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Abstract. We propose a class of quadratic optimization problems which can be reformulated by
completely positive cone programming with the same optimal values. The objective function can be
any quadratic form. The constraints of each problem are described in terms of quadratic forms with
no linear terms, and all constraints are homogeneous equalities, except one inhomogeneous equality
where a quadratic form is set to be a positive constant. For the equality constraints, “a hierarchy
of copositvity” condition is assumed. This model is a generalization of the standard quadratic
optimization problem of minimizing a quadratic form over the standard simplex, and covers many
of the existing quadratic optimization problems studied for exact copositive cone and completely
positive cone programming relaxations. In particular, it generalizes the recent results on quadratic
optimization problems by Burer and the set-semidefinite representation by Eichfelder and Povh.
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1. Introduction. A nonconvex quadratic optimization problem (abbreviated as
QOP) with quadratic equality and inequality constraints is known to be an NP hard
problem. It may include binary variables, and covers many important combinatorial
optimization problems such as max-cut problems, maximum stable set problems, and
quadratic assignment problems. Semidefinite programming (abbreviated by SDP)
relaxation techniques have been effectively used to compute bounds for its optimal
value and approximate optimal solution [13, 14, 17, 18, 19, 23, 26, 27, 28].

Relaxations using copositive cones and completely positive cones have attracted
a great deal of attention [3, 5, 6, 10, 11, 15, 21, 24, 25] in recent years. As a result,
many theoretical properties of the copositive and completely positive cones are known
[1, 4, 6, 8, 10], which can be used for developing effective relaxations. Despite numeri-
cal intractability of the copositive and completely positive cones used there, the study
on the relaxations is popular since they provide much stronger relaxations than SDP
relaxations. Relaxations using copositive cones and completely positive cones form
linear optimization problems over closed convex cones, and they are indeed the same
type of problems as linear programming problems, second order cone programming
problems and SDP problems for which powerful primal-dual interior-point methods
have been developed by [16, 20]. In addition, copositive and completely positive
cones can be expressed in a very simple form, as in the case of the cone of positive
semidefinite symmetric matrices. These facts have motivated us to study copositive
and completely positive cone relaxations of QOPs as a solution method for QOPs.
In particular, Burer [5] formulated the class of QOPs with linear constraints in both
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nonnegative continuous variables and binary variables as a linear optimization prob-
lem over a completely positive cone (abbreviated as CPP); more precisely, a QOP in
the class has the same optimal objective value of its CPP relaxation. Eichfelder and
Povh [11] extended Burer’s results to a QOP with an additional constraint u ∈ D in
its variable vector u, where D is a closed (not necessarily convex) set. This paper
presents a further extension of their results.

For related work, a QOP on the standard simplex was formulated as a CPP [2, 3].
The maximum stable set problem in [15], a graph tri-partitioning problem in [24], and
the quadratic assignment problem [24], were considered and reduced to CPPs. More
recently, general QOPs with quadratic constraints were represented as generalized
CPPs in [7]. However, it is not well understood yet whether a general class of QOPs
can be formulated as CPPs.

Our main purpose of this paper is to propose a new class of QOPs which have
the same optimal objective values as their CPP relaxations. The proposed class not
only covers the class of QOPs with linear constraints in both nonnegative continuous
variables and binary variables, but also increases the prospects for formulating various
QOPs in a more general form as CPPs. We will employ a QOP with a cone constraint
x ∈ K in its n-dimensional vector x, where K is a closed (not necessarily convex) cone.
Although working with x in the n-dimensional nonnegative orthant Rn

+, the most
important special case, was the starting point of this work, it immediately became
clear that the generalization from the nonnegative orthant to a general closed cone is
straightforward by just replacing Rn

+ by K and modifying slightly. This generalization
is described in the main results in Section 3 and their proofs in Section 4. In fact, Rn

+

is a convex cone, but its convexity does not play any essential role.

This paper is organized as follows. In Section 2, we provide some notation and
symbols for the subsequent sections, and introduce a standard form QOP whose exact
CPP relaxation is a main subject of this paper. The QOP is described in terms of
quadratic forms with no linear terms. The objective function is a quadratic form,
and all constraints are homogeneous equalities in nonnegative variables, except one
inhomogeneous equality where a quadratic form is set to be a positive constant. We
show how a general QOP with a constraint u ∈ D in its variable vector u can be
described in the standard form QOP. We also introduce a CPP relaxation of the
standard form QOP.

In Section 3, we build a hierarchical structure into the constraint of the QOP.
Two sets of conditions, simple ones in Section 3.1 and general ones in Section 3.2, are
imposed on the hierarchically structured constraint to ensure that the QOP and its
CPP relaxation have an equivalent optimal value. Among those conditions, “a hier-
archy of copositivity” plays an essential role, which may be regarded as an extension
of a one step copositivity condition in [5]. Section 3.1 deals with a simple case where
a stronger and simple set of conditions on the compactness of the feasible region of
the QOP is assumed. The main result (Theorem 3.2) is a special case of Theorem 3.5
in Section 3.2, where a similar result is established under a general and weaker set of
conditions. The simple arguments in Section 3.1 may facilitate understanding of the
arguments in Section 3.2.

Section 4 is devoted to proofs of the lemmas in Section 3.2. Four examples
are presented in Section 5 to show that they can be reduced to the standard form
QOP that satisfies either the simple set of conditions or the general set of conditions.
Section 5.1 includes a QOP with linear equality constraints in nonnegative continuous
variables and binary variables, and an additional constraint u ∈ D in its variable
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vector u. This type of QOPs was studied in [11]. The last two examples demonstrate
that the standard form QOP satisfying the general set of conditions can cover new
types of QOPs. In Section 6, the concluding remarks are included.

2. Preliminaries.

2.1. Notation and symbols. We use the following notation and symbols through-
out the paper.

Rn = the space of n-dimensional column vectors,

Rn
+ = the nonnegative orthant of Rn,

K = a closed (not necessarily convex) cone in Rn,

Sn = the space of n× n symmetric matrices,

Sn+ = the cone of n× n symmetric positive semidefinite matrices,

N = the cone of n× n symmetric nonnegative matrices,

CK =
{
A ∈ Sn : xTAx ≥ 0 for all x ∈ K

}
(a generalized copositive cone),

C∗K =

{
r∑

i=1

xjx
T
j : xj ∈ K (j = 1, 2, . . . , r) for some r ≥ 1

}
(a generalized completely positive cone).

We know by Corollary 1.5 of [11] that C∗K is a closed convex cone and that CK and
C∗K are dual of each other in Sn :

C∗K = {X ∈ Sn : A •X ≥ 0 for every A ∈ CK} ,
CK = {A ∈ Sn : A •X ≥ 0 for every X ∈ C∗K} .

Here A •X denotes the inner product
∑n

i=1

∑n
j=1AijXij of A ∈ Sn and X ∈ Sn. If

we take K = Rn
+, CK and C∗K are known as the copositive cone and the completely

positive cone, which will be simply denoted by C and C∗, respectively. If K = Rn, both
CK and C∗K coincide with Sn+. We have the relation C∗ ⊂ Sn+

⋂
N ⊂ Sn+ ⊂ Sn+ +N ⊂ C.

For x ∈ Rn, xT denotes the transposition of x, and xT is an n-dimensional row
vector. We use notation (u, s) ∈ Rm+n for the (m + n)-dimensional column vector
consisting of u ∈ Rm and s ∈ Rn. The quadratic form xTQx associated with a matrix
Q ∈ Sn is represented as Q • xxT for every x ∈ Rn. In the subsequent discussions,
Q•xxT is used to suggest that Q•xxT with x ∈ K is relaxed to Q•X with X ∈ C∗K.

For each subset U of Sn, conv U denotes the convex hull of U , cl U the closure of
U , and cone U the cone generated U ; cone U = {µX : X ∈ U, µ ≥ 0} .

