3, 4}, C̃3 = {4, 5, 6},
C̃4 = {3, 4, 6} and C̃5 = {4, 5, 6}.

We introduce a property characterizing a class of POPs for which the sparse SDP relax-
ation works effectively:

(C) The csp graph G(N,E) has a sparse chordal extension such that the sizes of its
maximal cliques are small.

We show that Example 2.2 satisfies this property. Suppose that n ≥ 4. Then,

Fk = {k, k + 1} (k = 1, 2, . . . , n− 1),

and the objective polynomial function f0(x) contains a monomial cx1xn. The csp graph
G(N,E) consists of n edges (1, 2), (2, 3), . . . , (n − 1, n), (n, 1), which form a cycle. The
graph G(N,E) is not chordal, but it has a sparse chordal extension G(N,E) shown in Fig. 4.
And, the extended chordal graph G(N,E) consists of n − 2 cycles Ck = {k, k + 1, n}
(k = 1, 2, . . . , n − 2). Obviously, Fk ⊂ Ck (k = 1, 2, . . . , n − 2) and Fn−1 ⊂ Cn−2, thus, we

can take C̃k = Ck (k = 1, 2, . . . , n− 2) and C̃n−1 = Cn−2.

In the next subsection, we discuss how the property (C) of a POP is transferred to its
sparse SDP relaxation satisfying the properties (A) and (B).

11
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Figure 4: A chordal extension G(N,E) of the csp graph G(N,E) of the POP in Example 2.2

3.4 Sparse SDP Relaxation of a POP

We use the following set instead of Aψ in the dense SDP relaxation. For every ψ ∈ Z+ and
every nonempty C ⊂ N = {1, 2, . . . , n}, define

AC
ψ = {α ∈ Zn

+ : αi = 0 (i 6∈ C) and
∑

i∈C

αi ≤ ψ},

where ψ stands for either a relaxation order ω or ωk − ω (k = 1, 2, . . . ,m) and C ⊂ N a
maximal clique of a chordal extension of the csp graph.

We choose a relaxation order ω ≥ ωmax. Using ωk, C̃k (k = 1, 2, . . . ,m) and Cj (j =
1, 2, . . . , `), we transform the POP (1) into an equivalent PSDP

minimize f0(x)

subject to u(x,AC̃k
ω−ωk)u(x,AC̃k

ω−ωk)
Tfk(x) ∈ S

AC̃k
ω−ωk

+

(k = 1, 2, . . . ,m),

u(x,ACj
ω )u(x,ACj

ω )T ∈ SA
Cj
ω

+ (j = 1, 2, . . . , `).





(12)

Let

F s =
⋃̀

j=1

(
ACj
ω + ACj

ω

)
=
⋃̀

j=1

ACj
2ω. (13)

Then, we can rewrite the PSDP above as

minimize
∑

α∈Fs

cs0(α)xα

subject to
∑

α∈Fs

Ls
k(α, ω)xα ∈ S

AC̃k
ω−ωk

+ (k = 1, 2, . . . ,m),

∑

α∈Fs

M s
j(α, ω)xα ∈ SA

Cj
ω

+ (j = 1, 2, . . . , `),

for some cs0(α) ∈ R (α ∈ Fs), real symmetric matrices Ls
k(α, ω) (α ∈ F s, k = 1, 2, . . . ,m)

and M s
j(α, ω) (α ∈ F s, j = 1, 2, . . . , `). A sparse SDP relaxation problem of the POP (1)
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is obtained by replacing each monomial xα by a single real variable yα.

minimize
∑

α∈Fs

cs0(α)yα

subject to
∑

α∈Fs

Ls
k(α, ω)yα ∈ S

AC̃k
ω−ωk

+ (k = 1, . . . ,m),

∑

α∈Fs

M s
j(α, ω)yα ∈ SA

Cj
ω

+ (j = 1, . . . , `), y0 = 1.





(14)

Let ζsω denote the optimal value of (14). Then, ζsω ≤ ζsω+1 ≤ f∗
0 and ζsω ≤ ζdω for every

ω ≥ ωmax, where f∗
0 denotes the optimal value of (1) and ζdω the optimal value of the dense

SDP relaxation problem (3). The second inequality ζsω ≤ ζdω indicates that the sparse SDP
relaxation is not always as strong as the dense SDP relaxation. The convergence of ζsω to
f∗

0 as ω → ∞ was shown in [Las06] under a moderate condition similar to the one for the
convergence of the dense SDP relaxation [Las01].

Let us apply the sparse SDP relaxation to Example 2.1 with ω = ωmax = 1. Then,

AC̃1
ω−ω1

= AC̃1
0 = {(0, 0, 0)},

u(x,AC̃1
ω−ω1

) = u(x,AC̃1
0 ) = u(x, {(0, 0, 0)}) = 1,

AC̃2
ω−ω2

= AC̃2
0 = {(0, 0, 0)},

u(x,AC̃2
ω−ω2

) = u(x,AC̃2
0 ) = u(x, {(0, 0, 0)}) = 1,

AC1
ω = {(0, 0, 0), (1, 0, 0), (0, 1, 0)},

u(x,AC1
ω ) = (1, x1, x2),
AC2
ω = {(0, 0, 0), (0, 1, 0), (0, 0, 1)},

u(x,AC2
ω ) = (1, x2, x3).





(15)

The PSDP (2) is

minimize x2 − 2x1x2 + x2x3

subject to 12 · (1 − x2
1 − x2

2) ≥ 0, 12 · (1 − x2
2 − x2

3) ≥ 0,


x000 x100 x010

x100 x200 x110

x010 x110 x020


 =




1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2


 ∈ SA

C1
ω

+ ,




x000 x010 x001

x010 x020 x011

x001 x011 x002


 =




1 x2 x3

x2 x2
2 x2x3

x3 x2x3 x2
3


 ∈ SA

C2
ω

+ .

Let

F s = AC1
2ω

⋃
AC2

2ω

= {(0, 0, 0), (1, 0, 0), (0, 1, 0), (2, 0, 0), (1, 1, 0),

(0, 2, 0), (0, 0, 1), (0, 1, 1), (0, 0, 2)} .
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Replacing each xα by yα (α ∈ F s), we obtain an SDP relaxation problem

minimize y010 − 2y110 + y011

subject to y000 − y200 − y020 ≥ 0, y000 − y020 − y002 ≥ 0,


y000 y100 y010

y100 y200 y110

y010 y110 y020


 ∈ SA

C1
ω

+ ,




y000 y010 y001

y010 y020 y011

y001 y011 y002


 ∈ SA

C2
ω

+ , y000 = 1.

We can rewrite this problems as

minimize y010 − 2y110 + y011

subject to y000 − y200 − y020 ≥ 0, y000 − y020 − y002 ≥ 0,∑

α∈Fs

M s
1(α, ω)α)yα ∈ SA

C1
ω

+ ,

∑

α∈Fs

M s
2(α, ω)α)yα ∈ SA

C2
ω

+ , y000 = 1,

for some M s
j (α, ω) ∈ SA

C1
ω (α ∈ F s, j = 1, 2); for example,

M s
1((1, 0, 0), ω) =




0 1 0
1 0 0
0 0 0


 , M s

2 ((0, 1, 1), ω) =




0 0 0
0 0 1
0 1 0


 .

