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Abstract. In Part I of a series of study on Lagrangian-conic relaxations, we introduce
a unified framework for conic and Lagrangian-conic relaxations of quadratic optimization
problems (QOPs) and polynomial optimization problems (POPs). The framework is con-
structed with a linear conic optimization problem (COP) in a finite dimensional Hilbert
space, where the cone used is not necessarily convex. By imposing a copositive condition on
the COP, we establish fundamental theoretical results for the COP, its (convex-hull) conic
relaxations, its Lagrangian-conic relaxations, and their duals. A linearly constrained QOP
with complementarity constraints and a general POP can be reduced to the COP satisfying
the copositivity condition. Thus the conic and Lagrangian-conic relaxations of such a QOP
and POP can be discussed in a unified manner. The Lagrangian-conic relaxation takes a
particularly simple form involving only a single equality constraint together with the cone
constraint, which is very useful for designing efficient numerical methods. As demonstra-
tion of the elegance and power of the unified framework, we present the derivation of the
completely positive programming relaxation, and a sparse doubly nonnegative relaxation
for a class of a linearly constrained QOPs with complementarity constraints. The unified
framework is applied to general POPs in Part II.
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1 Introduction

We consider a general polynomial optimization problem (POP) of the form:

ζ∗ = inf
{
f 0(x)

∣∣ x ∈ J, fk(x) = 0 (k = 1, 2, . . . ,m)
}
, (1)

where J denotes a closed (but not necessarily convex) cone in the n-dimensional Eu-
clidean space Rn, and fk(x) a real valued polynomial in x = (x1, x2, . . . , xn) ∈ Rn (k =
0, 1, 2, . . . ,m). Quadratic optimization problems (QOPs) are a prominent subclass of POPs
(1). Among various QOPs, we are particularly interested in the following linearly con-
strained QOP with complementarity constraints [19] (see also [2, 3, 8]):

ζ∗ = inf

{
uTQu + 2cTu

∣∣∣∣ u ∈ Rn
+, Au + b = 0,

uiuj = 0 ((i, j) ∈ E)

}
, (2)

where A ∈ Rq×n, b ∈ Rq, c ∈ Rn and E ⊂ {(i, j) : 1 ≤ i < j ≤ n} are given data. Since the
binary constraint ui(1− ui) = 0 can be converted to a complementarity constraint uivi = 0
with a slack variable vi = 1− ui ≥ 0, QOP (2) can represent nonconvex QOPs with linear,
binary, and complementarity constraints.

Polynomial optimization problems (POPs) have been recognized as a very important
class of optimization problems, attracting a great deal of research in recent years. POPs
are nonconvex in general, and many QOPs are known to be NP-hard. While theoretical
and numerical studies of POPs have been directed toward developing efficient and effective
solution methods, the current solution methods for solving POPs are generally not efficient
enough to solve a dense problem beyond a dozen variables. In a series of studies, we aim
to address the issue of solving larger POPs efficiently by proposing a unified framework for
POPs. Our final goal is to provide efficient numerical methods for solving POPs based on
specially designed first-order algorithms under the unified framework.

Convex relaxation techniques over cones such as semidefinite programming (SDP) re-
laxations [21, 30] have been widely used for solving POPs (1) with J = Rn or Rn

+. The
SDP approach [16, 31] implemented via a primal-dual interior-point method [7, 12, 27, 29],
however, suffers from numerical inefficiency except for small POPs. It is also numerically
challenging to solve QOP (2), which includes a special type of QOP which can be cast exactly
using the completely positive (CPP) cone as shown by Burer [8]. More precisely, Burer’s
CPP formulation of a QOP and its extension [2, 4, 10, 25] are numerically intractable,
despite their theoretical exactness. If the CPP cone is relaxed to the doubly nonnegative
(DNN) cone consisting of nonnegative symmetric matrices which are also positive semidef-
inite, a numerically tractable DNN relaxation is obtained [14, 28, 32]. However, solving
the resulting DNN relaxation by a primal-dual interior-point method is still numerically
highly challenging, especially for large scale problems. This is because the DNN relaxation
includes a large number of nonnegativity constraints on the entries of the matrix variable
X, which grow quadratically with the size of X, in addition to the semidefinite constraint
on X. Thus, it is essential to develop an efficient numerical method beyond the framework
of interior-point methods to solve the DNN relaxations of large-scale QOPs and POPs.
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1.1 Our framework

We present a unified framework for conic and Lagrangian-conic relaxations of QOPs and
POPs. The framework starts with a primal-dual pair of conic optimization problems (COPs)
described as follows:

ζp(K) := inf

{
〈Q0, X〉

∣∣∣∣ X ∈ K, 〈H0, X〉 = 1,
〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)

}
(3)

ζd(K) := sup

{
z0

∣∣∣∣∣ Q0 +
m∑
k=1

Qkzk −H0z0 ∈ K∗
}

(4)

where K is a (not necessarily convex nor closed) cone in a finite dimensional vector space V
endowed with an inner product 〈·, ·〉 and its induced norm ‖·‖. Here X denotes the decision
variable, and H0 and Qk (k = 1, 2, . . . ,m) are given vectors in V. We use the convention
of setting ζp(K) =∞ if the feasible region of (3) is empty, and setting ζd(K) = −∞ if the
feasible region of (4) is empty.

When applying this framework to QOPs and POPs, we will take V to be the linear
space of symmetric matrices with appropriate dimension. (This is why capital letters are
used to denote vectors such as Q and X in the space V.) The primal COP minimizes a
linear objective function 〈Q0, X〉 subject to three types of constraints: a nonhomogeneous
linear equality 〈H0, X〉 = 1, multiple homogeneous linear equalities 〈Qk, X〉 = 0 (k =
1, 2, . . . ,m), and a cone constraint X ∈ K. We should mention that QOP (2) is reformulated
in the form (3) in Section 5 and POP(1) will be reformulated in the form (3) in Part II.

For subsequent developments, we impose the following condition on the primal-dual pair
of COPs (3) and (4).

Condition (I) The feasible region of (3), denoted as

F (K) =
{
X ∈ K : 〈H0, X〉 = 1, 〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)

}
is nonempty, and O 6= H0 ∈ K∗ and Qk ∈ K∗ (k = 1, 2, . . . ,m).

Here K∗ denotes the dual of K, i.e., K∗ = {Y ∈ V : 〈X, Y 〉 ≥ 0 for every X ∈ K}. Note
that by standard argument, we have the following weak duality result: ζd(K) ≤ ζp(K).

1.2 Contribution

Many QOPs and POPs can be reformulated in the form of the primal COP (3) with a
nonconvex cone K satisfying Condition (I). As a result, the unified framework we propose
here allows us to discuss the equivalence between the optimal value of the original nonconvex
QOP (or POP) and its convex CPP formulation (or its extended CPP formulation) by
proving that ζp(co K) = ζp(K), where co K denotes the convex hull of K. We provide a
necessary and sufficient condition for this equivalence, which is one of the main theoretical
contributions of this paper.