2.2. A standard form QOP and its CPP relaxation. Let ρ > 0, Q ∈ Sn
and Hk ∈ Sn (k = 0, 1, 2, . . . , p). For the discussion on QOP, we consider a QOP of
the form

minimize Q • xxT

subject to x ∈ K, H0 • xxT = ρ, Hk • xxT = 0 (k = 1, 2, . . . , p).

Let

G̃p =
{
xxT : x ∈ K, H0 • xxT = ρ, Hk • xxT = 0 (k = 1, 2, . . . , p)

}
.

Then, the QOP is rewritten as

minimize Q • xxT subject to xxT ∈ G̃p.(2.1)
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The important features of QOP (2.1) are: (i) the objective and constraint functions are
all represented in terms of quadratic forms and (ii) the constraints are homogeneous
equalities, except one nonhomogeneous equality where a quadratic form is set to a
positive number. These two features play an essential role for the discussions in the
next section.

We show that QOP (2.1) represents fairly general quadratic optimization prob-
lems. Let D be an arbitrary closed subset of Rn. Consider a general QOP of the
form

minimize uTQ0u + 2cT0 u + γ0
subject to uTQku + 2cTk u + γk = 0 (k = 1, 2, . . . , p), u ∈ D,(2.2)

where Qk ∈ Sm, ck ∈ Rm and γk ∈ R (k = 0, 1, . . . , p). We embed the closed set
D ⊂ Rm into the higher dimensional space R1+m by letting K be the closure of{

(u0, u0u) ∈ R1+m : u0 ≥ 0, u ∈ D
}

. Then, we can rewrite QOP (2.2) as

minimize uTQ0u + 2u0c
T
0 u + γ0u

2
0

subject to (u0,u) ∈ K, u20 = 1, uTQku + 2u0c
T
k u + γku

2
0 = 0 (k = 1, 2, . . . , p).

By definition, K is a closed cone in R1+m, and not necessarily convex. Now, the
objective and constraint functions are represented in quadratic forms of (u0,u) ∈
R1+m with no linear nor constant terms. If we let

n = 1 +m, ρ = 1, x =

(
u0
u

)
∈ Rn, Q =

(
γ0 cT0
c0 Q0

)
∈ Sn,

H0 =

(
1 0T

0 O

)
∈ Sn, Hk =

(
γk cTk
ck Qk

)
∈ Sn (k = 1, 2, . . . , p),

we can reduce a general QOP in the form of (2.2) to QOP (2.1).

Our CPP relaxation of QOP (2.1) is obtained by replacing xxT with X ∈ C∗K.

minimize Q •X subject to X ∈ Ĝp,(2.3)

where

Ĝp = {X ∈ C∗K : H0 •X = ρ, Hk •X = 0 (k = 1, 2, . . . , p)} .

Our main results presented in Section 3 assert that CPP (2.3) has the same optimal
objective value as QOP (2.1) under certain assumptions.

Remark 2.1. A special case of QOP (2.2) was studied in [11] where Eich-
felder and Povh extended Burer’s result [5] on QOPs with linear constraints in both
continuous nonnegative variables and binary variables to QOPs with an additional
nonconvex constraint x ∈ D. In particular, more general cones of symmetric matrices
than CK and C∗K were introduced in [11]. Let K be an arbitrary nonempty subset
of Rn. Then, CK =

{
A ∈ Sn : A • xxT ≥ 0 for all x ∈ K

}
was called K-semidefinite

(or set-semidefinite) cone. They reduced this particular special case of QOP (2.2) to
a linear optimization problem over the dual of C1×D, where 1×D = {(1,d) : d ∈ D}.
See also Remark 5.1. One contribution of this paper is that the special case is extended
to a QOP (2.1), which is more general than QOP (2.2).



A Quadratically Constrained Quadratic Optimization Model for CPP Programming 5

3. Main results. In order to describe the assumptions on QOP (2.1), we con-

struct a hierarchy into its constraint set G̃p. Define subsets G̃` of C∗K (` = 0, 1, 2, . . . , p)
recursively by

G̃0 =
{
xxT : x ∈ K, H0 • xxT = ρ

}
,

G̃` =
{
xxT ∈ G̃`−1 : H` • xxT = 0

}
=

{
xxT : x ∈ K, H0 • xxT = ρ and Hk • xxT = 0 (k = 1, 2, . . . , `)

}
(` = 1, . . . , p).

(3.1)

Since the objective function of QOP (2.1) is linear in xxT , QOP (2.1) is equivalent
to

minimize Q •X subject to X ∈ cl conv G̃p.(3.2)

More precisely, inf
{
Q • xxT : xxT ∈ G̃p

}
= inf

{
Q •X : X ∈ cl conv G̃p

}
. We im-

pose some conditions on H0, H` and G̃`−1 (` = 1, 2, . . . , p) that ensure the identity

Ĝp = cl conv G̃p. Then, QOP (3.2) and CPP (2.3) have an equivalent optimal value.
We describe a simple case in Section 3.1 and a general case under weaker assump-

tions in Section 3.2. The simple case may be regarded as a special case of the general
case. The discussion in Section 3.1 is intended to help the readers understand slightly
elaborate arguments in Section 3.2.

3.1. A simple case. We impose the following conditions on H0, H` and G̃`−1
(` = 1, 2, . . . , p) throughout Section 3.1.
(A) R 3 ρ > 0 and H0 • xxT > 0 for every nonzero x ∈ K.

(B̃) For every ` = 1, 2, . . . , p,

H` • xxT ≥ 0 if xxT ∈ G̃`−1.(3.3)

Remark 3.1. We discuss the relationship between the conditions above and
the two conditions in the middle of page 488 of [5], which were said to be essential
to prove an equivalence of a QOP with linear equality constraints in nonnegative
continuous variables and binary variables to its CPP relaxation. Condition (B̃) may
be regarded as an extension of the first condition to our hierarchical QOP model,
and Condition (D) in Section 3.2 is a generalization of the second condition. It was
mentioned in Section 3.2 of [5] that the complementarity constraint xi ≥ 0, xj ≥ 0
and xixj = 0 satisfies the first condition, thus, complementarity constraints could be
added to their QOP if the constraints satisfies the second condition. This also applies
to our hierarchical QOP model.

Clearly, G̃0 is bounded by (A), and so are G̃` (` = 1, 2, . . . , p) since G̃` ⊂ G̃0

(` = 1, 2, . . . , p). If H` is positive definite, then (B̃) is trivially satisfied. In this case,

however, G̃` = ∅ (` = 1, . . . , p) since 0 6∈ G̃0. In general, low rank matrices are used
for H` (` = 1, . . . , p). Condition (A) requires H0 to be chosen from the interior of CK.

Let ` ∈ {1, 2, . . . , p}. If G̃` is nonempty, then (3.3) means that {X ∈ Sn : H`•X = 0}
forms a supporting hyperplane of G̃`−1 at every xxT ∈ G̃`.

In the hierarchical construction of G̃` (` = 0, 1, 2, . . . , p) in (3.1), a single homo-
geneous equality H` • xxT = 0 is added at each level ` ≥ 1. We can extend this
construction so that multiple homogeneous equalities are added at each level ` ≥ 1.
Suppose that

G̃` =
{
x ∈ G`−1 : H`i • xxT = 0 (i = 1, 2, . . . , i`)

}
(` = 1, . . . , p),
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where H`i ∈ Sn (i = 1, 2, . . . , i`, ` = 1, 2, . . . , p). In this case, (B̃) is replaced by

(B̃)’ For every ` = 1, 2, . . . , p, H`i • xxT ≥ 0 (i = 1, 2, . . . , i`) if xxT ∈ G̃`−1.