Assume that the POP (1) satisfies the property (C). We show how its sparse SDP
relaxation problem inherits the property. Let G(N,E) be the csp graph and G(N,E) a

chordal extension of G(N,E) with the maximal cliques C1, C2, . . . , C`. Let R ∈ SF
s

be the
csp matrix of the sparse SDP relaxation problem (14), and G(F s, E) the sparsity pattern
graph of R, where F s is given by (13). By construction, we know that

Ls
k(α, ω) = O if α 6∈ AC̃k

2ω (k = 1, 2, . . . ,m),

M s
j(α, ω) = O if α 6∈ ACj

2ω (j = 1, 2, . . . , `)

and that each AC̃k
2ω is contained in some ACj

2ω. Suppose that we construct a graph G(F s, E)

such that (α,β) ∈ E if and only if (α,β) ∈ ACj
2ω for some j = 1, 2, . . . , `. Then E ⊂ E , i.e.,

G(F s, E) is an extension of G(F s, E). Furthermore, we can prove that G(F s, E) is a chordal

graph with the maximal cliques ACj
2ω (j = 1, 2, . . . , `). See Lemma 6.1 of [KKK08]. As a

result, the chordal extension G(F s, E), with the maximal clique ACj
2ω (j = 1, 2, . . . , `), of the

sparsity pattern graph of the sparse SDP relaxation problem (14) satisfies the same sparse
structure as the chordal extension G(N,E), with the maximal cliques Cj, (j = 1, 2, . . . , `),
of the csp graph G(N,E) of the POP (1). We note that the size of the former is larger
than that of the latter. Consequently, if the maximal cliques Cj (j = 1, 2, . . . , `) are small,
the SDP relaxation problem (14) satisfies the properties (A) and (B). We illustrate this by
applying the sparse SDP relaxation to Example 2.2.
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For Example 2.2, the extended chordal graph G(N,E) of the csp graph consists of n− 2
cycles Ck = {k, k + 1, n} (k = 1, 2, . . . , n− 2). Hence, the size of the maximal cliques is 3.
It follows that

the size of Ls
k(α, ω) =

∣∣∣AC̃k
ω−ωk

∣∣∣ =
(

3 + ω − ωk
ω − ωk

)

(k = 1, 2, . . . , n− 1),

the size of M s
j(α, ω) =

∣∣ACj
ω

∣∣ =
(

3 + ω
ω

)
,

(j = 1, 2, . . . , n− 2),

the number of variables = |Fs| ≤ (n− 2)

(
3 + 2ω

2ω

)
,

It should be noted that the sizes of Ls
k(α, ω) and M s

j(α, ω) are independent of n and that
the number of variables is linear in n. Table 2 shows numerical results on the sparse SDP
relaxation applied to Example 2.2. Critical differences can be observed comparing Table 1
with Table 2. We mention that an accurate approximation to the optimal solution of the
POP was computed for all cases of Table 2. More numerical results will be reported in
Section 7.

γ n ω = ωmax Size Ld
k Size M d |Fd| eTime

2 10 1 1 4 38 0.03
2 20 1 1 4 78 0.04
2 40 1 1 4 158 0.08
4 10 2 4 10 175 0.06
4 20 2 4 10 375 0.13
4 40 2 4 10 775 0.28
6 10 3 10 20 476 0.22
6 20 3 10 20 1036 0.53
6 40 3 10 20 2156 1.23

Table 2: Numerical results on the sparse SDP relaxation applied to Example 2.2. eTime
denotes the elapsed time to solve the SDP problem by the Matlab version of SDPA 7.3.1
[SDPA] on 3.06 GHz Intel Core 2 Duo with 8HB memory.

4 Sums of Squares Relaxation

In this section, we derive dense and sparse relaxation problems of the POP (1) using sums
of squares (SOS) polynomials combined with the generalized Lagrangian dual [KKW05,
Las01, Put93]. This approach is regarded as a dual of the SDP relaxation of the POP (1).
We transform the dense and sparse SOS relaxation problems to SDPs, which are dual to the
dense SDP relaxation problem (3) and the sparse SDP relaxation problem (14), respectively.
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4.1 Sums of Square Polynomials

We say that f ∈ R[x] is an SOS polynomial if it can be represented as f(x) =
∑q

j=1 gj(x)2

for a finite number of polynomials gj ∈ R[x] (j = 1, 2, . . . , q). Let R[x]2 be the set of SOS
polynomials. For every nonempty finite subset G of Zn

+, R[x,G] ⊂ R[x] denotes the set of
polynomials in xi (i = 1, 2, . . . , n) whose support is in G; i.e.,

R[x,G] = {f ∈ R[x] : supp(f) ⊂ G} .

We denote the set of SOS polynomials in R[x,G] by R[x,G]2. Obviously, if g ∈ R[x,G]2,
then g(x) ≥ 0 for every x ∈ Rn. This simple fact allows us to use each g ∈ R[x,G]2 for
a nonnegative Lagrange multiplier in a generalized Lagrangian relaxation of the POP (1),
and to replace the inequality ≥ 0 by the inclusion relation ∈ R[x,G]2 for an SOS relaxation
of the POP (1). By construction, supp(g) ⊂ G + G if g ∈ R[x,G]2. It is also known
[CLR95, KKW03, Par03, PW98] that the set R[x,G]2 can be rewritten as

R[x,G]2 =
{
u(x,G)TV u(x,G) : V ∈ SG+

}
.

4.2 Lasserre’s Dense SOS Relaxation of a POP

Let

Φ =
{
ϕ = (ϕ1, ϕ2, . . . , ϕm) : ϕk ∈ R[x]2 (k = 1, 2, . . . ,m)

}
.

Then the generalized Lagrangian function for (1) is defined as

L(x,ϕ) = f0(x) −
m∑

k=1

ϕk(x)fk(x)

for every ϕ = (ϕ1, ϕ2, . . . , ϕm) ∈ Φ and x ∈ Rn.

For each fixed ϕ ∈ Φ, the unconstrained minimization problem

minimize L(x, ϕ) subject to x ∈ Rn

serves as a generalized Lagrangian relaxation of the POP (1), which provides a lower bound
for the optimal objective value of the POP (1). We can rewrite this problem as a semi-
infinite maximization problem

maximize η subject to L(x, ϕ) − η ≥ 0 (x ∈ Rn),

where x ∈ Rn is a parameter vector for the continuum number of inequality constraints,
not a variable vector. Thus, the best lower bound for the optimal objective value of the
POP (1) among Lagrangian relaxations is obtained from the generalized Lagrangian dual
problem

maximize η subject to L(x,ϕ) − η ≥ 0 (x ∈ Rn), ϕ ∈ Φ. (16)
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Lasserre’s (dense) SOS relaxation [Las01] described in the following and its sparse variant
[WKK06] described in Section 4.3 are numerically tractable subproblems of this Lagrangian
dual problem.

We present the dense SOS relaxation of the POP (1) using the same quantities as the
dense SDP relaxation (3) of POP (1), i.e., ωk = ddeg(fk)/2e (k = 0, 1, , . . . ,m), ωmax =
max{ωk : k = 0, 1, . . . ,m}, Aω−ωk (k = 1, 2, . . . ,m) and Aω. For every ω ≥ ωmax, define

Φd
ω =

{
ϕ = (ϕ1, ϕ2, . . . , ϕm) :

ϕk ∈ R[x,Aω−ωk ]
2

(k = 1, 2, . . . ,m)

}
⊂ Φ.