For computational needs, we assume that the cone K is closed and convex in (3) and
(4) in addition to Condition (I), as in the cases of DNN relaxation of QOP (2) or SDP
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relaxation of POP (1). In this case, we reduce the primal-dual pair of COPs (3) and (4) to
an equivalent, but simpler pair of COPs:

ηp(K) := inf {〈Q0, X〉 | 〈H0, X〉 = 1, 〈H1, X〉 = 0,X ∈ K} (5)

ηd(K) := sup
{
y0
∣∣ Q0 + H1y1 −H0y0 ∈ K∗

}
, (6)

where the homogeneous linear equality constraints 〈Qk, X〉 = 0 (k = 1, . . . ,m) in (3) are
combined into a single a homogeneous linear equality 〈H1, X〉 = 0 with H1 =

∑m
k=1Q

k.
Applying the Lagrangian relaxation to the simplified COP (5), we then obtain the Lagrangian-
conic relaxation of the COP (3) and its dual

ηp(λ,K) := inf
{
〈Q0 + λH1, X〉

∣∣ X ∈ K, 〈H0, X〉 = 1
}
, (7)

ηd(λ,K) := sup
{
y0
∣∣ Q0 + λH1 −H0y0 ∈ K∗

}
, (8)

where λ ∈ R denotes the Lagrangian multiplier for the homogeneous equality 〈H1, X〉 = 0
in (5). As the relations between the pairs (3)-(4), (5)-(6) and (7)-(8) can be delicate,
we summarize the most elegant case (when Condition (I) and Conditions (II)–(III) to be
described later hold) among the relations between these three pairs below for the convenience
of the reader:

ηp(λ,K) ↑ ηp(K) = ζp(K)

|| ||
ηd(λ,K) ↑ ηd(K) = ζd(K),

where ↑ means that ηp(λ,K) converges to ηp(K) as λ increases. We would like to emphasize
that the primal-dual pair (7)-(8) above satisfies some nice properties which make it conducive
for one to design effective algorithms to solve them. In particular:

(a) The common optimal value ηp(λ,K) = ηd(λ,K) serves as a lower bound for the optimal
value ζd(K) of the original dual COP (or in the QOP case, the optimal value of the
dual of the DNN relaxation of a nonconvex QOP), and it monotonically converges to
ζd(K) as λ tends to ∞.

To compute ηd(λ,K), we further reformulate (8) as a one-dimensional maximization
problem with ηd(λ,K) := sup {y0 | gλ(y0) = 0} . Here gλ : R → [0,∞) is defined by
‖ΠK(H0y0 − λH1 − Q0)‖, where ΠK(·) denotes the metric projection onto K, and it
satisfies

(b) gλ : R → R is a nonnegative continuous function such that gλ(y0) = 0 if and only if
y0 ≤ ηd(λ,K), and it is continuously differentiable, strictly increasing and convex in
the interval (ηd(λ,K), ∞).

Property (a) ensures that solving (7) and/or (8) with a sufficiently large λ can generate
a tight lower bound ηd(λ,K) for ζd(K). Property (b) provides the theoretical support to
design efficient numerical methods for computing ηd(λ,K). In fact, it was property (b)
that made it possible to apply a bisection method combined with first-order methods ef-
ficiently, stably, and effectively to solve the Lagrangian-DNN relaxation of QOPs in [19].
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In addition to the bisection method, property (b) allows us to apply a globally convergent
1-dimensional Newton iteration from any initial point y0 with gλ(y0) > 0 for computing
ηd(λ,K) = max {y0 : gλ(y0) = 0}. Furthermore the Newton iteration generates as a byprod-
uct, a sequence of feasible solutions of (7) whose objective values monotonically tend to
ηp(λ,K) = ηd(λ,K). As we shall see in Section 6, the numerical efficiency can further be
improved if the method proposed in [13, 23] for exploiting structured sparsity in SDPs is
incorporated into the Lagrangian-DNN relaxations for QOPs.

1.3 Related work

The Lagrangian-DNN relaxation of linearly constrained QOPs with complementarity con-
straints was proposed in [19] and an efficient method based on first-order algorithms was
also designed to solve these Lagrangian-DNN relaxation problems. The Lagrangian-DNN
relaxation was originally suggested in [3] as a numerically tractable method for approx-
imately solving the NP-hard Lagrangian-CPP relaxation. The numerical results in [19]
demonstrated that with an appropriately designed algorithm which is based on a bisection
framework combined with the proximal alternating direction multiplier method [11] and
the accelerated proximal gradient method [6], one can efficiently solve the Lagrangian-DNN
relaxation of various classes of test problems, including maximum stable set and quadratic
assignment problems.

1.4 Paper outline

In Section 2, we discuss three primal-dual pairs of COPs over a cone K (not necessarily
convex nor closed). The first pair is the primal-dual COPs (3) and (4) with the objec-
tive values ζp(K) and ζd(K), and it will be used as a unified model to represent noncon-
vex QOPs and general POPs as well as their convex relaxations in the subsequent discus-
sions. The second pair is the simplified COPs (5) and (6) with the objective values ηp(K)
and ηd(K). It is equivalent to the first pair under the copositivity condition (Condition
(I)). The third pair is the Lagrangian-conic relaxation (7) and (8) with the objective val-
ues ηp(λ,K) and ηp(λ,K). We investigate the relationships among their optimal values
ζp(K), ζd(K), ηp(K), ηd(K), ηp(λ,K) and ηd(λ,K) in details.

In Section 3, the COP satisfying the copositive condition is considered for a nonconvex
cone K. We establish a necessary and sufficient condition for ζp(K) = ζp(co K). This
identity indicates that the optimal value of the COP over the nonconvex cone K is attained
by its convexification, i.e., by replacing the nonconvex cone K by its convex hull co K.
The result in Section 3 is applied to QOP (2) in Section 4.2 and to POP (1) in Part II [5,
Section 3].

In Section 4, we convert the dual Lagrangian-conic relaxation problem into a maximiza-
tion problem involving the function gλ(y0) in a single real variable y0, and present some
fundamental properties on the function gλ for the bisection and 1-dimensional Newton
methods to find the optimal solution efficiently.

In Section 5, we deal with a class of linearly constrained QOPs (2) with complementarity
constraints, and derive some fundamental properties of their CPP and DNN relaxations.
The results in this section are closely related to, but more general than, the ones obtained
in [19] where the same class of QOPs was studied. In order to further improve the numerical
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efficiency of our method, in Section 6, we describe how to exploit structured sparsity in the
DNN and the Lagrangian-DNN relaxations for QOP (2). Section 7 is devoted to concluding
remarks.

2 Basic analysis of the unified framework

We discuss fundamental properties of the three primal-dual paris of COPs introduced in
Section 1, the primal-dual COPs (3)–(4), the simplified primal-dual COPs (5)–(6) and the
Lagrangian conic relaxation of the primal COP and its dual (7)–(8), and the relationship
between them. We note that the cone K involved there is not necessary convex.

2.1 Notation and symbols

Let R denote the set of real numbers, R+ the set of nonnegative real numbers, and Z+

the set of nonnegative integers. We use the following notation and symbols throughout the
paper.

V = a finite dimensional vector space endowed with an inner product

〈Q, X〉 and a norm ‖X‖ =
√
〈X, X〉 for every Q, X ∈ V,

K = a nonempty (but not necessarily convex nor closed) cone in V,

where K is called a cone if αX ∈ K for each X ∈ V and α ≥ 0,

L = the subspace of V generated by K,
(the minimal subspace of V that contains K),

K∗ = {Y ∈ V : 〈X, Y 〉 ≥ 0 for every X ∈ K} (the dual of K),

co K = the convex hull of K,

H0, Qk ∈ V (k = 0, 1, 2, . . . ,m),

F (K) =
{
X ∈ V

∣∣ X ∈ K, 〈H0, X〉 = 1, 〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)
}
.

For illustration, we consider the following QOP.

Example 2.1.