But, under Condition (B̃)’, we see that xxT ∈ G̃`−1 and H`i • xxT = 0 (i =

1, 2, . . . , i`) if and only if x ∈ G̃`−1 and
(∑i`

i=1 H`i

)
• xxT = 0. As a result, if

we let H` =
∑i`

i=1 H`i, then G̃` can be rewritten as in (3.1) with a single homoge-
neous equality added at each level `. We emphasize that this technique is effective
in reducing the number of equality constraints in QOP (2.1) and its CPP relaxation
(2.3). In particular, it is shown in Section 5.1 that a QOP with linear constraints in
both continuous nonnegative variables and binary variables is formulated as a QOP
with three equality constraints.

Now, we introduce the completely positive cone relaxations Ĝ` of G̃` (` = 0, 1, 2,
. . . , p) by

Ĝ0 = {X ∈ C∗K : H0 •X = ρ} ,
Ĝ` =

{
X ∈ Ĝ`−1 : H` •X = 0

}
= {X ∈ C∗K : H0 •X = ρ and Hk •X = 0 (k = 1, 2, . . . , `)}

(` = 1, 2, . . . , p).

(3.4)

Theorem 3.2. Assume Conditions (A) and (B̃). Then, conv G̃` = Ĝ` (` =
0, 1, . . . , p).

Proof. Let ` ∈ {0, 1, . . . , p}. Since G̃` ⊂ Ĝ` and Ĝ` is convex, conv G̃` ⊂ Ĝ`

follows. We apply the induction on ` = 0, 1, . . . , p to prove Ĝ` ⊂ conv G̃`.
Let ` = 0. Suppose that X ∈ Ĝ0. Then X 6= O and there exist nonzero

xix
T
i ∈ G̃0 (i = 1, 2, . . . , r) such that

X =

r∑
i=1

xix
T
i , H0 •

(
r∑

i=1

xix
T
i

)
= ρ.

Let λi = H0 • xix
T
i /ρ (i = 1, 2, . . . , r), which are positive by (A), and let

yi = xi/
√
λi ∈ K (i = 1, 2, . . . , r), Y i = yiy

T
i (i = 1, 2, . . . , r),

Then,

H0 • Y i = H0 • (xi/
√
λi)(xi/

√
λi)

T =
H0 • xix

T
i

λi
= ρ (i = 1, 2, . . . , r).

As a result, Y i ∈ G̃0 (i = 1, 2, . . . , r). Furthermore, we see that

X =

r∑
i=1

λi(xi/
√
λi)(xi/

√
λi)

T =

r∑
i=1

λiyiy
T
i =

r∑
i=1

λiY i,

r∑
i=1

λi =

r∑
i=1

H0 • xix
T
i /ρ = 1, λi > 0 (i = 1, 2, . . . , r).

Therefore, we have shown that X is a convex combination of Y i ∈ G̃0 (i = 1, 2,
. . . , r).
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Now, let ` ≥ 1 and assume the inclusion relations Ĝk ⊂ conv G̃k (k = 1, 2, . . . , `−
1) to prove the relation Ĝ` ⊂ conv G̃`. Suppose that X ∈ Ĝ`. It follows from

Ĝ` ⊂ Ĝ`−1 ⊂ conv G̃`−1 that X ∈ conv G̃`−1. Hence, there exist xix
T
i ∈ G̃`−1 and

λi > 0 (i = 1, 2, . . . , r) such that

X =

r∑
i=1

λixix
T
i ,

r∑
i=1

λi = 1.

By Condition (B̃), H` • xix
T
i ≥ 0 (i = 1, 2, . . . , r). On the other hand, we know

X =
∑r

i=1 λixix
T
i ∈ Ĝ`. Thus, 0 = H` • X =

∑r
i=1 λi

(
H` • xix

T
i

)
. By the

inequalities H` • xix
T
i ≥ 0 and λi > 0, we obtain that H` • xix

T
i = 0, which,

with xix
T
i ∈ G̃`−1, implies that xix

T
i ∈ G̃` (i = 1, 2, . . . , r). Since X is a convex

combination of xix
T
i ∈ G̃` (i = 1, 2, . . . , r), we have shown that X ∈ conv G̃`.

Theorem 3.2 ensures that conv G̃` (` = 0, 1, . . . , p) are closed and that QOP (3.2)

and CPP (2.3) are equivalent under Conditions (A) and (B̃). In Theorem 3.2, we can

replace Condition (B̃) with

(B̂) For every ` = 1, 2, . . . , p, H` •X ≥ 0 if X ∈ Ĝ`−1.

In fact, we see that (B̂) implies (B̃) since G̃`−1 ⊂ Ĝ`−1, and that if (B̃) holds then

conv G̃`−1 = Ĝ`−1 by the theorem.

3.2. A general case under weaker conditions. When a given QOP is for-
mulated in the form of (2.1) by constructing the hierarchy of its feasible region with

G̃` (` = 0, 1, . . . , p), Condition (A) on the boundedness of G̃0 may prevent a straight-

forward reformulation, even when the resulting feasible region G̃p is bounded. See
Section 5.1 for such an example. Motivated by this observation, we deal with the
problems where G̃p can be unbounded in this subsection.

Let

L̃0 =
{
ddT : d ∈ K, H0 • ddT = 0

}
,

L̃` =
{
ddT ∈ L̃`−1 : H` • ddT = 0

}
(` = 1, 2, . . . , p).

(3.5)

Let ` ∈ {0, 1, . . . , p}. We call ddT ∈ C∗K an asymptotic unbounded direction of G̃` if
there is a sequence {

(µs,us(us)T ) ∈ R+ × G̃` : s = 1, 2, . . .
}

such that ‖us‖ → ∞ and (
√
µs,
√
µsus)→ (0,d) (or equivalently (µs, µsus(us)T )→

(0,ddT )) as s → ∞. We can prove that if ddT ∈ C∗K is an asymptotic unbounded

direction of G̃`, then ddT ∈ L̃`. But, the converse is not necessarily true in general,
even when K = Rn

+. We show such examples below and in Section 5.4. It will be

required that L̃p\{O} coincide with the set of asymptotic unbounded directions of

G̃p in Lemma 3.4.

It can be easily verified that L̃` is a closed cone (` = 0, 1, 2, . . . , p). Thus, we have

conv L̃` =


q∑

j=1

djd
T
j : djd

T
j ∈ L̃` (j = 1, 2, . . . , q) for some q ≥ 0

 .
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In the remainder of this section, we establish

cl conv G̃p = conv G̃p + conv L̃p = Ĝp(3.6)

with additional assumptions. Note that L̃` = {O} (` = 0, 1, . . . , p) if Condition (A)

holds. In this case, we have already confirmed that conv G̃p = Ĝp in Section 3.1.
Lemma 3.3.

(i) cl conv G̃` ⊂ conv G̃` + conv L̃` (` = 0, 1, . . . , p).

(ii) conv G̃` + conv L̃` ⊂ Ĝ` (` = 0, 1, . . . , p).
Proof. See Section 4.1.
We now introduce additional conditions.

(A)’ R 3 ρ > 0 and O 6= H0 ∈ CK
(C̃) For every ` = 1, 2, . . . , p,

H` • ddT ≥ 0 if ddT ∈ L̃`−1.(3.7)

(D) Every nonzero ddT ∈ L̃p is an asymptotic unbounded direction of G̃p.
Condition (A)’ is weaker than Condition (A). Specifically, we can now choose any

nonzero H0 ∈ CK to satisfy Condition (A)’, and G̃p can be unbounded. We also
mention that Condition (D) involves only p, but not ` for ` = 0, 1, . . . , p. If

(D)’ every nonzero ddT ∈ L̃` is an asymptotic unbounded direction of G̃`

holds for some ` = 0, 1, . . . , p, we can prove that L̃` = {O} if and only if G̃` is
bounded.