Then, the dense SOS relaxation with a relaxation order ω ≥ ωmax is described as

maximize η
subject to L(x,ϕ) − η ∈ R[x,Aω]

2, ϕ ∈ Φd
ω.

}
(17)

Since R[x,G]2 =
{
u(x,G)TV u(x,G) : V ∈ SG+

}
holds for every nonempty subset G of

Zn
+ , we can rewrite the SOS problem as

maximize η

subject to f0(x) −
m∑

k=1

u(x,Aω−ωk)
TV ku(x,Aω−ωk )fk(x) − η

= u(x,Aω)
TWu(x,Aω) (x ∈ Rn)

V k ∈ SAω−ωk
+ (k = 1, 2, . . . ,m), W ∈ SAω

+ ,





(18)

where η ∈ R is a real variable, V k (k = 1, . . . ,m) and W matrix variables, and x ∈ Rn a
parameter for the continuum number of equality constraints. Obviously, the equality con-
straint of (18) requires two polynomials in the left and right sides to be equal. Comparing
the coefficients of all monomials xα (α ∈ Fd = A2ω) in the both sides, the equality con-
straint can be replaced by a finite number of linear equalities in η ∈ R, V k (k = 1, 2, . . . ,m)
and W . As a result, we obtain an SDP of the form

maximize η
subject to gdα(η,V 1,V 2, . . . ,V m,W ) = bdα (α ∈ Fd),

V k ∈ SAω−ωk
+ (k = 1, 2, . . . ,m), W ∈ SAω

+ ,





(19)

where gdα denotes a real valued linear function in η ∈ R, V k ∈ SAω−ωk
+ (k = 1, 2, . . . ,m) and

W ∈ SAω
+ , and bdα ∈ R.

We can prove that the SDP problem (19) is the dual of the dense SDP problem (3).

Specifically, η, V k ∈ SAω−ωk
+ (k = 1, 2, . . . ,m) and W ∈ SAω

+ are dual variables (Lagrange
multipliers) corresponding to the equality y0 = 1, the LMI constraints

∑
α∈Fd Ld

k(α, ω)yα ∈

SAω−ωk
+ (k = 1, . . . ,m) and

∑
α∈Fd M d(α, ω)yα ∈ SAω

+ of (3), respectively. Also, the vari-

ables yα ∈ R (α ∈ Fd) of (3) are dual variables (Lagrange multipliers) corresponding to the
equality constraints of (19). We note that the standard weak and strong duality relations
hold for the SDP problems (3) and (19).

17



Using Example 2.1, we describe the dense SOS relaxation. As seen in (4), u(x,Aω−ω1) =
1, u(x,Aω−ω2) = 1 and u(x,Aω) = (1, x1, x2, x3). Thus, the SOS problem (18) is

maximize η
subject to x2 − 2x1x2 + x2x3 − V 1

000(1 − x2
1 − x2

2)
−V 2

000(1 − x2
2 − x2

3) − η
= (1, x1, x2, x3)W (1, x1, x2, x3)

T (x ∈ Rn)

V 1 = (V 1
000) ∈ SAω−ω1

+ = R+,

V 2 = (V 2
000) ∈ SAω−ω1

+ = R+,

W =




W000 W100 W010 W001

W100 W200 W110 W101

W010 W110 W020 W011

W001 W101 W011 W002


 ∈ SAω

+ ,

and the SDP (19)

maximize η
subject to η + V 1

000 + V 2
000 +W000 = 0, W100 = 0, 2W010 = 1,

W001 = 0, V 1
000 −W200 = 0, 2W110 = −2, W101 = 0,

V 1
000 + V 2

000 −W020 = 0, 2W011 = 1, V 2
000 −W002 = 0,

V 1 = (V 1
000) ∈ SAω−ω1

+ = R+,

V 2 = (V 2
000) ∈ SAω−ω1

+ = R+,

W =




W000 W100 W010 W001

W100 W200 W110 W101

W010 W110 W020 W011

W001 W101 W011 W002


 ∈ SAω

+ .

4.3 Sparse SOS Relaxations of a POP

We derive the sparse SOS relaxation of the POP (1) from the Lagrangian dual problem (16)
using the same method as in Section 4.2. First, we choose a relaxation order ω ≥ ωmax.
Define

Φs
ω =

{
ϕ = (ϕ1, ϕ2, . . . , ϕm) : ϕk ∈ R[x,AC̃k

ω−ωk ]
2

(k = 1, 2, . . . ,m)

}
⊂ Φd

ω ⊂ Φ,

where each C̃k denotes a maximal clique of the chordal extension G(N,E) of the csp graph
G(N,E) of the POP (1) satisfying (11). Then, the sparse SOS relaxation with the relaxation
order ω is described as

maximize η

subject to L(x,ϕ) − η ∈
∑`

j=1 R[x,ACj
ω ]2, ϕ ∈ Φs

ω.

}
(20)

If we compare the sparse SOS relaxation to the dense SOS relaxation (17), we notice that
ϕ ∈ Φd

ω is replaced by ϕ ∈ Φs
ω and R[x,Aω]

2 by
∑`

j=1 R[x,ACj
ω ]2. Since

Φs
ω ⊂ Φd

ω and
∑̀

j=1

R[x,ACj
ω ]2 ⊂ R[x,Aω]

2,
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the optimal value ηsω of (20) is smaller than or equal to the optimal value ηdω of (19). Thus,
the sparse SOS relaxation is weaker than the dense SOS relaxation in general.

As in the dense SOS relaxation, we can convert the sparse SOS relaxation (20) to an
SDP problem:

maximize η
subject to gsα(η,V 1, . . . ,V m,W 1, . . . ,W `) = bsα (α ∈ F s),

V k ∈ S
ACk
ω−ωk

+ (k = 1, 2, . . . ,m),

W j ∈ SA
Cj
ω

+ (j = 1, 2, . . . , `),





(21)

where gsα denotes a real valued linear function in η ∈ R, V k ∈ S
ACk
ω−ωk

+ (k = 1, 2, . . . ,m), and

W j ∈ SA
Cj
ω

+ (j = 1, 2, . . . , `). This SDP is the dual of the sparse SDP relaxation problem
(14). Let ηsω be the optimal value of (21). Then ηsω ≤ ηsω+1 ≤ f∗

0 and ηsω ≤ ζsω ≤ f∗
0 for every

ω ≥ ωmax, where f∗
0 denote the optimal value of the POP (1) and ζsω the optimal value of

the sparse SDP relaxation problem (14).

Remark 4.1. The dense and sparse SOS relaxations were presented in [Las01] and [Las06].
It was shown that the optimal value ζdω of the dense SDP relaxation problem (3) (or the
optimal value ζsω of the sparse SDP relaxation problem (14)) of the POP (1) with the
relaxation order ω ≥ ωmax converges to the optimal value f∗

0 of (1) as ω → ∞ under the
assumptions that require the compactness of the feasible region of (1). A key fact used in the
proof of the convergence was Putinar’s Lemma (Lemma 4.1 of [Put93]), which was applied
to the dense SOS relaxation problem (17) (or the sparse SOS relaxation problem (20)). We
note that the convergence of ζdω (or ζsω) to f∗

0 as ω → ∞ follows from the convergence of ηdω
(or ηsω) to f∗

0 as ω → ∞ since ηdω ≤ ζdω ≤ f∗
0 (or ηsω ≤ ζsω ≤ f∗

0 ) for every ω ≥ ωmax.