ζ∗ = inf{xTQ0x | x ∈ Rn
+, x

Tx = 1, xkxk+1 = 0 (k = 1, 2, . . . , n− 1)}. (9)

Here x = (x1, x2, . . . , xn) ∈ Rn denotes a column vector variable, xT the transposition of x,
Q0 ∈ V = Sn (the linear space of n× n symmetric matrices). Let

H0 = the n× n identity matrix,

ek = the kth unit column coordinate vector of Rn (k = 1, 2, . . . , n),

Qk = ek(ek+1)T + ek+1(ek)T ∈ Sn (k = 1, 2, . . . , n− 1),

Γ = {xxT | x ∈ Rn
+} ⊂ Sn.

Then, we can rewrite QOP (9) as in the primal COP (3) with K = Γ, i.e., ζ(Γ) =
inf{〈Q0, X〉 | X ∈ F (Γ)}. We note that Γ forms a closed cone and is nonconvex when
n ≥ 2.
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2.2 Combining the homogeneous equalities of (3) in a single equal-
ity

The following lemma shows the equivalence between the two primal-dual pairs, the primal-
dual COPs (3)–(4) and the simplified primal-dual COPs (5)–(6) under Condition (I).

Lemma 2.1. Suppose that Condition (I) is satisfied. Then, the following assertions hold.

(i) X ∈ F (K) if and only if

X ∈ K, 〈H0, X〉 = 1, 〈H1, X〉 = 0, (10)

Hence, F (K) =
{
X ∈ K : 〈H0, X〉 = 1, 〈H1, X〉 = 0

}
, where H1 =

∑m
k=1Q

k.

(ii) ζp(K) = ηp(K).

(iii) ζd(K) = ηd(K).

Proof. We prove (i) and (iii) since (ii) follows directly from (i). (i) The “only if” part follows
from the definitions of F (K) and H1. Assume that (10) holds. Thus,

0 = 〈H1, X〉 =
∑m

k=1〈Q
k, X〉.

By Condition (I) and X ∈ K, we know that 〈Qk, X〉 ≥ 0 (k = 1, 2, . . . ,m). Therefore,
〈Qk, X〉 = 0 (k = 1, 2, . . . ,m), and X ∈ F (K).

(iii) If (y0, y1) is a feasible solution of the simplified dual COP (6) with the objective
value y0, then (z0, z1, . . . , zm) = (y0, y1, . . . , y1) is a feasible solution of the dual COP (4)
with the same objective value. Conversely if (z0, z1, . . . , zm) is a feasible solution of (4) with
the objective value z0, then

K∗ 3 Q0 +
m∑
k=1

Qkzk −H0z0 +
m∑
k=1

Qk

(
max
j
zj − zk

)
(by Condition (I))

= Q0 +

(
m∑
k=1

Qk

)
max
j
zj −H0z0 = Q0 + H1 max

j
zj −H0z0.

Thus, (y0, y1) = (z0,maxj zj) is a feasible solution of (6) with the same objective value.
Consequently, ζd(K) = ηd(K) holds.

If H0, Qk (k = 1, 2, . . . , n − 1) and Γ are given as in Example 2.1, Condition (I) is
obviously satisfied with K = Γ. Hence all assertions (i), (ii) and (iii) in Lemma 2.1 hold
with K = Γ.

2.3 Applying the Lagrangian relaxation to the simplified primal
COP (5)

We now focus on the primal-dual pair (7)–(8), which have been derived as a Lagrangian
relaxation of the simplified primal COP (5) and its dual.
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Lemma 2.2. Suppose that Condition (I) is satisfied. Then, the following assertions hold.

(i) ηd(λ,K) ≤ ηp(λ,K) for every λ ∈ R.

(ii) ηp(λ1,K) ≤ ηp(λ2,K) ≤ ηp(K) if λ1 < λ2.

(iii) ηd(λ1,K) ≤ ηd(λ2,K) ≤ ηd(K) if λ1 < λ2, and limλ→∞ η
d(λ,K) = ηd(K).

Proof. Since the weak duality relation (i) is straightforward, we only prove assertions (ii)
and (iii).

(ii) The first inequality follows from the inequality 〈H1, X〉 ≥ 0 for every X ∈ K. To
show the second inequality, suppose that X ∈ K is a feasible solution of the simplified primal
COP (5) with objective value 〈Q0, X〉. Then, it is a feasible solution of the Lagrangian-
conic relaxation (7) with the same objective value for any λ ∈ R. Hence ηp(λ2,K) ≤ ηp(K).

(iii) Suppose that λ1 < λ2. If y0 is a feasible solution of the dual of the Lagrangian-
conic relaxation (8) with λ = λ1, then it is a feasible solution of (8) with λ = λ2 because
H1 ∈ K∗. This implies the first inequality. To show the second inequality, suppose that y0
is a feasible solution of (8) with λ = λ2. Then (y0, y1) with y1 = λ2 is a feasible solution
of the simplified dual COP (6), and the second inequality follows. If (y0, y1) is a feasible
solution of (6), then y0 is a feasible solution of (8) with λ = y1. Therefore, we obtain
limλ→∞ η

d(λ,K) ≥ ηd(K).

2.4 Strong duality relations

We assume the following condition to discuss the strong duality between the Lagrangian-
conic relaxation and its dual (7) and (8), and between the primal-dual COPs (3) and (4) in
this subsection.

Condition (II) K is closed and convex.

Lemma 2.3. Suppose that Conditions (I) and (II) are satisfied. Then, the following asser-
tions hold.

(i) ηd(λ,K) = ηp(λ,K) for every λ ∈ R. Moreover, if ηp(λ,K) is finite, then (8) has an
optimal solution with the objective value ηp(λ,K).

(ii)
(
ηd(λ,K) = ηp(λ,K)

)
↑= ηd(K) = ζd(K). Here ↑ means “increases monotonically as

λ→∞”.

Proof. Assertion (ii) follows from assertion (i) and Lemma 2.2. Thus, we only have to show
(i). Let λ ∈ R be fixed. We know by the weak duality that ηd(λ,K) ≤ ηp(λ,K). By
F (K) 6= ∅ from Condition (I), we have ηp(λ,K) <∞. If ηp(λ,K) = −∞, then it is obvious
that the equality holds. Thus, we assume that ηp(λ,K) takes a finite value, and prove the
assertion by the duality theorem. We notice, however, that K may not have an interior point
with respect to V. In this case, the standard duality theorem cannot be applied directly
(see, for example, Theorem 4.2.1 in [24]). Let L denote the subspace of V generated by K,
i.e., the minimal subspace of V that contains K. Then K has an interior-point with respect
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to L. Now, the Lagrangian-conic relaxation (7) and its dual (8) can be converted into conic
optimization problems within the space L:

η̂p(λ,K) := inf
{
〈Q̂

0
+ λĤ

1
, X〉

∣∣∣ X ∈ K, 〈Ĥ
0
, X〉 = 1

}
, (11)

η̂d(λ,K) := sup
{
y0 | Q̂

0
+ λĤ

1
− Ĥ

0
y0 ∈ K∗ ∩ L

}
, (12)

where Q̂
0
, Ĥ

0
and Ĥ

1
are the metric projections of Q0, H0 and H1 onto L, respectively.

We can easily see that (7) is equivalent to (11). We also see that

Q0 + λH1 −H0y0 ∈ K∗

i .e., 〈Q0 + λH1 −H0y0, X〉 ≥ 0 for every X ∈ K

if and only if

Q̂
0

+ λĤ
1
− Ĥ

0
y0 ∈ K∗ ∩ L

i .e., 〈Q̂
0

+ λĤ
1
− Ĥ

0
y0, X〉 ≥ 0 for every X ∈ K ∩ L.

Thus, (8) is equivalent to (12). It suffices to show by the duality theorem that η̂p(λ,K) =

η̂d(λ,K). By F (K) 6= ∅ from Condition (I), there exists an X̂ ∈ K such that 〈Ĥ
0
, X̂〉 > 0.