Let ` ∈ {1, 2, . . . , p} be fixed. It can be easily verified that the following three
statements are equivalent:

Both (3.3) and (3.7) hold.(3.8)

H` •X ≥ 0 if X ∈ conv G̃`−1 + conv L̃`−1.(3.9)

H` •X ≥ 0 if X ∈ cone conv G̃`−1 + conv L̃`−1.(3.10)

Using almost the same argument as in the proof of (iii) of Lemma 3.4 (see the first

paragraph of Section 4.2), we can prove that cone conv G̃0 + conv L̃0 = C∗K. Hence,

we need to choose H1 from CK under Conditions (B̃) and (C̃).
Suppose that ` ≥ 2. Obviously, we have

cone conv G̃`−1 + conv L̃`−1 ⊃ cone conv G̃` + conv L̃`.(3.11)

If this inclusion is not proper, i.e. cone conv G̃`−1 + conv L̃`−1 = cone conv G̃` +

conv L̃`, then (3.10) implies that

H` •X ≥ 0 and H`+1 •X ≥ 0 for every X ∈ cone conv G̃`−1 + conv L̃`−1.

In this case, we have

G̃`+1 =
{
xxT ∈ G̃` : H`+1 • xxT = 0

}
=
{
xxT ∈ G̃`−1 : H` • xxT = 0, H`+1 • xxT = 0

}
=
{
xxT ∈ G̃`−1 : (H` + H`+1) • xxT = 0

}
,

L̃`+1 =
{
xxT ∈ L̃`−1 : (H` + H`+1) • xxT = 0

}
.
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Thus, we can reconstruct the hierarchical structure such that

G̃` =
{
xxT ∈ G̃`−1 : (H` + H`+1) • xxT = 0

}
,

G̃`+2 =
{
xxT ∈ G̃` : H`+2 • xxT = 0

}
,

L̃` =
{
xxT ∈ L̃`−1 : (H` + H`+1) • xxT = 0

}
,

L̃`+2 =
{
xxT ∈ L̃` : H`+2 • xxT = 0

}
and skip the hierarchical level `+ 1. Consequently, we may assume under Conditions
(B̃) and (C̃) that the inclusion in (3.11) is proper. This implies that the dual cone

of cone conv G̃`−1 + conv L̃`−1, which H` needs to be chosen from due to (3.10),
expands monotonically as ` increases from 2 through p.

We now consider a simple example to show why Condition (D) is necessary. Let

n = 2, p = 1, ρ = 1, K = R2
+, H0 =

(
1 0
0 0

)
∈ S2+, H1 =

(
0 1
1 0

)
∈ C,

to define G̃0 and G̃1 by (3.1), and L̃0 and L̃1 by (3.5). Then,

G̃1 =
{
xxT : x = (x1, x2) ∈ R2

+, x1 = 1, x1x2 = 0
}

= {(1, 0)} ,

L̃1 =
{
xxT : x = (x1, x2) ∈ R2

+, x1 = 0, x1x2 = 0
}

= {(0, x2) : x2 ≥ 0} .

Thus, cl conv G̃1 = {(1, 0)} 6= {(1, x2) : x2 ≥ 0} = conv G̃1 + conv L̃1. Notice that it

has resulted in cl conv G̃1 6= conv G̃1 + conv L̃1, even with a closed bounded convex
set G̃1. This simple example does not satisfy Condition (D) because L̃1 contains a

nonzero ddT with d = (0, 1) and G̃1 is bounded.

Lemma 3.4.

(iii) Assume Conditions (A)’, (B̃) and (C̃). Then, conv G̃` + conv L̃` ⊃ Ĝ` (` =
0, 1, . . . , p).

(iv) Assume Condition (D). Then, cl conv G̃p ⊃ conv G̃p + conv L̃p.

Proof. See Section 4.2.

The assumptions and the conclusion of (iii) of Lemma 3.4 imply that (3.8), (3.9)

and (3.10) with ` = 1, 2, . . . , p as well as Condition (B̂) hold. On the other hand, if

Condition (B̂) is satisfied then either of (3.8), (3.9) and (3.10) with ` = 1, 2, . . . , p

holds by (ii) of Lemma 3.3; hence Conditions (B̃) and (C̃) follow. Therefore, the two

conditions (B̃) and (C̃) can be combined into (B̂) without weakening the assertion
(iii) of Lemma 3.4. By Lemmas 3.3 and 3.4, we obtain:

Theorem 3.5. Assume Conditions (A)’, (B̂) and (D) (or equivalently, Condi-

tions (A)’, (B̃), (C̃) and (D)). Then, the identity (3.6) holds. Moreover, if G̃p is

bounded (hence L̃p = {O} by Condition (D)) then conv G̃p = Ĝp.

4. Proofs. Before presenting the proofs of Lemmas 3.3 and 3.4, we describe a
characterization of points in G̃` and conv L̃`. Let ` ∈ {0, 1, . . . , p}. We know that

Y ∈ conv G̃` if and only if there exist Y i ∈ G̃`, yi ∈ K and λi ∈ R (i = 1, 2, . . . , r)
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such that

Y =

r∑
i=1

λiY i,

r∑
i=1

λi = 1, λi ≥ 0 (i = 1, 2, . . . , r),

Y i ∈ G̃` (i = 1, 2, . . . , r), i.e.,
Y i = yi(yi)

T ,yi ∈ K, H0 • Y i = ρ,
Hk • Y i = 0 (k = 1, 2, . . . , `) (i = 1, 2, . . . , r).

(4.1)

Note that D ∈ conv L̃` if an only if there exist dj ∈ K (j = 1, 2, . . . , q) such that

D =

q∑
j=1

djd
T
j , Hk • djd

T
j = 0 (k = 0, 1, . . . , `) (j = 1, 2, . . . , q).(4.2)

We can fix both r and q so that dim Sn+1 = n(n+1)/2+1 (Carathéodory’s theorem).

4.1. Proof of Lemma 3.3. Proof of (i) cl conv G̃` ⊂ conv G̃` +conv L̃`

(` = 0, 1, . . . , p): Let ` ∈ {0, 1, . . . , p}. Assume that X ∈ cl conv G̃`. Then, there

is a sequence {Xs ∈ conv G̃` : s = 1, 2, . . . } converging to X. Each Y = Xs is

characterized by (4.1) for some Y i = Xs
i ∈ G̃`, yi = xs

i ∈ K and λi = λsi ∈ R
(i = 1, 2, . . . , r). Since both

√
λsix

s
i (
√
λsix

s
i )

T and Xs −
√
λsix

s
i (
√
λsix

s
i )

T are
positive semidefinite (i = 1, 2, . . . , r, s = 1, 2, . . . ) and Xs → X as s → ∞, the
sequence {(√

λs1x
s
1,
√
λs2x

s
2, . . . ,

√
λsrx

s
r

)
: s = 1, 2, . . .

}
is bounded. And, the sequence {(λs1, λs2, . . . , λsr) : s = 1, 2, . . . } is also bounded. We
may assume without loss of generality that(√

λs1x
s
1,
√
λs2x

s
2, . . . ,

√
λsrx

s
r

)
→ (d1,d2, . . . ,dr) and

(λs1, λ
s
2, . . . , λ

s
r)→ (λ1, λ2, . . . , λr)

as s→∞ for some (d1,d2, . . . ,dr) and (λ1, λ2, . . . , λr). Let

Ibd =

{
i : sup

s
‖xs

i‖ <∞
}

and I∞ =

{
j : sup

s
‖xs

j‖ =∞
}
.

Then, we can take a subsequence of {(xs
1,x

s
2, . . . ,x

s
r)} along which

xs
i → xi for some xi ∈ K (i ∈ Ibd) and ‖xs

j‖ → ∞, λsj → 0 (j ∈ I∞).