We now apply the sparse SOS relaxation presented previously to Example 2.1. Let
ω = ωmax = 1. Recall that the csp graph G(N,E) shown in Fig. 3 is a chordal graph having

the maximal cliques C1 = {1, 2} and C2 = {2, 3}, F1 = C̃1 = C1, F2 = C̃2 = C2. In addition,

we have observed in (15) that u(x,AC̃1
ω−ω1

) = 1, u(x,AC̃2
ω−ω2

) = 1, u(x,AC1
ω ) = (1, x1, x2)

and u(x,AC2
ω ) = (1, x2, x3). Thus, we obtain an SOS relaxation problem

maximize η
subject to x2 − 2x1x2 + x2x3 − V 1

000(1 − x2
1 − x2

2)
−V 2

000(1 − x2
2 − x2

3) − η
= (1, x1, x2)W

1(1, x1, x2)
T

+(1, x2, x3)W
2(1, x2, x3)

T (x ∈ Rn)

V 1 = (V 1
000) ∈ SA

C̃1
ω−ω1

+ = R+,

V 2 = (V 2
000) ∈ SA

C̃2
ω−ω2

+ = R+,

W 1 =




W 1
000 W 1

100 W 1
010

W 1
100 W 1

200 W 1
110

W 1
010 W 1

110 W 1
020


 ∈ SA

C1
ω

+ ,

W 2 =




W 2
000 W 2

010 W 2
001

W 2
010 W 2

020 W 2
011

W 2
001 W 2

011 W 2
002


 ∈ SA

C2
ω

+ ,
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and an equivalent SDP problem

maximize η
subject to η + V 1

000 + V 2
000 +W 1

000 +W 2
000 = 0, W 1

100 = 0,
2W 1

010 + 2W 2
010 = 1, W 2

001 = 0,
V 1

000 −W 1
200 −W 2

200 = 0, 2W 1
110 = −2,

W 1
101 = 0, V 1

000 + V 2
000 −W 1

020 = 0,
2W 2

011 = 1, V 2
000 −W 2

002 = 0,

V 1 = (V 1
000) ∈ SA

C̃1
ω−ω1

+ = R+,

V 2 = (V 2
000) ∈ SA

C̃2
ω−ω2

+ = R+,

W 1 =




W 1
000 W 1

100 W 1
010

W 1
100 W 1

200 W 1
110

W 1
010 W 1

110 W 1
020


 ∈ SA

C1
ω

+ ,

W 2 =




W 2
000 W 2

010 W 2
001

W 2
010 W 2

020 W 2
011

W 2
001 W 2

011 W 2
002


 ∈ SA

C2
ω

+ .

5 Additional Techniques

We present important techniques used in SparsePOP [WKK06] for its efficiency, accuracy
and numerical stability, and for its application to practical problems.

5.1 Handling Equality, Lower Bound and Upper Bound Con-
straints

In practice, the sparse SDP relaxation described in Section 3.4 is applied to POPs with
inequalities, equalities, lower bounds and/or upper bounds. More precisely, consider

minimize f0(x)
subject to fk(x) ≥ 0 (k = 1, 2, . . . , q),

fk(x) = 0 (k = q + 1, . . . ,m),
λi ≤ xi ≤ νi (i ∈ N),





(22)

where −∞ ≤ λi < νi ≤ ∞ (i ∈ N). We use the same notation and symbols as in Section
3.4. We first observe that the POP (22) is equivalent to the PSDP

minimize f0(x)

subject to u(x,AC̃k
ω−ωk )u(x,AC̃k

ω−ωk )
Tfk(x) ∈ S

AC̃k
ω−ωk

+

(k = 1, 2, . . . , q),

u(x,AC̃k
ω−ωk )u(x,AC̃k

ω−ωk )
Tfk(x) = O

(k = q + 1, q + 2, . . . ,m),

u(x,ACj
ω )u(x,ACj

ω )T ∈ SA
Cj
ω

+ (j = 1, 2, . . . , `),

λi ≤ xi ≤ νi (i ∈ N),
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where the relaxation ω is chosen such that ω ≥ ωmax = max{ωk : k = 0, 1, . . . ,m}. We then
rewrite this problem as

minimize
∑

α∈F s

cs0(α)xα

subject to
∑

α∈F s

Ls
k(α, ω)xα ∈ S

AC̃k
ω−ωk

+ (k = 1, 2, . . . , q),

∑

α∈F s

Ls
k(α, ω)xα = O (k = q + 1, q + 2, . . . ,m),

∑

α∈F s

M s
j(α, ω)xα ∈ SA

Cj
ω

+ (j = 1, 2, . . . , `),

λi ≤ xi ≤ νi (i ∈ N),

for some cs0(α) ∈ R (α ∈ Fs), real symmetric matrices Ls
k(α, ω) (α ∈ F s, k = 1, 2, . . . ,m)

and M s
j(α, ω) (α ∈ Fs, j = 1, 2, . . . , `). Thus, replacing each monomial xα by a single real

variable yα, we obtain the SDP relaxation problem of the POP (22)

minimize
∑

α∈Fs

cs0(α)yα

subject to
∑

α∈Fs

Ls
k(α, ω)yα ∈ S

AC̃k
ω−ωk

+ (k = 1, 2, . . . , q),

∑

α∈Fs

Ls
k(α, ω)yα = O (k = q + 1, q + 2, . . . ,m),

∑

α∈Fs

M s
j(α, ω)yα ∈ SA

Cj
ω

+ (j = 1, 2, . . . , `), y0 = 1,

λi ≤ yei ≤ νi (i ∈ N),





(23)

where ei denotes the ith unit vector in Rn (i ∈ N). For each k = q + 1, q + 2, . . . ,m, all
coefficient matrices Ls

k(α, ω) (α ∈ F s) of the equality constraint

∑

α∈Fs

Ls
k(α, ω)yα = O ∈ SA

C̃k
ω−ωk

are symmetric. Hence, we can rewrite this equality constraint with respect to each compo-
nent in the lower triangluar part of Ls

k(α, ω) (α ∈ Fs).

5.2 Computing Optimal Solutions

After solving the sparse SDP relaxation by an SDP solver, an approximation to an optimal
solution of the POP (22) needs to be extracted. We describe a simple method used in
SparsePOP. By default, SparsePOP assumes that the POP (22) to be solved has a unique
optimal solution. Let ζω denote the optimal objective value and (yωα : α ∈ F s) the optimal
solution of the SDP (23). Note that the values of yωα (α ∈ {ei : i ∈ N}) correspond to the
variable xi (i ∈ N) in the POP (22). Thus, these values can be used as an approximation to
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an optimal solution xω of the POP (22). Let xωi = yei (i ∈ N) and xω = (xω1 , x
ω
2 , . . . , x

ω
n).