We can take such an X̂ from the interior of K with respect to L. Then, X̂/〈Ĥ
0
, X̂〉 is an

interior feasible solution of (11). Recall that η̂p(λ,K) = ηp(λ,K) is assumed to be finite.
By the duality theorem, the dual problem (12) (hence (8)) has an optimal solution with the
objective value η̂p(λ,K).

The following lemma shows the difficulty of proving the strong duality for the primal-
dual COPs (3)–(4) and the simplified primal-dual COPs (5)–(6) in the same way as in the
proof above for the Lagrangian-conic relaxation and its dual (7)–(8) by the duality theorem.

Lemma 2.4. Suppose that Conditions (I) and (II) are satisfied and that F (K) is a proper
subset of

{
X ∈ K : 〈H0, X〉 = 1

}
. Then, the feasible region F (K) of the primal COP (3)

(and (5)) contains no interior point of K with respect to L (= the subspace of V generated by K).

Proof. We assume that F (K) 6= ∅ since otherwise the assertion is trivial. By Condition (I)
and the assumption that F (K) is a proper subset of

{
X ∈ K : 〈H0, X〉 = 1

}
, there exists

k ∈ {1, 2, . . . ,m} and X ∈ K such that 〈Qk, X〉 > 0. Let Q̂
k

be the metric projection

of Qk onto L. Then, Q̂
k
∈ K∗ ∩ L and 〈Q̂

k
, X〉 = 〈Qk, X〉 > 0. Let X̃ be an arbitrary

interior point of K with respect to L. Then, there exists a positive number ε such that

X̃ − εQ̂
k

remains in K. Thus, 〈Q̂
k
, X̃ − εQ̂

k
〉 ≥ 0. It follows that

〈Qk, X̃〉 = 〈Q̂
k
, X̃〉 > 〈Q̂

k
, X̃〉 − ε〈Q̂

k
, Q̂

k
〉 = 〈Q̂

k
, X̃ − εQ̂

k
〉 ≥ 0.

Therefore, any interior point of K with respect to L cannot be contained in F (K).

We need an additional condition to ensure the strong duality between the primal-dual
COPs (3) and (4).
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Condition (III)
{
X ∈ F (K) : 〈Q0, X〉 ≤ ζ̃

}
is nonempty and bounded for some ζ̃ ∈ R.

Lemma 2.5. Suppose that Conditions (I), (II) and (III) are satisfied. Then, the following
assertions hold.

(i) lim
λ→∞

ηp(λ,K) = ηp(K).

(ii)
(
ηd(λ,K) = ηp(λ,K)

)
↑ = ηd(K) = ζd(K) = ηp(K) = ζp(K).

Proof. Assertion (ii) follows from assertion (i) and Lemma 2.3, thus we only prove (i). We
first show that the set L(λ) = {X ∈ K : 〈H0, X〉 = 1, 〈Q0 + λH1, X〉 ≤ ζ̃} is nonempty,
closed, and bounded (hence −∞ < ηp(λ,K)) for every sufficiently large λ. The closedness
of L(λ) follows from Condition (II). By Conditions (I) and (III), we see that

∅ 6=
{
X ∈ F (K) : 〈Q0, X〉 ≤ ζ̃

}
⊂ L(λ2) ⊂ L(λ1) if 0 < λ1 < λ2.

Next, we show that L(λ) is bounded for every sufficiently large λ > 0. Assume on the
contrary that there exists a sequence

{
(λk,Xk) ∈ R+ ×K

}
such that Xk ∈ L(λk), 0 <

λk →∞ and 0 < ‖Xk‖ → ∞ as k →∞. Then, we have

Xk

‖Xk‖
∈ K, 〈H1,

Xk

‖Xk‖
〉 ≥ 0, 〈Q0,

Xk

‖Xk‖
〉 ≤ ζ̃

‖Xk‖
,

〈H0,
Xk

‖Xk‖
〉 =

1

‖Xk‖
and 〈Q0,

Xk

λk‖Xk‖
〉+ 〈H1,

Xk

‖Xk‖
〉 ≤ ζ̃

λk‖Xk‖
.

We may assume without loss of generality that X/‖Xk‖ converges to a nonzero D ∈ K.
By taking the limit as k →∞, we obtain that

O 6= D ∈ K, 〈H0, D〉 = 0, 〈H1, D〉 = 0, 〈Q0, D〉 ≤ 0.

Thus, if we choose an X from the set
{
X ∈ F (K) : 〈Q0, X〉 ≤ ζ̃

}
, then {X + µD : µ ≥ 0}

forms an unbounded ray contained in the set by Condition (II). This contradicts Condition
(III). Therefore, we have shown that L(λ̃) is bounded for some sufficiently large λ̃ > 0 and
∅ 6= L(λ) ⊂ L(λ̃) for every λ ≥ λ̃.

Let {λk ≥ λ̃} be a divergent sequence to ∞. Since the nonempty and closed level set
L(λk) is contained in a bounded set L(λ̃), the Lagrangian-conic relaxation (7) with each
λ = λk has an optimal solution Xk with the objective value ηp(λk) = 〈Q0 + λkH1, Xk〉 in
the level set L(λ̃). We may assume without loss of generality that Xk converges to some

X̃ ∈ L(λ̃). Since ηp(λk,K) ≤ ηp(K) by Lemma 2.2, it follows that

〈H0, Xk〉 = 1, 〈Q
0

λk
+ H1, Xk〉 ≤ ηp(K)

λk
, 〈H1, Xk〉 ≥ 0, 〈Q0, Xk〉 ≤ ηp(K).

By taking the limit as k →∞, we obtain that

X̃ ∈ K, 〈H0, X̃〉 = 1, 〈H1, X̃〉 = 0, 〈Q0, X̃〉 ≤ ηp(K).
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This implies that X̃ is an optimal solution of the problem (5), hence, 〈Q0, Xk〉 converges
to ηp(K) as k →∞. We also see from

〈Q0, Xk〉 ≤ ηp(λk,K) = 〈Q0 + λkH1, Xk〉 ≤ ηp(K)

that ηp(λk,K) converges to ηp(K) as k →∞. Thus, we have shown assertion (i).

Remark 2.2. The strong duality result in Lemma 2.5 can alternatively be established by
incorporating the linear constraint 〈H1, X〉 = 0 into the cone K for the simplified primal

COP (5). Define M = {X ∈ V : 〈H1, X〉 = 0
}

and K̃ = K∩M, and consider the following
primal-dual pair:

η̃p = inf
{
〈Q0, X〉

∣∣∣X ∈ K̃, 〈H0, X〉 = 1
}
.

η̃d = sup
{
y0

∣∣∣ Q0 −H0y0 ∈ K̃
∗}

.

By the same argument as in the proof of Lemma 2.3, we can prove that there is no duality
gap between these problems, i.e., η̃p = η̃d, and that if their common optimal value is finite,
then the dual problem has an optimal solution. Some readers may find this proof to be more
elegant than the one presented in Lemma 2.5. However, it should be mentioned that the
dual problem is not equivalent to the simplified dual COP (6) although the primal problem is

equivalent to the simplified primal COP (5). In fact, we know that K̃
∗

= cl(K∗ +M⊥) while

(6) is equivalent to the dual problem above by replacing K̃
∗

by K∗ + M⊥. But note that in

general, K∗ + M⊥ may not be closed and may be a proper subset of K̃
∗
. Such an example

was given in Section 3.3 of [3].

The following theorem summarizes the results in this section.

Theorem 2.1.