Consequently,

Xs =
∑
i∈Ibd

λsix
s
i (x

s
i )

T +
∑
j∈I∞

(
√
λsjx

s
j)(
√
λsjx

s
j)

T ,

1 =
∑
i∈Ibd

λsi +
∑
j∈I∞

λsj , λ
s
i ≥ 0 (i ∈ Ibd), xs

i ∈ K (i ∈ Ibd),

√
λsjx

s
j ∈ K (j ∈ I∞),

ρ = H0 •Xs
i = H0 • xs

i (x
s
i )

T (i ∈ Ibd),

λsiρ = λsi
(
H0 • xs

i (x
s
i )

T
)

= H0 •
√
λsix

s
i

(√
λsix

s
i

)T
(i ∈ I∞),

0 = Hk •Xs
i = Hk • xs

i (x
s
i )

T (k = 1, 2, . . . , `) (i ∈ Ibd),

0 = λsi ×Hk •Xs
i = Hk •

√
λsix

s
i

(√
λsix

s
i

)T
(k = 1, 2, . . . , `) (i ∈ I∞).
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Taking the limit along the subsequence, we obtain

X =
∑
i∈Ibd

λixi(xi)
T +

∑
j∈I∞

djd
T
j ,

1 =
∑
i∈Ibd

λi, λi ≥ 0 (i ∈ Ibd), xi ∈ K (i ∈ Ibd), dj ∈ K (j ∈ I∞),

ρ = H0 • xix
T
i (i ∈ Ibd), 0 = H0 • djd

T
j (j ∈ I∞),

0 = Hk • xix
T
i (i ∈ Ibd), 0 = Hk • djd

T
j (j ∈ I∞), (k = 1, 2, . . . , `).

(4.3)

Thus, we have shown that X ∈ conv G̃` + conv L̃`.

Proof of (ii) conv G̃` + conv L̃` ⊂ Ĝ` (` = 0, 1, . . . , p): Let ` ∈ {0, 1, . . . , p}.
Suppose that X ∈ conv G̃`+conv L̃`. Then, X = Y +D for some Y ∈ conv G̃` and
some D ∈ conv L̃`. Recall that Y ∈ conv G̃` and D ∈ conv L̃` are characterized
by (4.1) and (4.2), respectively. Hence,

X =

r∑
i=1

(
√
λiyi)(

√
λiyi)

T +

q∑
j=1

djdj ∈ C∗K,

H0 •X = H0 •

 r∑
i=1

λiY i +

q∑
j=1

djdj

 =

r∑
i=1

λi (H0 • Y i) = ρ

r∑
i=1

λi = ρ,

Hk •X = Hk •

 r∑
i=1

λiY i +

q∑
j=1

djdj

 = 0 (k = 1, 2, . . . , `).

This implies X ∈ Ĝ`.

4.2. Proof of Lemma 3.4. Proof of (iii) conv G̃` + conv L̃` ⊃ Ĝ` (` =

0, 1, . . . , p) under Condition (A)’, (B̃) and (C̃): We use an induction argu-

ment to prove conv G̃` + conv L̃` ⊃ Ĝ` (` = 0, 1, . . . , ). Let ` = 0. Assume that

X ∈ Ĝ0. Then, there exist xi ∈ K (i = 1, 2, . . . , r) such that

X =

r∑
i=1

xix
T
i , H0 •X = ρ.

Let λi = (H0 •xixi)/ρ (i = 1, 2, . . . , r). By Condition (A)’, λi ≥ 0 (i = 1, 2, . . . , r).
Let

I+ = {i : λi > 0}, I0 = {i : λi = 0}, yi = xi/
√
λi ∈ K (i ∈ I+).

Then,

X =
∑
i∈I+

λiyiy
T
i +

∑
j∈I0

xjx
T
j , λi > 0 (i ∈ I+),

∑
i∈I+

λi =
∑
i∈I+

(H0 • xixi)/ρ =

r∑
i=1

(H0 • xixi)/ρ = (H0 •X)/ρ = 1,

H0 • yiy
T
i = H0 • (xi/

√
λi)(xi/

√
λi)

T = (H0 • xix
T
i )/λi = ρ (i ∈ I+),

H0 • xjx
T
j = 0 (j ∈ I0).
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This implies X ∈ conv G̃0 + conv L̃0.

Now, we assume that Ĝk ⊂ conv G̃k + conv L̃k (k = 0, 1, . . . , ` − 1) holds

with 1 ≤ ` ≤ p and prove Ĝ` ⊂ conv G̃` + conv L̃`. Suppose that X ∈ Ĝ`. Since
Ĝ` ⊂ Ĝ`−1 ⊂ conv G̃`−1 + conv L̃`−1, we see that X ∈ conv G̃`−1 + conv L̃`−1.
Thus,

X =

r∑
i=1

λiY i +

q∑
j=1

djd
T
j , λi > 1 (i = 1, 2, . . . , r),

r∑
i=1

λi = 1,

Y i ∈ G̃`−1 (i = 1, 2, . . . , r), djd
T
j ∈ L̃`−1 (j = 1, 2, . . . , q).

To complete the proof, it suffices to show that Y i ∈ G̃` (i = 1, 2, . . . , r) and

djd
T
j ∈ L̃` (j = 1, 2, . . . , q). By Conditions (B̃) and (C̃), we have

H` • Y i ≥ 0 (i = 1, 2, . . . , r) and H` • djd
T
j ≥ 0 (j = 1, 2, . . . , q).

On the other hand, it follows from X ∈ Ĝ` that

0 = H` •X =

r∑
i=1

λi(H` • Y i) +

q∑
j=1

H` • djd
T
j .

Since λi > 0 (i = 1, 2, . . . , r), we obtain that

H` • Y i = 0 (i = 1, 2, . . . , r), H` • djd
T
j = 0 (j = 1, 2, . . . , q).

Thus, we have shown that Y i ∈ G̃` (i = 1, 2, . . . , r) and djd
T
j ∈ L̃` (j = 1, 2, . . . , q).

Proof of (iv) cl conv G̃p ⊃ conv G̃p +conv L̃p under Condition (D): Sup-

pose that X = Y + D for some Y ∈ conv G̃p and D ∈ conv L̃p. Then, we have

(4.1) with ` = p for some Y i ∈ G̃`, yi ∈ K and λi ∈ R (i = 1, 2, . . . , r), and
(4.2) with ` = p for some dj ∈ K (j = 1, 2, . . . , q). By Condition (D), for every
j = 1, 2, . . . , q, there is a sequence{

(µs
j ,u

s
j(u

s
j)

T ) ∈ R+ × G̃p : s = 1, 2, . . .
}

such that ‖us
j‖ → ∞ and (

√
µs
j ,
√
µs
ju

s
j) → (0,dj) as µ → ∞. For every s =

1, 2 . . . , let

γs = 1 +

q∑
j=1

µs
j , λ

s
i = λi/γ

s (i = 1, 2, . . . , r), νsj = µs
j/γ

s (j = 1, 2, . . . , q),

Xs =

r∑
i=1

λsiyiy
T
i +

q∑
j=1

νsju
s
j(u

s
j)

T .

Then,

λsi ≥ 0, νsj ≥ 0,

r∑
i=1

λsi +

q∑
j=1

νsj = 1,

yiy
T
i ∈ G̃p (i = 1, 2, . . . , r), us

j(u
s
j)

T ∈ G̃p (j = 1, 2, . . . , q),
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as a result, Xs ∈ conv G̃p (s = 1, 2, . . . ). We can also verify that

γs → 1, λsi → λi (i = 1, 2, . . . .r), νsj → 0 (j = 1, 2, . . . , q),

νsju
s
j(u

s
j)

T → djd
T
j , conv G̃p 3Xs →X

as s→∞. Thus, we have shown that X ∈ cl conv G̃p.

5. Examples. We present four examples to show the QOP model (2.1) covers
various types of nonconvex QOPs. The first example is a QOP with linear equality
constraints in nonnegative continuous variables and binary variables, and an addi-
tional constraint u ∈ D in its variable vector u, where D is a closed subset of Rm.
This type of problems was studied in [11] as an extension of a QOP with linear equal-
ity constraints in nonnegative continuous variables and binary variables studied in [5].