We know that f0(x) ≥ f∗
0 ≥ ζω for every feasible solution x of the POP (22), where f∗

0

denotes the unknown optimal value of (22). Therefore, we may regard xω an approximation
to the optimal solution of (22) (a) if xω (approximately) satisfies the constraints of (22) and
(b) if f0(x

ω) − ζω is sufficiently small. SparsePOP provides output information to decide
whether (a) and (b) are satisfied.

If the POP (22) has multiple global optimal solutions, the method described previously
will not work. In this case, SparsePOP replaces the objective polynomial f0(x) by f0(x) +
εdTx with an n-dimensional column vector d whose components are chosen randomly from
[0, 1] and ε > 0 a small positive parameter controlling the magnitude of the perturbation
term εdTx. The POP with this perturbed objective function is expected to have a unique
optimal solution. Then, we can apply the method described previously, and we may regard
xω an approximation to an optimal solution of the POP (22) if (a) and (b) are satisfied.
See the paper [WKK06] for more details.

A linear algebra method proposed by Henrion and Lasserre [HL03] computes multiple
optimal solutions of the POP (1) from an optimal solution of the dense SDP relaxation
problem (3). This method was extended to the sparse SDP relaxation problem (14) [Las06].
It was not implemented in SparsePOP since the cost of solving large-scale POPs is expected
to be much more expensive than the simple method discussed in this subsection.

5.3 Choosing a Higher Relaxation Order

If no parameter is specified, SparsePOP applies the spares SDP relaxation with the relax-
ation order ω = ωmax to a POP to be solved. If the obtained solution is not within the
range of desired accuracy, one can run SparsePOP again with different values of the param-
eters to attain an optimal solution of higher accuracy. In particular, the relaxation order ω
determines both the quality of an approximate solution and the size of the SDP relaxation
problem (23) of the POP (22). An approximation to an optimal solution of the POP (22)
with higher accuracy or not lower accuracy is expected by solving the SDP relaxation prob-
lem (23) as a larger value is chosen for ω. This, however, increases the cost of solving the
SDP relaxation (23). Thus, ω = ωmax is used initially, and it is successively increased by 1
if the approximate solution xω with higher accuracy needs to be found.

5.4 Scaling

In many POPs from applications, it is necessary to perform a scaling to obtain meaningful
numerical solutions. The scaling technique described here is intended to improve the nu-
merical stability. Suppose that both of the lower and upper bounds on xi are finite, i.e.,
−∞ < λi < νi < ∞ (i ∈ N) in the POP (22). We perform a linear transformation to the
variables xi such that zi = (xi − λi)/(νi − λi). The objective and constrained polynomials
gk ∈ R[z] (k = 0, 1, . . . ,m) become

gk(z1, z2, . . . , zn)

= fk((ν1 − λ1)z1 + λ1, (ν2 − λ2)z2 + λ2, . . . , (νn − λn)zn + λn).
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Then, normalize each gk ∈ R[z] such that hk(z) = gk(z)/χk, where χk denotes the maxi-
mum of the magnitude of the coefficients of the polynomial gk ∈ R[z] (k = 0, 1, 2, . . . ,m).
Consequently, we obtain a scaled POP

minimize h0(z)
subject to hk(z) ≥ 0 (k = 1, 2, . . . , q),

hk(z) = 0 (k = q + 1, . . . ,m),
0 ≤ zi ≤ 1 (i ∈ N),

which is equivalent to the POP (22).

5.5 Reducing the Sizes of SDP Relaxation Problems

A method to exploit the sparsity of SOS polynomials was proposed in [CLR95] to reduce the
size of the SOS relaxation. See also [KKW03]. This method is implemented in SparsePOP
to reduce the number and the sizes of the coefficient matrices M s

j(α, ω) (α ∈ Fs, j =
1, 2, . . . , `) in the sparse SDP relaxation (23) of the POP (22). We provide a brief description
of the method for the sparse SOS and SDP relaxations of the POP (1).

For every Gj ⊂ ACj
ω (j = 1, 2, . . . , `), let

Γ(G1,G2, . . . ,G`)

=

{
(ϕ, η) ∈ Φs

ω × R : L(x,ϕ) − η ∈
∑̀

j=1

R[x,Gj ]2
}
.

Then, the constraint of the SOS problem (20) can be rewritten as (ϕ, η) ∈ Γ(G1,G2, . . . ,G`)
with (G1,G2, . . . ,G`) = (AC1

ω ,AC2
ω , . . . ,AC`

ω ). As a result, if

Γ(G1,G2, . . . ,G`) = Γ(AC1
ω ,AC2

ω , . . . ,AC`
ω ) (24)

holds for some subset (G1,G2, . . . ,G`) of (AC1
ω ,AC2

ω , . . . ,AC`
ω ), then the constraint of the SOS

problem (20) can be replaced by L(x,ϕ) − η ∈
∑`

j=1 R[x,Gj ]2.
Recall that the sparse SOS relaxation is a dual of the sparse SDP relaxation described

in Section 3.4. The primal SDP relaxation corresponding to the sparse SDP relaxation is

obtained by replacing the constraint u(x,ACj
ω )u(x,ACj

ω )T ∈ SA
Cj
ω

+ (j = 1, 2, . . . , `) in the

PSDP (12) by u(x,Gj) u(x,Gj)T ∈ SGj

+ (j = 1, 2, . . . , `), F s by Gs =
⋃`
j=1(Gj + Gj), and

the sparse SDP problem (14) by

minimize
∑

α∈Gs

cs0(α)yα

subject to
∑

α∈Gs
,ω

Ls
k(α, ω)yα ∈ S

AC̃k
ω−ωk

+ (k = 1, . . . ,m),

∑

α∈Gs

N s
j(α, ω)yα ∈ SGj

+ (j = 1, . . . , `), y0 = 1,
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for some cs0(α) ∈ R (α ∈ Gs), real symmetric matrices Ls
k(α, ω) (α ∈ Gs, k = 1, 2, . . . ,m)

and N s
j(α, ω) (α ∈ Gs, j = 1, 2, . . . , `). Note that if Gj is a proper subset of ACj

ω ), then the
number of variables yα (α ∈ Gs) is smaller than that in the SDP relaxation problem (14)
and the size of the coefficient matrices N s

j(α, ω) (α ∈ Gs) is smaller than the size of the
corresponding coefficient matrices M s

j(α, ω) (α ∈ F s).

We now present the procedure for finding a proper subset (G1,G2, . . . ,G`) of (AC1
ω ,AC2

ω , . . . ,AC`
ω )

satisfying (24).

Step 0: Let F denote the set of exponents of monomials xα in L(x,ϕ) − ζx0 for
some ϕ ∈ Φs

ω, and F e = {α ∈ F : αi is even (i ∈ N)}. Let (G1,G2, . . . ,G`) =
(AC1

ω ,AC2
ω , . . . ,AC`

ω ).

Step 1: Find α ∈
⋃`
j=1 Gj such that

2α 6∈ F e and 2α 6∈
⋃̀

j=1

{β + γ : β ∈ Gj, γ ∈ Gj, β 6= α} .

Step 2: If there is no such α ∈
⋃`
j=1 Gj, then stop. Otherwise, let Gj = Gj\{α}

(j = 1, 2, . . . , `), and go to Step 1.

See [KKW03] for more details.