(i) ηd(λ,K)↑ = ηd(K) = ζd(K) ≤ ηp(K) = ζp(K) and
(
ηd(λ,K) ≤ ηp(λ,K)

)
↑ ≤ ηp(K)

under Condition (I).

(ii)
(
ηd(λ,K) = ηp(λ,K)

)
↑ = ηd(K) = ζd(K) ≤ ηp(K) = ζp(K) under Conditions (I) and

(II).

(iii)
(
ηd(λ,K) = ηp(λ,K)

)
↑ = ηd(K) = ζd(K) = ηp(K) = ζp(K) under Conditions (I), (II)

and (III).

Since Γ is nonconvex if n ≥ 2, we cannot apply any of Lemmas 2.3, 2.4 and 2.5 to
Example 2.1. To present an example that satisfies the assumptions of the lemmas, we
replace Γ = {xxT : x ∈ Rn

+} by its convex hull co Γ, which forms a completely positive
cone. Then the resulting problem ζ(co Γ) = inf{〈Q0, X〉 | X ∈ F (co Γ)}, which we
call a convexification of the problem with Γ, satisfies not only Condition (II) and but also
Condition (III) with K = co Γ. Hence all assertions in the lemmas are valid for the problem
with K = co Γ. Since co Γ ⊃ Γ, ζ(co Γ) ≤ ζ(Γ) holds. In Section 3, whether ζ(co Γ) = ζ(Γ)
holds in a more general setting will be discussed. To illustrate the convergence of ηd(λ,K)
to ζp(K) in Lemma 2.5, as co Γ, a closed convex cone in Sn, is numerically intractable. Thus

11



Figure 1: The decrease of the relative deviation of ηd(λ,K) with respect to ζp(K) to 0 as λ
increases. Here K = Sn+∩Nn. The vertical axis indicates log10

(
(ζp(K)− ηd(λ,K))/ |ζp(K)|

)
,

and the horizontal axis λ. The coefficient matrix Q0 ∈ Sn of the QOP in Example 2.1 was
chosen randomly and the dimension n was varied from 20 to 60. The lines · · · ◦ · · · , —+—,
· · · ∗ · · · , —x— and · · ·2 · · · correspond to n = 20, 30, 40, 50, and 60, respectively.
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we need to further introduce a doubly nonnegative (DNN) cone Sn+∩Nn ⊃ coΓ, which leads
to a DNN relaxation of the QOP in Example 2.1,

ζp(Sn+ ∩ Nn) =

{
〈Q0, X〉 | X ∈ Sn+ ∩ Nn, 〈H0, X〉 = 1,

〈Qk, X〉 = 0 (k = 1, 2, . . . , n)

}
.

Figure 1 displays that the trend of computed ηd(λ,Sn+ ∩ Nn) converges to ζp(Sn+ ∩ Nn) as
λ increases. All the DNN problems were converted into the standard form of SDPs and
were solved by SeDuMi [27]. We present numerical methods, including the bisection and
projection method [19], for solving the the Lagrangian-conic relaxation and its dual (7) and
(8) in Section 4, and discuss DNN and Lagrangian-DNN relaxations of a class of QOPs,
which includes Example 2.1 as a special case, in Section 5. We refer to the paper [19] for
extensive numerical results on the bisection and projection method applied to the class of
QOPs.

3 Convexification

We focus on the primal COP (3) with a nonconvex cone Γ in V in this section. Assuming
that Condition (I) holds for K = Γ, we derive a necessary and sufficient condition for
the equivalence between the primal COP (3) with K = Γ and the primal COP (3) with
K = co Γ. We call the second COP a convexification of the first.

Since Γ ⊂ co Γ, we immediately see that ζp(Γ) ≥ ζp(co Γ). Suppose that Condition (I)
is satisfied for K = Γ. Then it also holds for K = co Γ. As a result, we can consistently
define the simplified primal COP (5), the Lagrangian-conic relaxation (7) and their duals
for K = co Γ, and all results established in Lemmas 2.1 and 2.2 remain valid for K = co Γ.
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To characterize the convexification of the primal COP (3) with K = Γ, we introduce the
following COP:

ζp0 (K) = inf
{
〈Q0, X〉

∣∣ X ∈ F0(K)
}
, (13)

where F0(K) =
{
X ∈ K : 〈H0, X〉 = 0, 〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)

}
and K denotes a

cone in V. We will assume Condition (I) and the following condition for K = Γ to ensure
that ζp(co Γ) = ζp(Γ) in Theorem 3.1.

Condition (IV) 〈Q0, X〉 ≥ 0 for every X ∈ F0(K).

Lemma 3.1. Assume that Condition (I) holds. Then,

ζp0 (K) = ζp0 (co K) =

{
0 if Condition (IV) holds,
−∞ otherwise.

Proof. We first prove that Condition (IV) is equivalent to the condition

〈Q0, X〉 ≥ 0 for every X ∈ F0(co K). (14)

Since the condition above implies Condition (IV), we only need to show that Condition
(IV) implies the condition above. Assume that X ∈ F0(co K). Then there are X i ∈ K
(i = 1, 2, . . . , r) such that

X =
∑r

i=1X
i, 0 = 〈H0, X〉 =

∑r
i=1〈H

0, X i〉,

0 = 〈Qk, X〉 =
∑r

i=1〈Q
k, X i〉 (k = 1, 2, . . . ,m).

By Condition (I), we know that 〈H0, X i〉 ≥ 0 and 〈Qk, X i〉 ≥ 0 (i = 1, 2, . . . , r, k =
1, 2, . . . ,m). Thus, each X i (i = 1, 2, . . . , r) satisfies

X i ∈ K, 〈H0, X i〉 = 0, 〈Qk, X i〉 = 0 (k = 1, 2, . . . ,m),

or X i ∈ F0(K) (i = 1, 2, . . . , r). By Condition (IV), 〈Q0, X〉 =
∑r

i=1〈Q
0, X i〉 ≥ 0 holds.

Since the objective function of the problem (13) is linear and its feasible region forms a
cone, we know that ζp0 (K) = 0 or −∞ and that ζp0 (K) = 0 if and only if the objective value
is nonnegative for all feasible solutions, i.e., Condition (IV) holds. Similarly, ζp0 (co K) = 0
or −∞, and ζp0 (co K) = 0 if and only if the condition (14), which has been shown to be
equivalent to Condition (IV), holds.

Before presenting the main result of this section, we show a simple illustrative example.

Example 3.1. Let V = R2, Q0 = (0, α), H0 = (1, 0), m = 0, and

Γ =
{

(x1, x2) ∈ R2
+ : x2 − x1 = 0 or x1 = 0

}
,

where α denotes a parameter to be specified. Then, the primal COP (3) with K = Γ is of
the form

ζp(Γ) = inf
{
αx2

∣∣ (x1, x2) ∈ Γ, 〈H0, (x1, x2)〉 = x1 = 1
}

= inf
{
αx2

∣∣ (x1, x2) ∈ R2
+, x2 − x1 = 0, x1 = 1

}
.
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Thus, the feasible region of the primal COP (3) with K = Γ consists of a single point
x = (1, 1). We further see that

co Γ =
{

(x1, x2) ∈ R2
+ : x2 − x1 ≥ 0

}
,

ζp0 (Γ) = inf
{
αx2

∣∣ (x1, x2) ∈ R2
+, x1 = 0

}
,

ζp(co Γ) = inf
{
αx2

∣∣ (x1, x2) ∈ R2
+, x2 − x1 ≥ 0, x1 = 1

}
.

If α < 0, then Condition (IV) is not satisfied for K = Γ, and −∞ = ζp(co Γ) < ζp(Γ) = α.
Otherwise, Condition (IV) is satisfied for K = Γ, and ζp(co Γ) = ζp(Γ) = α.