The second example shows how the hierarchy of constraint set G̃` (` = 0, 1, . . . , p)

satisfying Conditions (A) and (B̂) can be constructed for complicated combinatorial
constraints. The last two examples demonstrate that QOP (2.1) satisfying Conditions

(A)’, (B̂) and (D) can deal with new types of nonconvex QOPs, although they may
look somewhat unnatural.

5.1. A QOP with linear equality constraints in nonnegative continuous
variables and binary variables, and an additional constraint u ∈ D in its
variable vector u. Let D be a closed subset of Rm, A a q ×m matrix, b ∈ Rq and
r ≤ m a positive integer. We consider a QOP of the form

minimize uTQ0u + 2cTu
subject to u ∈ D, Au− b = 0, ui(1− ui) = 0 (i = 1, 2, . . . , r).

(5.1)

If D = Rm
+ or u ≥ 0, this QOP model coincides with the one studied in [6]. Define

K = cl
{

(u0, u0u) ∈ R1+m
+ : u0 ∈ R+, u ∈ D

}
. Then, we can rewrite QOP (5.1) as

minimize uTQ0u + 2cTu0u
subject to (u0,u) ∈ K, u0 = 1, Au− bu0 = 0,

ui(u0 − ui) = 0 (i = 1, 2, . . . , r).
(5.2)

We assume that

0 ≤ ui ≤ u0 (i = 1, 2, . . . , r) if (u0,u) ∈ K, Au− bu0 = 0.(5.3)

Note that 0 ≤ ui ≤ u0 implies ui(u0 − ui) ≥ 0 (1, 2, . . . , r). Thus, we can replace the
multiple quadratic equalities ui(u0−ui) = 0 (i = 1, 2, . . . , r) in QOP (5.2) by a single
equality

∑r
i=1 ui(u0 − ui) = 0, and we see that

r∑
i=1

ui(u0 − ui) ≥ 0 if (u0,u) ∈ K, Au− bu0 = 0.(5.4)

Let ρ = 1. We rewrite the problem as

minimize uTQ0u + 2u0c
Tu

subject to (u0,u) ∈ K, u20 = ρ, (Au− bu0)T (Au− bu0) = 0,
r∑

i=1

ui(u0 − ui) = 0.
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Let n = 1 + m. To represent the quadratic form of the problem above in the form
of QOP (2.1), we introduce a variable vector x = (u0,u) ∈ Rn and take matrices
Q ∈ Sn, Hk ∈ Sn (k = 0, 1, 2) such that the following identities hold.

Q • xxT = uTQ0u + 2u0c
Tu, H0 • xxT = u20,

H1 • xxT = (Au− bu0)T (Au− bu0), H2 • xxT =

r∑
i=1

ui(u0 − ui).

Defining G̃0, G̃1, G̃2 as in (3.1), we can finally rewrite the problem as a QOP of the
form (2.1) with p = 2. It is trivial to confirm that Condition (A)’ is satisfied, and

Conditions (B̃) and (C̃) are satisfied by H0 ∈ Sn+, H1 ∈ Sn+ and (5.4).
For Condition (D), we need an additional assumption on D.

(E) If 0 6= v ∈ Rm is an asymptotic unbounded direction of D, i.e., there is a
sequence

{(µs,us) ∈ R+ ×D : s = 1, 2, . . . }

such that ‖us‖ → ∞ and (µs, µsus) → (0,v) as s → ∞, then, for every
u ∈ D, there exists a sequence {νs : s = 1, 2, . . . } of positive numbers such
that

u + νsv ∈ D (s = 1, 2, . . . ) and νs →∞ as s→∞.(5.5)

By definition, D satisfies (E) if it is bounded. We can prove that if D is con-
vex, then it satisfies (E); more precisely every asymptotic unbounded direction v
of D is an unbounded direction such that u + νv ∈ D for every ν ≥ 0 and u ∈
D. For other examples, the set

{
(x1, x2) ∈ R2 : x1 ≥ 0, x2 = sinx1

}
is a noncon-

vex set that satisfies (E). A typical example that does not satisfy (E) is the set
of points characterized by complementarity {(x1, x2) ∈ R2

+ : x1x2 = 0}. Also the set{
(x1, x2) ∈ R2

+ : 1 ≤ x1, x21 − x22 ≤ 1
}

does not satisfy (E).

Now, assume that (E) holds. Let O 6= ddT ∈ L̃2, and choose a feasible solution
u ∈ Rn of QOP (5.1). Let d = (v0,v) ∈ R1+m. Then, we have

v0 = 0, (0,v) ∈ K, H1 • ddT = 0, H2 • ddT =

r∑
i=1

−vivi = 0.

The identity H1•ddT = 0 implies that H1d = 0 since H1 ∈ Sn+, and the last identity
implies that vi = 0 (i = 1, 2, . . . , r) and H2d = 0. On the other hand, it follows from
(0,v) ∈ K = cl

{
(u0, u0u) ∈ Rn

+ : u0 ∈ R+, u ∈ D
}

that 0 6= v ∈ Rn is an asymp-
totic unbounded direction of D. Hence, there exists a sequence {νs : s = 1, 2, . . . } of
positive numbers satisfying (5.5) with the feasible solution u ∈ Rn, which has been
initially chosen. Let u0 = 1 and x = (u0,u) ∈ R1+n be a feasible solution of QOP
(5.2). Then, for every s = 1, 2, . . . ,

u + νsv ∈ D; hence x + νsd ∈ K,
H0 • (x + νsd)(x + νsd)T = ρ,

H` • (x + νsd)(x + νsd)T = 0 (` = 1, 2).

Hence (x + νsd)(x + νsd) ∈ G̃2 (s = 1, 2, . . . , ). We also observe that (1/νs, (x +
νsd)/νs) → (0,d) as s → ∞. Thus, ddT is an asymptotic unbounded direction of

G̃2, and (D) holds.
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Remark 5.1. Eichfelder and Povh stated in [11] an equivalence of QOP of the
form (5.1) and a linear optimization problem over the dual cone of a set-semidefinite
cone, which is a further generalization of the generalized completely positive cone in
this paper, without any assumption on D. (D corresponds to K in [11].) Lemma 9 in
[11] is essential to show the equivalence. However, there is a logical gap in its proof,
so the proof is incomplete. In [9], Dickinson, Eichfelderl and Povh corrected their
argument to prove the equivalence by imposing some additional assumptions on the
QOP of the form (5.1). See [9, 11] for more details.

5.2. A set of complicated combinatorial constraints. Consider the set F
of u = (u1, u2, u3, u4) ∈ R4

+ satisfying the following conditions.

0 ≤ ui ≤ 1 (i = 1, 2, 3, 4),
u1 = 1 and/or u2 = 1,
u4 = 0 or u4 = 1,
u3 = 0 and/or u3 = u1 + u2,
u4 = 0 and/or u1 + u2 + u3 = 2.

(5.6)

We introduce a slack variable vector x = (x1, x2, . . . , x8) ∈ R8
+, and rewrite the above

conditions as

ρ = 16, eTx =
√
ρ,

fi(x) ≡ xi + xi+4 − (eT /
√
ρ)x = 0 (i = 1, 2, 3, 4),

g11(x) ≡ x5x6 = 0, g12(x) ≡ x4x8 = 0,
g2(x) ≡ x3(x1 + x2 − x3) = 0,
g3(x) ≡ x4

(
(2eT /

√
ρ)x− x1 − x2 − x3

)
= 0,

where e = (1, 1, . . . , 1) ∈ R8. Now let

K = R8
+, G̃0 =

{
xxT : x ∈ K, eeT • xxT = ρ

}
,

G̃1 =
{
xxT ∈ G̃0 : fi(x) = 0 (i = 1, 2, 3, 4), g11(x) = 0, g12(x) = 0

}
,

G̃2 =
{
xxT ∈ G̃1 : g2(x) = 0

}
, G̃3 =

{
xxT ∈ G̃2 : g3(x) = 0

}
.