6 Numerical Results on SparsePOP with SDPA

SparsePOP [SPOP] is a Matlab package for solving unconstrained and constrained POPs
of the form (22) by the sparse (or dense) SDP relaxation method. When SparsePOP is
called for a POP specified in either the SparsePOP format [SPOP] or the GAMS scalar
format [GAMS], a sparse (or dense) SDP relaxation problem is first constructed with given
parameters, and then solved by the SDP solver SeDuMi [Str99] or SDPA [SDPA, YFN10].
At the end of computation, various information including approximations to the global
optimal value and solution, a lower bound for the global optimal value of the POP and the
elapsed time for solving the SDP problem is provided. As an option, SparsePOP refines the
computed approximation to the global optimal solution by applying the Matlab functions
fminunc, fmincon or lsqnonlin in Matlab Optimization Toolbox.

We compared the dense and sparse SDP relaxations, which were implemented in Sparse-
POP 2.20, with selected test problems from [CGT88, MFH81, Glo] to confirm the effective-
ness of exploiting the sparsity of POPs for improving the computational efficiency. We used
a Matlab version of SDPA 7.3.1 as an SDP solver, and performed all numerical experiments
on a 2.8GHz Intel Quad-Core i7 with 16GB memory.

The numerical results are shown in Table 3. The chained singular function, the Broyden
tridiagonal function, the Rosenbrock function, and the chained wood function in Table 3 are
unconstrained problems of the form: minimize f0(x) over x ∈ Rn. The other test problems
are constrained POPs of the form (22) from [Glo]. The Broyden tridiagonal function has
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two global minimizers, the one with x1 > 0 and the other with x1 < 0. We added the
constraint x1 ≥ 0 to exclude the second solution so that the function has a unique global
optimal solution subject to the constraint. For the numerical stability, we added lower and
upper bounds for the variables of some constrained POPs. See Section 5.4. The following
is the notation for Table 3.

eTime = the elapsed time in SDPA (the elapsed time

in the Matlab function fmincon) in seconds,

rObjErr =
|opt. val. of SDP − f0(x̂)|

max{1, f0(x̂)} ,

absErr = min{fj(x̂) (j = 1, 2, . . . , q), −|fk(x̂)| (k = q + 1, . . . ,m)},

where x̂ denotes an approximation to the optimal solution.

In Table 3, we observe that the size of unconstrained POPs that could be handled by
the sparse SDP relaxation is much larger than that of the dense SDP relaxation. More
precisely, the sparse SDP relaxation provided an accurate solution for the unconstrained
problems with n = 10, 000 while the dense SDP relaxation solved the problems of size up
to n = 24. For the constrained problems, the elapsed time for solving the sparse SDP
relaxation problem is much shorter than that for solving the dense SDP relaxation problem.
We can see that exploiting the sparsity was crucial to reduce the elapsed time. The errors
in the sparse SDP relaxation are compatible to those in the dense SDP relaxation.

Important factors that affect the computational efficiency for solving SDPs are:

no = the number of positive semidefinite matrix variables

of the SDP relaxation problem in the SDPA sparse format,

max = the maximum size of positive semidefinite matrix variables

of the SDP relaxation problem in the SDPA sparse format,

sizeL = the size of the Schur complement matrix,

nnzL = the number of nonzeros in a sparse Cholesky factor

of the Schur complement matrix.

Table 4 shows these numbers for the dense and sparse SDP relaxations. We notice that
the number of positive semidefinite variable matrices of the sparse SDP relaxation is larger
than that of the dense SDP relaxation. In fact, the difference is obtained by subtracting
one from the number of the maximum cliques C` (j = 1, 2, . . . , `) of the chordal extension of
the csp graph of the POP to be solved. The maximum size of positive semidefinite matrix
variables coincides with the size of Aω in the dense SDP relaxation problem (3), while it
coincides with the maximum of sizes of ACj

ω (j = 1, 2, . . . , `) in the sparse SDP relaxation
problem (14). We observe that the difference becomes larger as n or ω increases. Notice
that the size and the number of nonzeros of the Cholesky factor L of the Schur complement
matrix B are both much smaller in the sparse SDP relaxation. This confirms that these
factors considerably contributed to improving the efficiency of the sparse SDP relaxation.
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Dense SDP (+fmincon) Sparse SDP (+fmincon)
Problem n ωmax ω eTime rObjErr absErr eTime rObjErr absErr
Chained 12 2 2 8.7 4.6e-05 0.1 6.9e-04
Singular 24 2 2 6281.7 2.2e-05 0.1 3.3e-04

1000 2 2 6.2 8.8e-04
10000 2 2 79.1 5.8e-04

Broyden 12 2 2 8.4 1.6e-06 0.1 5.7e-07
Tridiag. 24 2 2 6364.9 7.8e-07 0.1 1.2e-06

1000 2 2 5.6 4.3e-06
10000 2 2 61.8 9.2e-04

Chained 12 2 2 0.2 7.9e-06 0.0 5.1e-05
Wood 24 2 2 30.9 7.3e-07 0.0 1.0e-05

1000 2 2 1.5 4.4e-04
10000 2 2 20.7 4.4e-03

Rosen- 12 2 2 4.6 2.2e-06 0.0 8.2e-05
brock 24 2 2 3974.7 8.6e-07 0.1 9.4e-05

1000 2 2 3.3 6.0e-05
10000 2 2 37.2 7.2e-05

ex2 1 8 24 1 1 0.2(0.4) 6.5e00 -2.7e-16 0.1(0.0) 6.5e00 -2.7e-16
2 34.2(0.0) 1.2e-06 -1.7e-16 4.6(0.0) 2.7e-06 -1.8e-16

ex3 1 1 8 1 2 0.3(0.2) 3.3e-02 -9.4e-13 0.1(0.1) 3.5e-02 -1.8e-14
3 72.8(0.0) 4.8e-07 -7.0e-14 0.4(0.0) 4.3e-07 -6.2e-14

ex5 2 2 9 1 1 0.0(0.1) 5.7e02 -1.4e-12 0.0(0.1) 5.7e02 -1.4e-12
case1 2 0.3(0.0) 2.0e-04 -2.5e-09 0.1(0.1) 1.3e-01 -9.5e-17

3 86.2(0.0) 1.8e-04 -2.5e-12 0.8(0.0) 1.8e-03 -2.8e-16
4 14.5(0.9) 4.8e-04 -1.4e-16

ex5 3 2 22 1 1 0.0( 4.3) 4.6e-01 -6.7e-17 0.0(4.2) 4.6e-01 -6.7e-17
2 43.2(0.1) 5.0e-06 -1.5e-09 0.9(5.7) 1.5e-01 -9.1e-17
3 48.1(1.1) 1.3e-04 -3.3e-14

ex5 4 2 8 1 2 0.4(0.9) 5.1e-01 -2.0e-16 0.1(0.1) 5.2e-01 -4.8e-13
3 65.7(0.0) 1.1e-05 -1.9e-16 0.5(0.0) 5.3e-08 -1.3e-14

alkyl 14 2 2 2.8(0.3) 1.0e-01 -1.3e-08 0.1(0.1) 1.5e-01 -1.4e-08
3 8975.3(0.0) 1.4e-05 -3.6e-13 0.9(0.0) 8.2e-06 -1.1e-07

Table 3: Numerical results on the dense and sparse relaxations applied to unconstrained
and constrained POPs.
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Dense SDP Sparse SDP
Mat. var. B = LLT Mat. var. B = LLT