Theorem 3.1. Suppose that Condition (I) holds for K = Γ. Then,

(i) F (co Γ) = co F (Γ) + co F0(Γ).

(ii) ζp(co Γ) = ζp(Γ) + ζp0 (Γ).

(iii) ζp(co Γ) = ζp(Γ) if and only if Condition (IV) holds for Γ or ζp(Γ) = −∞.

Proof. (i) To show the inclusion F (co Γ) ⊂ co F (Γ) + co F0(Γ), assume that X ∈ F (co Γ).
Then there exist X i ∈ Γ (i = 1, 2, . . . , r) such that

X =
∑r

i=1X
i, 1 = 〈H0, X〉 =

∑r
i=1〈H

0, X i〉

0 = 〈Qk, X〉 =
∑r

i=1〈Q
k, X i〉 (k = 1, 2, . . . ,m).

Without loss of generality, we may assume Xr = O for the consistency of the proof. Hence,
I0 defined in the following is nonempty. Let

I+ =
{
i : 〈H0, X i〉 > 0

}
, I0 =

{
j : 〈H0, Xj〉 = 0

}
,

Y =
∑
i∈I+

X i, λi = 〈H0, X i〉, Y i = (1/λi)X
i ∈ Γ (i ∈ I+),

Z =
∑
j∈I0

Xj, λj = 1/ |I0| ,Zj = (1/λj)X
j ∈ Γ (j ∈ I0),

where |I0| denotes the number of elements in I0. Then X = Y + Z, and

λi > 0 (i ∈ I+), 1 =
∑

i∈I+ λi, Y =
∑

i∈I+ λiY
i,

λj > 0 (j ∈ I0), 1 =
∑

j∈I0 λj, Z =
∑

j∈I0 λjZ
j,

which imply that Y and Z lie in the convex hull of Y i (i ∈ I+) and Zj (j ∈ I0), respectively.
To see Y i ∈ F (Γ) (i ∈ I+) and Zj ∈ F0(Γ) (j ∈ I0), we observe that

1 = 〈H0, (1/λi)X
i〉 = 〈H0, Y i〉 (i ∈ I+),

0 = 〈H0, (1/λj)X
j〉 = 〈H0, Zj〉 (j ∈ I0),

0 = 〈Qk, X〉 =
∑

i∈I+ λi〈Q
k, Y i〉+

∑
j∈I0 λj〈Q

k, Zj〉 (k = 1, 2, . . . ,m). (15)

Since Y i ∈ K (i ∈ I+), Zj ∈ K (j ∈ I0) and Qk ∈ K∗ (k = 1, 2, . . . ,m) by Condition (I),
we also see that 〈Qk, Y i〉 ≥ 0 (i ∈ I+) and 〈Qk, Zj〉 ≥ 0 (j ∈ I0). Hence, it follows from
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λi > 0 (i ∈ I+), λj > 0 (j ∈ I0) and the identity (15) that 〈Qk, Y i〉 = 0 and 〈Qk, Zj〉 = 0
(i ∈ I+, j ∈ I0, k = 1, 2, . . . ,m). Thus we have shown that Y i ∈ F (Γ) (i ∈ I+) and
Zj ∈ F0(Γ) j ∈ I0. Therefore X = Y +Z =

∑
i∈I+ λiY

i+
∑

j∈I0 λjZ
j ∈ co F (Γ)+co F0(Γ).

To show the converse inclusion, suppose that X = Y + Z for some Y ∈ co F (Γ) and
Z ∈ co F0(Γ). Then we can represent Y ∈ co F (Γ) as

Y =

p∑
i=1

λiY
i,

p∑
i=1

λi = 1, λi > 0, Y i ∈ Γ, 〈H0, Y i〉 = 1, 〈Qk, Y i〉 = 0

(i = 1, 2, . . . , p, k = 1, 2, . . . ,m),

and Z ∈ co F0(Γ) and

Z =

q∑
j=1

λiZ
j,

q∑
j=1

λj = 1, λj > 0, Zj ∈ Γ, 〈H0, Zj〉 = 0, 〈Qk, Zj〉 = 0

(j = 1, 2, . . . , q, k = 1, 2, . . . ,m).

Since co Γ is a cone, it follows from
∑p

i=1 λiY
i ∈ co Γ and

∑q
j=1 λjZ

j ∈ co Γ that X =

Y + Z =
∑p

i=1 λiY
i +
∑q

j=1 λjZ
j ∈ co Γ. We also see that

〈H0, X〉 =
∑p

i=1 λi〈H
0, Y i〉+

∑q
j=1 λj〈H

0, Zj〉 =
∑p

i=1 λi + 0 = 1

〈Qk, X〉 =
∑p

i=1 λi〈Q
k, Y i〉+

∑q
j=1 λj〈Q

k, Zj〉 = 0 (k = 1, 2, . . . ,m).

Thus we have shown that X ∈ F (co Γ).
(ii) Since the objective function is linear, we see from (i)

ζp(co Γ) = inf
{
〈Q0, X〉 |X ∈ F (co Γ)

}
= inf

{
〈Q0, Y + Z〉 | Y ∈ co F (Γ), Z ∈ co F0(Γ)

}
= inf

{
〈Q0, Y 〉+ 〈Q0, Z〉 | Y ∈ co F (Γ), Z ∈ co F0(Γ)

}
= inf

{
〈Q0, Y 〉 | Y ∈ co F (Γ)

}
+ inf

{
〈Q0, Z〉 | Z ∈ co F0(Γ)

}
= ζp(Γ) + ζp0 (Γ).

(iii) By Condition (I) with K = Γ, F (Γ) is nonempty. Hence we have ζp(Γ) <∞. If ζp(Γ) =
−∞, then ζp(co Γ) = ζp(Γ) = −∞. Now suppose that ζp(Γ) is finite. If Condition (IV)
holds, then ζp0 (Γ) = 0 follows from Lemma 3.1. Hence ζp(co Γ) = ζp(Γ) by (ii). Conversely,
if ζp(co Γ) = ζp(Γ), then ζp0 (Γ) = 0 follows from (ii), which implies that Condition (IV)
holds by Lemma 3.1. Thus we have shown (iii).

If H0 ∈ Sn, Qk ∈ Sn (k = 1, 2, . . . , n − 1) and Γ ⊂ Sn are given as in Example 2.1,
{O} ⊂ F0(Γ) ⊂

{
X ∈ Γ | 〈H0, X〉 = 0

}
= {O}. Hence Conditions (I) and (IV) are

satisfied. Hence ζp(co Γ) = ζ(Γ) by Lemma 3.1 and Theorem 3.1

In [2, 4], the following condition was assumed for a COP of the form (3) with a nonconvex
cone K induced from various classes of QOPs and POPs, in addition to Condition (I).
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Condition (IV)′

F0(K) ⊂ F (K)∞ =

{
D ∈ V :

∃ (µr,Xr) ∈ R+ × F (K) (r = 1, 2, . . . , )
satisfying (µr, µrXr)→ (0,D) as r →∞

}
(the horizontal cone generated by F (K))

Assume that Condition (I) holds for K = Γ. When ζp(K) is finite, Condition (IV) is a
necessary and sufficient for the identity ζp(K) = ζp(co K), while Condition (IV)′ is merely
a sufficient condition for the identity. Thus, Condition (IV)′ implies Condition (IV). In
particular, if Condition (IV)′ holds, then Condition (IV) is satisfied for any Q0 ∈ V. In
fact, we can prove the following lemma which shows that Condition (IV) is much weaker
than Condition (IV) ′.