Then,

F =

{
(x1, x2, x3, x4) ∈ R4 :

x = (x1, x2, . . . , x8) ∈ K, xxT ∈ G̃3

for some (x5, x6, x7, x8) ∈ R4

}
.

We can verify that

g2(x) ≥ 0 if xxT ∈ G̃1 and g3(x) ≥ 0 if xxT ∈ G̃2.(5.7)

Choose a 4× 8 matrix A and 8× 8 symmetric matrices H11, Hk (k = 0, 1, 2, 3) such
that the following identities hold.

H0 = eeT ∈ S8+,


f1(x)
f2(x)
f3(x)
f4(x)

 = Ax, g11(x) + g12(x) = H11 • xxT ,

H1 ≡ ATA + H11 ∈ S8+ + N ⊂ C, g2(x) = H2 • xxT g3(x) = H3 • xxT .

(5.8)
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Consequently, G̃` (` = 0, 1, 2, 3) are described as in (3.1), and we confirm that Con-

ditions (A) and (B̃) hold by H0 = eeT ∈ S8+, H1 ∈ C, and (5.7).

We have described the set F of u = (u1, u2, u3, u4) ∈ R4
+ satisfying (5.6) in

terms of our hierarchical model with three levels. This model can be reduced to
the hierarchical model with one level by introducing additional slack variable vector
s = (s1, s2) ∈ R2. To show this, we first rewrite the 4th and 5th conditions in (5.6)
as

f5(x, s1, s) ≡ s1 − (x1 + x2 − x3) = 0 and g13(x, s) ≡ x3s1 = 0,

f6(x, s1, s) ≡ s2 − ((2eT /
√
ρ)x− x1 − x2 − x3) = 0 and g14(x, s) ≡ x4s2 = 0.

We can add s1 ≥ 0 and s2 ≥ 0, which are implied by (5.6). Then, x3 ≥ 0, s1 ≥ 0 and
x3s1 = 0 as well as x4 ≥ 0, s2 ≥ 0 and x4s2 = 0 form a standard complementarity
condition. Now we redefine

K = R10
+ , G̃0 =

{
(x, s)(x, s)T : (x, s) ∈ K, eeT • xxT = ρ

}
,

G̃1 =

{
(x, s)(x, s) ∈ G̃0 :

fi(x) = 0 (i = 1, 2, 3, 4), g11(x) = 0, g12(x) = 0,
fj(x, s) = 0 (j = 5, 6), g13(x, s) = 0, g14(x, s) = 0

}
to represent F as follows:

F =

{
(x1, x2, x3, x4) ∈ R4 :

(x, s) ∈ K, (x, s)(x, s)T ∈ G̃1

for some (x5, x6, x7, x8, s1, s2) ∈ R6

}
.

Finally, we choose H0 ∈ S10+ and H1 ∈ S10+ + N ⊂ C in a similar way to (5.8) so that

G̃0 and G̃1 are represented as in (3.1) with p = 1. Conditions (A)’, (B̃) and (C̃) are

satisfied since O 6= H0 ∈ S10+ and H1 ∈ C, and Condition (D) since G̃1 is bounded.
We can apply the method mentioned above for decreasing the levels of hierarchy

to QOP (5.1) in the previous section. First, we replace D by D
⋂(

Rr
+ × Rm−r) so

that

0 ≤ ui (i = 1, 2, . . . , r) if u ∈ D.

Next, introducing slack variable vector v = (v1, v2, . . . , vr) ∈ Rr, we add constraints
ui + vi = 1, vi ≥ 0 (i = 1, 2, . . . , r) to QOP (5.1), and rewrite QOP (5.1) as

minimize uTQ0u + 2cTu
subject to (u,v) ∈ D × Rr

+, Au− b = 0, ui + vi = 1 (i = 1, 2, . . . , r),
uivi = 0 (i = 1, 2, . . . , r).

Now the binary condition ui(1 − ui) = 0 has been replaced by the complemetarity
condition uivi = 0 with the additional constraints ui + vi = 1 and vi ≥ 0 (i =
1, 2, . . . , r). Redefining

K =
{

(u0, u0u, u0v) ∈ R1+m+r : u0 ∈ R+, (u,v) ∈ D × Rr
+

}
,

we replace QOP (5.2) by

minimize uTQ0u + 2cTu0u
subject to (u0,u,v) ∈ K, u0 = 1,

Au− bu0 = 0, ui + vi − u0 = 0 (i = 1, 2, . . . , r),
r∑

i=1

uivi = 0,
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and replace G̃0 and G̃1 by

G̃0 =
{

(u0,u,v)(u0,u,v)T : (u0,u,v) ∈ K, u20 = 1
}
,

G̃1 =

(u0,u,v)(u0,u,v)T ∈ G̃0 :
Au− bu0 = 0,
ui + vi − u0 = 0 (i = 1, 2, . . . , r),
uivi = 0 (i = 1, 2, . . . , r)

 .

Finally, we choose appropriate H0 ∈ S1+m+r
+ and H1 ∈ S1+m+r

+ +N ⊂ C to represent

G̃0 and G̃1 as in (3.1) with p = 1.

5.3. QOPs involving a variable vector in a sphere. Let ρ be a positive
number, A a q ×m matrix and I the m×m identity matrix. We consider the set F
of u ∈ Rm satisfying

u ∈ Rm
+ (or u ≥ 0), I • uuT = ρ, Au ≤ 0.(5.9)

Introduce a variable vector x = (u, s) ∈ Rm+q
+ , where s ∈ Rq serves as a slack vector

for the inequality Au ≤ 0, and matrices H` (` = 0, 1) such that

H0 =

(
I O
O O

)
∈ Sm+q

+ , H1 =
(
A I

)T (
A I

)
∈ Sm+q

+ .

Let n = m+ q. Define G̃0 and G̃1 as in (3.1) with p = 1. Then, we can rewrite F as

F =
{
u ∈ Rm

+ : x = (u, s) ∈ Rn
+, xx

T ∈ G̃1 for some s ∈ Rq
}
.

Apparently, Condition (A)’ is satisfied, so is Condition (B̂) because both H0 and H1

are positive semidefinite. Since G̃1 is bounded, Condition (D) holds.
Now we consider the question whether the homogeneous inequality Au ≤ 0 could

be replaced by an inhomogeneous inequality Au − b ≤ 0 with a nonzero b ∈ Rq in
the discussions above. Notice that Au ≤ 0 can be replaced by Au− beTu ≤ 0, and
the coefficient eTu of b varies from

√
ρ through

√
mρ. But, the inequality cannot be

replaced by an inhomogeneous inequality. For this, we need a different formulation,
which can be described as

x = (u0,u, s) ∈ R1+m+q
+ , u20 = 1, (−bu0 + Au + s)T (−bu0 + Au + s) = 0,

I • uuT − ρu20 = 0
(
or ρu20 − I • uuT = 0

)
.