Problem n ω no max sizeL nnzL no max sizeL nnzL
Broyden 12 2 2 91 1819 1655290 11 10 214 5005
Tridiag. 24 2 2 325 20474 209602575 23 10 454 10885

1000 2 999 10 19974 489125
10000 2 9999 10 199974 4899125

Chained 12 2 1 34 398 79401 11 4 53 261
Wood 24 2 1 103 2989 4468555 23 4 107 531

1000 2 999 4 4499 22491
10000 2 9999 4 44999 224991

ex5 4 2 8 2 23 14 320 36315 25 7 97 1929
3 23 83 2459 3023718 25 22 310 20496

alkyl 14 2 29 32 1181 308751 38 10 203 3886
3 29 264 22071 125984806 38 28 834 64729

Table 4: Comparison of the dense and sparse SDP relaxations

7 An Application to the Sensor Network Localization

Problem

We consider a sensor network localization (SNL) problem of n sensors in Rs: Compute
locations of sensors when distances between pairs of sensors located closely are available and
locations of some of the sensors are provided. We present the full SDP (FSDP) relaxation
[BY04] of the SNL problem and its sparse variant SFSDP relaxation [KKW09a] using the
frameworks of the dense SDP relaxation in Section 2 and the sparse SDP relaxation in
Section 3, respectively.

7.1 Quadratic Optimization Formulation of the SNL Problem

We assume that the location ar ∈ Rs of sensor r is known for r = m + 1, . . . , n. These
sensors are called anchors in the subsequent discussion. We denote the number of anchors
by ma(= n − m). Let ρ > 0 be a radio range, which determines the set N ρ

x for pairs of
sensors p and q such that their (Euclidean) distance dpq does not exceed ρ, and the set N ρ

a

for pairs of a sensor p and an anchor r such that their distance dpr does not exceed ρ;

N ρ
x = {(p, q) : 1 ≤ p < q ≤ m, ‖xp − xq‖ ≤ ρ},

N ρ
a = {(p, r) : 1 ≤ p ≤ m, m+ 1 ≤ r ≤ n, ‖xp − ar‖ ≤ ρ},

where xp ∈ Rs denotes the unknown location of sensor p (p = 1, 2, . . . ,m). Let N x be
a subset of N ρ

x and N a a subset of N ρ
a. By introducing zero objective function and the

distance equations as constraints, we have the following form of SNL problem with exact
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distance:
minimize 0
subject to ‖xp − xq‖2 = d2

pq (p, q) ∈ N x,
‖xp − ar‖2 = d2

pr (p, r) ∈ N a,

or equivalently,

minimize 0
subject to xT

pxp − 2xT
pxq + xT

q xq = d2
pq (p, q) ∈ N x,

xT
pxp − 2aTr xp + aTr ar = d2

pr (p, r) ∈ N a.



 (25)

For problems with noise, we consider

minimize
∑

(p,q)∈N x

(
ξ+
pq + ξ−pq

)
+

∑

(p,r)∈Na

(
ξ+
pr + ξ−pr

)

subject to xT
p xp − 2xT

p xq + xT
q xq + ξ+

pq − ξ−pq = d̂2
pq (p, q) ∈ N x,

xT
p xp − 2aTr xp + aTr ar + ξ+

pr − ξ−pr = d̂2
pr (p, r) ∈ N a,

ξ+
pq ≥ 0, ξ−pq ≥ 0 (p, q) ∈ N x,
ξ+
pr ≥ 0, ξ−pr ≥ 0 (p, r) ∈ N a,





(26)

where ξ+
pq + ξ−pq (or ξ+

pr + ξ−pr) indicates 1-norm error in the square of estimated distance d̂pq

between sensors p and q (or estimated distance d̂pr between sensor p and anchor r).

7.2 Dense SDP Relaxation

We apply the dense SDP relaxation described in Section 2 to (25). The resulting SDP
relaxation (27) coincides with FSDP relaxation proposed in the paper [BY04]. Obviously,
ωmax = 1. Let ω = ωmax. Then, the QOP (25) is transformed to an equivalent quadratic
SDP (QSDP) as the POP (1) transformed to the PSDP (2). Notice in (25) that each vector
variable xp appears in the inner products but its elements xpi (i = 1, 2, . . . , s) do not appear
explicitly. Using this observation, we can modify the construction of an QSDP equivalent
to (25). We consider the QSDP

minimize 0
subject to xT

pxp − 2xT
pxq + xT

q xq − d2
pq = 0 (p, q) ∈ N x,

xT
pxp − 2aTr xp + aTr ar − d2

pr = 0 (p, r) ∈ N a,
(I,x1,x2, . . . ,xm)T (I,x1,x2, . . . ,xm) � O,

which is equivalent to (25). Here I denotes the s × s identity matrix. Define an s × m
matrix variable X = (x1,x2, . . . ,xm). Then the last positive semidefinite constraint can be
rewritten as

(
I X

XT XTX

)
� O.
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Replacing the quadratic term XTX by a matrix variable Y ∈ Sm leads to the FSDP
relaxation [BY04] of (25).

minimize 0
subject to Ypp − 2Ypq + Yqq = d2

pq (p, q) ∈ N x,
Ypp − 2aTr X .p + aTr ar = d2

pr (p, r) ∈ N a,(
I X

XT Y

)
� O,





(27)

where X .p denotes the pth column of X, i.e., X .p = xp (p = 1, 2, . . . ,m).

Similarly, we obtain the dense SDP relaxation of the SNL problem (26) with noise.

minimize
∑

(p,q)∈N x

(
ξ+
pq + ξ−pq

)
+

∑

(p,r)∈Na

(
ξ+
pr + ξ−pr

)

subject to Ypp − 2Ypq + Yqq + ξ+
pq − ξ−pq = d̂2

pq (p, q) ∈ N x,

Ypp − 2aTr X .p + aTr ar + ξ+
pr − ξ−pr = d̂2

pr (p, r) ∈ N a,
ξ+
pq ≥ 0, ξ−pq ≥ 0 (p, q) ∈ N x,
ξ+
pr ≥ 0, ξ−pr ≥ 0 (p, r) ∈ N a,(

I X
XT Y

)
� O.

7.3 Sparse SDP Relaxation

We apply the sparse SDP relaxation described in Section 3 to (25). A chordal structured
sparsity is extracted from (25) using the fact that the expression of (25) includes each vector
variable xp in the inner products, not individual element xpi (i = 1, 2, . . . , s). Specifically,
each vector variable xp is regarded as a single variable when the csp graph G(V,E) of (25)
is constructed. Let V = {1, 2, . . . ,m} and

E =

{
(p, q) ∈ V × V :

p < q, xp and xq are involved
in an equality constraint of (25).