Lemma 3.2. Suppose that ζp(K) is finite. Then, Condition (IV) ′ implies Condition (IV)
for any Q0 ∈ V.

Proof. Assume on the contrary that 〈Q0, D〉 < 0 for some O 6= D ∈ F0(K). By Condition
(IV)′, there exists a sequence {(µr,Xr) ∈ R+ × F (K) : r = 1, 2, . . . } such that (µr, µrXr)
converges to (0,D) as r →∞. Thus, there is a positive number δ such that 〈Q0, µrXr〉 <
−δ for every sufficiently large r. Therefore, 〈Q0, Xr〉 < −δ/µr → −∞ along a sequence
{Xr : r = 1, 2, . . . } of feasible solutions of COP (3). But this contradicts the assumption
that ζp(K) is finite.

The results in this section are summarized as the following theorem.

Theorem 3.2. ζp(K) = ζp(co K) under Conditions (I) and (IV).

4 Numerical methods for solving the primal-dual pair

of the Lagrangian-conic relaxation (7) and (8)

In this section, we take K to be a closed convex cone. For every G ∈ V, let Π(G) and
Π∗(G) denote the metric projection of G onto the cone K and K∗, respectively:

Π(G) = argmin {‖G−X‖ |X ∈ K} ,
Π∗(G) = argmin {‖G−Z‖ | Z ∈ K∗} .

In addition to Conditions (I), (II) and (III), we assume the following condition throughout
this section.
Condition (V) For every G ∈ V, Π(G) can be computed.

Under these four conditions, we briefly present two types of numerical methods for solving
the primal-dual pair of the Lagrangian-conic relaxation (7) and (8) with a fixed λ. The
first is based on a bisection method, which was proposed in [19], and the second is an
1-dimensional Newton method, which is newly proposed in this paper.
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Remark 4.1. When the unified framework is applied to QOPs in Section 5, and to POPs
in Part II [5, Section 4], the cone K is given as the intersection of two closed convex cones
K1 and K2 in the space of symmetric matrices. In such cases, we can adapt the accelerated
proximal gradient method [6] to compute the metric projection onto K = K1 ∩K2 based on
those metric projections onto K1 and K2 individually as in Algorithm C of [19].

Let λ ∈ R be a fixed scalar. For every y0 ∈ R, define

Gλ(y0) = Q0 + λH1 −H0y0,

gλ(y0) = min {‖Gλ(y0)−Z‖ | Z ∈ K∗} ,

Ẑλ(y0) = Π∗(Gλ(y0)), X̂λ(y0) = Π(−Gλ(y0))

By the decomposition theorem of Moreau [22], we know that

Ẑλ(y0)− X̂λ(y0) = Gλ(y0), 〈X̂λ(y0), Ẑλ(y0)〉 = 0. (16)

Hence for every y0,

gλ(y0) = ‖Gλ(y0)− Ẑλ(y0)‖ = ‖X̂λ(y0)‖, (17)

(gλ(y0))
2 = ‖X̂λ(y0)‖2 = 〈Gλ(y0), X̂λ(y0)〉 = 〈H0, X̂λ(y0)〉y0 − 〈Q0 + λH1, X̂λ(y0)〉. (18)

By definition, gλ(y0) ≥ 0 for all y0 ∈ R, and y0 is a feasible solution of the dual of the
Lagrangian-conic relaxation (8) if and only if gλ(y0) = 0. Therefore we can rewrite (8) as

ηd(λ,K) := sup {y0 | gλ(y0) = 0} .

Thus we can easily design a standard bracketing and bisection method for computing
ηd(λ,K). We omit the details here but refer the reader to [19].

To describe the 1-dimensional Newton method for computing ηd(λ,K), we need the
following lemma, which exhibits some fundamental properties of the function gλ.

Lemma 4.1. Let λ ∈ R be fixed. Assume that ηd(λ,K) > −∞.

(i) gλ : R→ R+ is continuous and convex.

(ii) If y0 > ηd(λ,K), then 〈H0, X̂λ(y0)〉 > 0.

(iii) If y0 > ηd(λ,K), then dgλ(y0)/dy0 = 〈H0, X̂λ(y0)〉/gλ(y0) > 0; hence gλ : (ηd(λ,K),∞)→
R is continuously differentiable and strictly increasing.

(iv) Assume that Gλ(z̄0) lies in the interior of K∗ for some z̄0. Then
gλ(y0)− gλ(ηd(λ,K))

y0 − ηd(λ,K)
converges to a positive value as y0 ↓ ηd(λ,K); hence the right derivative of gλ(y0) at
y0 = ηd(λ,K) is positive.

Proof. Consider the distance function θ(x) = min {‖x− y‖ : y ∈ C} from x ∈ V to a closed
convex subset C of V and the metric projection P (x) = argmin {‖x− y‖ : y ∈ C} of x ∈ V
onto C in general. It is well-known and also easily proved that θ is convex and continuous
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(see for example [17, 33]). It is also known that θ2(·) is continuously differentiable with
∇θ2(x) = 2(x− P (x)) (see for example [26, Proposition 2.2]).

Since gλ(y0) = θ(Gλ(y0)) and Gλ(y0) is linear with respect to y0 ∈ R, the assertion (i)
follows. In addition, we have that

dg2λ(y0)

dy0
= 2〈Gλ(y0)− Π∗(Gλ(y0)), −H0〉 = 2〈X̂λ(y0), H

0〉. (19)

Next we prove assertion (ii) for y0 > ηd(λ,K). Note that by the definition of ηd(λ,K),

gλ(y0) > 0. Assume on the contrary that 〈H0, X̂λ(y0)〉 = 0. Then we see by (18) that

〈Q0 + λH1, X̂λ(y0)〉 = −‖X̂λ(y0)‖2 = −gλ(y0)2 < 0.

Hence X̂λ(y0) 6= O is a direction along which the objective function of (7) tends to −∞.

This contradicts to the assumption −∞ < ηd(λ,K) = ηp(λ,K). Therefore 〈H0, X̂λ(y0)〉 >
0.

We now prove assertion (iii). Again, note that gλ(y0) > 0 for y0 > ηd(λ,K). By (19), we
get

dgλ(y0)

dy0
=
〈X̂λ(y0), H

0〉
gλ(y0)

> 0.

From here, the remaining assertions follow.
Finally, we prove assertion (iv). Let L denote the line {Gλ(y0) : y0 ∈ R} in V. Then

L ∩ K∗ forms a half-line with the end point Gλ(η
d(λ,K)). Since Gλ(η

d(λ,K)) is on the
boundary of the closed convex cone K∗, there exists a supporting hyperplane

T =
{
Y ∈ V | 〈N , Y 〉 =

〈
N , Gλ(η

d(λ,K))
〉}

such that

K∗ ⊂
{
Y ∈ V | 〈N , Y 〉 ≤

〈
N , Gλ(η

d(λ,K))
〉}
.

By the assumption, Gλ(z̄0) lies in the interior of K∗. Hence

〈N , Gλ(z̄0)〉 <
〈
N , Gλ(η

d(λ,K))
〉
.