If we define

H0 =

 1 0T 0T

0 O OT

0 O O

 , H1 =

 bT b2 −bTA −bT

−AT b ATA AT

−b A I

 ,

H2 =

 −ρ2 0T 0T

0 I OT

0 O O

 or H2 =

 ρ2 0T 0T

0 −I OT

0 O O

  ,

(5.10)

and G̃` (` = 0, 1, 2) as in (3.1) with p = 2, then we have{
u ∈ Rm

+ : I • uuT = ρ, Au− b ≤ 0
}

=
{
u ∈ Rm

+ : x = (u0,u, s) ∈ R1+m+q
+ , xxT ∈ G̃2 for some (u0, s) ∈ R1+q

}
.
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However, the inequality

ρ− I • uuT ≥ 0 if u ∈ Rm
+ and Au− b ≤ 0

(or I • uuT − ρ ≥ 0 if u ∈ Rm
+ and Au− b ≤ 0

)
is required for Condition (B̃) to be satisfied. In other words, the polyhedral set {u ∈
Rm

+ : Au− b ≤ 0} needs to be inside (or outside) of the ball
{
u ∈ Rm : ‖u‖ ≤ √ρ

}
,

touching the ball only at its boundary points. This requirement may be regarded as
too strong. It seems difficult to formulate the inhomogeneous problems in terms of
our framework with K = Rn

+.
Now, we formulate the inhomogeneous case as follows

K = cl cone
{
x = (u0, u0u, u0s) ∈ R1+m+q : (u0,u, s) ∈ R1+m+q

+ , I • uuT = ρ
}
,

x = (u0,u, s) ∈ K, u20 = 1, (−bu0 + Au + s)T (−bu0 + Au + s) = 0,

H0 and H1 as in (5.10), G̃0 and G̃1 as in (3.1) with p = 1.

Then, we have{
u ∈ Rm

+ : I • uuT = ρ, Au− b ≤ 0
}

=
{
u ∈ Rm

+ : x = (u0,u, s) ∈ G̃1 for some (u0, s) ∈ R1+q
}
.

Condition (A)’ is obviously satisfied, so is Condition (B̂) by H1 ∈ S1+m+q
+ . We also

see that

L̃1 =
{
ddT : d = (v0,v, t) ∈ K, H0 • ddT = 0, H1 • ddT = 0

}
=
{
ddT : d = (0,v, t) ∈ K, Au + s = 0

}
= {O}.

Here the last identity follows from the definition of K above. Thus, (D) holds.

5.4. A QOP involving a copositive matrix. The 5× 5 matrix

M =


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1


is known to be a copositive matrix, which is not a sum of any pair of a positive
semidefinite matrix and a nonnegative matrix [12]. See also [4]. The associated
quadratic form is represented as

M • xxT = (x1 − x2 + x3 − x4 + x5)2 + 4x2x5 + 4x1(x4 − x5)

= (x1 − x2 + x3 + x4 − x5)2 + 4x2x4 + 4x3(x5 − x4),

which shows that M is copositive. In fact, if x ≥ 0 and x4 ≥ x5 then M • xxT

is nonnegative by the first representation, and if x ≥ 0 and x5 ≥ x4, then it is
nonnegative by the second.
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We consider the set F of x = (x1, x2, x3, x4, x5) ∈ R5
+ satisfying

x1 = 1, M • xxT = 0, 2x4 + x5 ≤ 3(5.11)

or equivalently,

x1 = 1,(5.12)

(x1 − x2 + x3 − x4 + x5)2 + 4x2x5 + 4x1(x4 − x5) = 0,(5.13)

3x1 − 2x4 − x5 − x6 = 0(5.14)

for a slack variable x6 ≥ 0. We rewrite these constraints as

x = (x1, x2, . . . , x6) ∈ R6
+, H0 • xxT = 1, H1 • xxT = 0, H2 • xxT = 0,

where

e1 = (1, 0, 0, 0, 0, 0) ∈ R6, a = (3, 0, 0,−2,−1,−1) ∈ R6
+

H0 = e1e
T
1 ∈ S6+, H1 =

(
M 0
0T 0

)
∈ C, H2 = aaT ∈ S6+.

Define G̃` (` = 0, 1, 2) as in (3.1) with n = 6, ρ = 1 and p = 2. Then, we obtain

F =
{

(x1, x2, . . . , x5) ∈ R5 : x = (x1, x2, . . . , x6) ∈ R6
+, xx

T ∈ G̃2 for some x6 ∈ R+

}
.

Since O 6= H0 ∈ S6+, H1 ∈ C and H2 ∈ S6+, Conditions (A)’ and (B̂) with p = 2

are satisfied. To confirm that Condition (D) with p = 2 holds, we let O 6= ddT ∈ L̃2.
Then, x = d ∈ R6 satisfies x1 = 0, (5.13) and (5.14). Thus, d is of the form
d = δ(0, 1, 1, 0, 0, 0) ∈ R6

+ for some δ > 0. Let x(ν) = (1, 1 +
√
νδ,
√
νδ, 0, 0, 3) ∈

R6
+ for every ν ≥ 0. Then, x(ν) ∈ R6

+ satisfies (5.12), (5.13) and (5.14). Thus,

x(ν)x(ν)T ∈ G̃2. We observe that (1/
√
ν,x(ν)/

√
ν) → (0,d) as ν → ∞. Therefore

ddT is an asymptotic unbounded direction of G̃2.
Now, we consider the case where the set F ⊂ R5

+ is given by

x1 = 1, M • xxT = 0, x5 ≤ 3

instead of (5.11). Note that the last inequality 2x4 + x5 ≤ 3 in (5.11) is replaced by
x5 ≤ 3. If we replace (5.14) by

3x1 − x5 − x6 = 0(5.15)

and a = (3, 0, 0,−2,−1,−1) ∈ R6
+ by a = (3, 0, 0, 0, 1,−1) ∈ R6

+, all the previous

discussions remain valid, except the one on Condition (D). In this case, d ∈ R6
+ such

that ddT ∈ L̃2 is characterized by x = d satisfying x1 = 0, (5.13) and (5.15). For

example, ddT with d = (0, 0, 1, 1, 0, 0) lies in L̃2. But ddT cannot be an asymp-

totic unbounded direction of G̃2. To verify this, assume on the contrary that there

is a sequence
{

(µs,us(us)T ) ∈ R+ × G̃2 : s = 1, 2, . . .
}

such that ‖us‖ → ∞ and

(
√
µs,
√
µsus)→ (0,d) as s→∞. From us(us)T ∈ G̃2, we have us1 = 1 and us4 = us5.

This implies that d4 = d5, which is a contradiction to d4 = 1 and d5 = 0. Thus, we
have shown that ddT is not an asymptotic unbounded direction of G̃2.
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6. Concluding Remarks. The reformulation of a class of QOPs into CPPs
has been proposed under two sets of sufficient conditions. The key idea has been
constructing a hierarchical structure into their feasible regions (see (3.1)) and impos-
ing the copositivity condition (Condition (B) and (B)’) recursively on each level of
the constraints of hierarchical structure. Although the class of QOPs that can be
reformulated into CPPs using this idea may seem limited, they do include various
QOPs as seen in Section 5. When it is applied to a QOP with linear constraints in
continuous nonnegative variables and binary variables, the resulting equivalent CPP
involves just three equality constraints (or even only two equality constraints, see the
last paragraph of Section 5.2). This property is a distinctive feature of our QOP
model for exact CPP relaxation, and is expected to be effectively utilized to develop
new and powerful numerical methods for such a QOP.

On the other hand, the reformulation of a QOP in Section 5.4, which simulta-
neously involves a sphere constraint I • uuT = ρ and an inhomogeneous inequality
constraint Au − b ≤ 0 in u ∈ Rm

+ , into an equivalent CPP relaxation has not been
successful. The main reason for this is that each QOP in our class is allowed to
have one inhomogeneous equality for the construction of the hierarchy of copositivity.
When the proposed idea is considered to be applied to a wider class of applications
in practice, this issue needs to be resolved. This will be a subject of future study for
generalizing the QOP model.

We were informed of the paper by Peña, Vera and Zuluaga [22] after we submitted
this paper to SIAM Journal on Optimization. They applied a canonical convexification
procedure to a general polynomial optimization problem (abbreviated by POP) with
nonnegative variables, and presented a linear optimization problem over the cone
of completely positive d-forms equivalent to the POP. Among the assumptions they
imposed on the POP, they introduced two conditions, which are essentially equivalent
to (but a little bit stronger than) our hierarchy of copositivity condition (Condition

(B̃) + (C̃)) and our condition on the asymptotic unbounded directions of G̃ (Condition
(D)), respectively.
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