}

By construction, we know that E = N x. Let G(V, Ē) be a chordal extension of G(V,E)
and Cj (j = 1, 2, . . . , `) its maximal cliques. Then, consider the QSDP

minimize 0
subject to xT

pxp − 2xT
p xq + xTq xq − d2

pq = 0 (p, q) ∈ N x,
xT
pxp − 2aTr xp + aTr ar − d2

pr = 0 (p, r) ∈ N a,(
I X .Cj

XT
.Cj

XT
.Cj

X .Cj

)
� O (j = 1, 2, . . . , `),





(28)

which is equivalent to (25). Here X .Cj denotes the submatrix of X consisting of column
vectors xp (p ∈ Cj). We replace every xT

pxq in (28) by a real variable Ypq and define a
matrix variable Y CjCj of Ypq ((p, q) ∈ Cj × Cj) (j = 1, 2, . . . , `)). Then, the resulting SDP
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is

minimize 0
subject to Ypp − 2Ypq + Yqq − d2

pq = 0 (p, q) ∈ N x,
Ypp − 2aTr X .p + aTr ar − d2

pr = 0 (p, r) ∈ N a,(
I X .Cj

XT
.Cj

Y CjCj

)
� O (j = 1, 2, . . . , `).





(29)

The sparse SDP relaxation problem (29) is exactly the same as SFSDP relaxation prob-
lem proposed in Section 3.3 of [KKW09a] for a sparse variant of FSDP [BY04], although
the derivation of SFSDP from FSDP there is different. It was also shown in [KKW09a] that
SFSDP (i.e, (29)) is equivalent to FSDP (i.e., (27)) in the sense that their feasible solution
sets coincide with each other.

In the sparse SDP relaxation problem (29), we usually have Cj∩Ck 6= ∅ for some distinct
j and k. Thus, two positive semidefinite constraints

(
I X .Cj

XT
.Cj

Y CjCj

)
� O and

(
I X .Ck

XT
.Ck

Y CkCk

)
� O

share some variables Xip (i = 1, 2, . . . , s, p ∈ Cj ∩ Ck) and Ypq (p ∈ Cj ∩ Ck, q ∈ Cj ∩ Ck).
Thus, the sparse SDP problem (29) is not a standard SDP. It should be converted to an
equality standard form or an LMI standard form of SDP to apply the primal-dual interior-
point method [Bor99, SDPA, Str99, TTT03, YFN10]. A simple method is to represent

each matrix

(
O X .Cj

XT
.Cj

Y CjCj

)
as a linear combination of some constant matrices with the

variables Xip (i = 1, 2, . . . , s, p ∈ Cj) and Ypq ((p, q) ∈ Cj × Cj, p ≤ q) in the matrix. See
[KKM09] for more details on such conversions.

Although how N x is selected from N ρ
x and N a from N ρ

a is not mentioned, it is a very
important issue since their choice determines both the chordal structured sparsity and the
quality of the sparse SDP relaxation. As more edges from N ρ

x are chosen for N x, the csp
graph G(V,E) becomes denser. (Recall that E = N x.) Conversely, if not enough edges
from N ρ

x are chosen for N x, then the quality of the resulting sparse SDP relaxation would
be deteriorated. For details, we refer to [KKW09a, KKW09b].

7.4 Numerical Results on SFSDP

We report numerical results on the software package SFSDP [KKW09b, SFSDP], which is
a Matlab implementation of the sparse SDP relaxation in the previous subsection. The
package also includes the dense SDP relaxation in Section 7.2. We used a Matlab version of
SDPA 7.3.1 as an SDP solver, and performed all numerical experiments on a 2.8GHz Intel
Quad-Core i7 with 16GB memory. SNL problems with 1000 to 5000 sensors in R3 were used
for numerical experiments. Sensors and anchors were distributed randomly in the unit cube
[0, 1]3. The number of anchors was 10% or 5% of the number of sensors. The noisy factor
σ was changed from 0.0 to 0.2, the radio range ρ was fixed to 0.25, and the distances were
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perturbed to create a noisy problem such that

d̂pq = max{(1 + σεpq), 0.1}‖ap − aq‖ ((p, q) ∈ N ρ
x),

d̂pr = max{(1 + σεpr), 0.1}‖ap − ar‖ ((p, r) ∈ N ρ
a),

where εpq and εpr were chosen from the standard normal distribution N(0, 1), and ap denotes
the true location of sensor p. To measure the accuracy of locations of m sensors computed
by SDPA, and the accuracy of refined solutions by the gradient method [BLT06, LWY04],
we used the root mean square distance (RMSD)

(
1

m

m∑

p=1

‖xp − ap‖2

)1/2

,

where xp denotes the computed locations of sensor p.

Table 5 shows the performance of the dense and sparse SDP relaxations for solving SNL
problems with 1000 sensors and 100 randomly distributed anchors. The noisy factor σ was
changed from 0.0 to 0.2. SDPA eTime denotes the elapsed time by SDPA. We see that the
sparse SDP relaxation solves the problems much faster than the dense SDP relaxation while
achieving compatible accuracy as indicated in RMSD. The left figure of Fig. 5 shows the
locations of anchors ♦, the true locations of sensors ◦ and the computed locations of sensors
? for the problem with 1000 sensors, 100 anchors, σ = 0.2 and ρ = 0.25. We also observe
that the maximum size of matrix variables and the number of nonzeros of the Cholesky
factor L of the Schur complement matrix B are much smaller in the sparse SDP relaxation
than those in the dense SDP relaxation. This results in much faster elapsed time by the
sparse SDP relaxation. See also the right figure of Fig. 5.

Test problems SDP Mat. var. B = LLT RMSD SDPA
m, ma, ρ σ relaxation no max sizeL nnzL SDP w.Grad. eTime
m = 1000, 0.0 Dense 1 1003 5554 30846916 5.2e-4 3.1e-5 189.7
ma = 100 Sparse 962 27 7234 337084 2.3e-5 6.3e-6 5.7

distributed 0.1 Dense 1 1003 20034 401361156 5.5e-2 9.3e-3 744.1
randomly. Sparse 962 27 20586 405785 5.5e-2 9.3e-3 7.11
ρ = 0.25 0.2 Dense 1 1003 20034 401361156 8.0e-2 2.2e-2 860.1

Sparse 962 27 20586 405785 8.0e-2 2.2e-2 7.3

Table 5: Comparison of the dense and sparse SDP relaxations to solve 3-dimensional prob-
lems with 1000 sensors, 100 anchors, and ρ = 0.25.

We further tested the sparse SDP relaxation for SNL problems of 3000 and 5000 sensors,
and showed the results in Table 6. The elapsed time by SDPA for solving the resulting SDPs
remains short, obtaining accurate values of RMSD. We confirm that exploiting sparsity
greatly reduces elapsed time.
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8 Concluding Discussions

We have presented a survey of the sparse SDP relaxation of POPs. The methods described
in Section 3 for exploiting the sparsity characterized by the chordal graph structure were
originally proposed for SDP problems [FFK00]. See also [NFF03]. Recently, they have been
extended to nonlinear SDP problems in the paper [KKM09], which proposed conversion
methods for nonlinear SDP problems, including linear and polynomial SDP problems, into
smaller-sized problems, problems with smaller-sized matrix variables, and/or smaller-sized
matrix inequalities.

Lasserre’s dense SDP relaxation was extended to polynomial SDP problems [HL06, HS04,
Koj04], and to more general POPs over symmetric cones [KM07]. The sparse SDP relaxation
in Section 3 was also extended to polynomial optimization problems over symmetric cones
[KM09]. When we deal with a polynomial SDP problem, we can first apply the conversion
methods proposed in [KKM09] to the problem to reduce its size, and then apply the extended
sparse SDP relaxation [KM09] to the reduced polynomial SDP problem. Some numerical
results on quadratic SDP problems were shown in [KKM09].
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