Geometrically, the line L transversally intersects with the supporting hyperplane T of the
cone K∗ at Gλ(η

d(λ,K)). It follows that

〈N , Gλ(z̄0)〉 <
〈
N , Gλ(η

d(λ,K))
〉
< 〈N , Gλ(y0)〉 if z̄0 < ηd(λ,K) < y0. (20)

For every y0 ∈ R, define

hλ(y0) = min {‖Gλ(y0)−Z‖ | Z ∈ T } .
Then there exists a linear projection operator P from V onto the hyperplane T , and we see
that

hλ(y0) = ‖Gλ(y0)− PGλ(y0)‖
=

∥∥Gλ(y0)− P
(
Gλ(η

d(λ,K)) + Gλ(y0)−Gλ(η
d(λ,K))

)∥∥
=

∥∥Gλ(y0)− PGλ(η
d(λ,K))− P

(
Gλ(y0)−Gλ(η

d(λ,K))
)∥∥

=
∥∥H0(ηd(λ,K)− y0)− PH0(ηd(λ,K)− y0)

∥∥
(because Gλ(η

d(λ,K)) ∈ K∗ ∩ T and PGλ(η
d(λ,K)) = Gλ(η

d(λ,K)))

=
∣∣y0 − ηd(λ,K)

∣∣ ∥∥(I − P )H0
∥∥ .
18



Here I − P represents the linear projection operator from V onto T⊥ = {wN | w ∈ R}.
By the above identities and (20), we obtain that

hλ(y0) = (y0 − ηd(λ,K))
∥∥(I − P )H0

∥∥ > 0 for every y0 > ηd(λ,K).

On the other hand, we know that

gλ(y0) = min {‖Gλ(y0)−Z‖ | Z ∈ K∗}
≥ hλ(y0) = min {‖Gλ(y0)−Z‖ | Z ∈ T } for every y0 > ηd(λ,K).

To see this inequality, assume that y0 > ηd(λ,K) and gλ(y0) =
∥∥∥Gλ(y0)− Z̃

∥∥∥ for some

Z̃ ∈ K∗. Then

〈N , Z̃〉 ≤
〈
N , Gλ(η

d(λ,K))
〉
< 〈N , Gλ(y0)〉.

Thus there is a Z ∈ V on the line segment joining Z̃ and Gλ(y0) such that 〈N , Z〉 =〈
N , Gλ(η

d(λ,K))
〉
, i.e., Z ∈ T . Therefore, we have shown that

gλ(y0) =
∥∥∥Gλ(y0)− Z̃

∥∥∥ ≥ ‖Gλ(y0)−Z‖ ≥ hλ(y0).

for every y0 > ηd(λ,K). Hence, for every y0 > ηd(λ,K),

gλ(y0)− gλ(ηd(λ,K))

y0 − ηd(λ,K)
≥ hλ(y0)− hλ(ηd(λ,K))

y0 − ηd(λ,K)
=
∥∥(I − P )H0

∥∥ > 0.

(Note that gλ(η
d(λ,K)) = hλ(η

d(λ,K)) = 0 since Gλ(η
d(λ,K)) ∈ K∗ ∩ T .) Therefore,

taking the limit as ηd(λ,K) < y0 → ηd(λ,K), we obtain the desired result. (We note that
gλ(y0)− gλ(ηd(λ,K))

y0 − ηd(λ,K)
decreases monotonically as ηd(λ,K) < y0 → ηd(λ,K) since gλ : R→ R

is a continuous convex function).

Remark 4.2. For the proof of (iv) of Lemma 4.1, the existence of a supporting hyper-
plane T ⊂ V of the cone K∗ at Gλ(η

d(λ,K)) that transversally intersects the line L =
{Gλ(y0) | y0 ∈ R} is essential. Thus, the assumption of (iv) can be weaken to the existence
of such a supporting hyperplane. Suppose that ηd(λ,K) is finite. When the right derivative
of gλ at ηd(λ,K) is positive and large, we can expect the numerical approximation of ηd(λ,K)
to be easier. Conversely, if it was zero, then accurate numerical approximation of ηd(λ,K)
would be more difficult. Even in this case, if we perturb Q0 to Q0 +F with any F ∈ int K∗,
then

Q0 + F + λH1 −H0ηd(λ,K) ∈ int K∗,
sup

{
y0
∣∣ Q0 + F + λH1 −H0y0 ∈ K∗

}
→ ηd(λ,K) as ‖F ‖ → 0.

Suppose that gλ(ȳ0) > 0 for some ȳ0 ∈ R. Then the Newton iteration for computing
ηd(λ,K) is given by

ȳ+0 = ȳ0 −
gλ(ȳ0)

dgλ(ȳ0)/dy0
= ȳ0 −

〈X̂λ(ȳ0), X̂λ(ȳ0)〉
〈H0, X̂λ(ȳ0)〉

= ȳ0 −
〈Ẑ(ȳ0)−Gλ(ȳ0), X̂λ(ȳ0)〉

〈H0, X̂λ(ȳ0)〉
(by (16))

=
〈
Q0 + λH1, X̃λ(ȳ0)

〉
≥ ηp(λ,K).
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where X̃λ(ȳ0) = X̂λ(ȳ0)/〈H0, X̂λ(ȳ0)〉 denotes a feasible solution of the Lagrangian-conic
relaxation (7). It should be noted that the sequence of y0’s generated by the Newton itera-
tion monotonically decreases and converges to ηd(λ,K) by (i), (ii) and (iii) of Lemma 4.1.
Furthermore, if the assumption in (iv) of Lemma 4.1 is satisfied, then the generated sequence
converges superlinearly to ηd(λ,K).

We may also use the relation

dgλ(y0)

dy0
=

〈
H0, X̂λ(y0)

〉
gλ(y0)

=

〈
H0, X̂λ(y0)

〉
‖X̂λ(y0)‖

=
1

‖X̃λ(ȳ0)‖
> 0 for every y0 > ηd(λ,K)

for more stable and accurate computation of ηd(λ,K). The details are omitted here.

5 Applications to a class of quadratic optimization

problems

In this section, we demonstrate how to apply the unified framework described in the primal-
dual COPs (3)–(4) to the class of linearly constrained QOP with complementarity con-
straints.

We take V to be the linear space of (1 + n)× (1 + n) symmetric matrices S1+n with the
inner product 〈Q, X〉 = Trace QTX =

∑n
i=0

∑n
j=0QijXij. We assume that the row and

column indices of each matrix in S1+n range from 0 to n. We are particularly interested in
the following cones in the space of S1+n:

S1+n
+ = the cone of positive semidefinite matrices in S1+n,

N1+n =
{
X ∈ S1+n : Xij ≥ 0 (1 ≤ i ≤ j ≤ 1 + n)

}
,

C1+n =
{
A ∈ S1+n : 〈A, xxT 〉 ≥ 0 for every x ∈ R1+n

+

}
= (the copositive cone),

(C1+n)∗ =

{
r∑
i=1

xix
T
i : xi ∈ R1+n

+ (i = 1, 2, . . . , r), r ∈ Z+

}
= (the compeletely positive (CPP) cone),

D1+n = S1+n
+ ∩ N1+n (the doubly nonnegative cone).

5.1 Representation of QOP (2) as a COP over a nonconvex cone
and its convexification

Recall the linearly constrained QOP (2) with complementarity constraints introduced in
Section 1. We assume that the feasible region of QOP (2) is nonempty. To convert QOP (2)
to COP (3), we define
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Q0 =

(
0 c
c Q

)
∈ S1+n, Q1 =

(
bTb bTA
ATb ATA

)
∈ S1+n, (21)

Cij = the n× n matrix with 1 at the (i, j)th element, and 0 elsewhere ((i, j) ∈ E),

Qij =

(
0 0T

0 Cij + (Cij)T

)
∈ S1+n ((i, j) ∈ E),

H0 = the (1 + n)× (1 + n) matrix whose (0, 0)th element is 1, and 0 elsewhere.

∆1 =

{
U =

(
1
u

)(
1
u

)T
=

(
1 uT

u uuT

)
∈ S1+n : u ∈ Rn

+

}
.

We renumber the superscript ij of Qij ((i, j) ∈ E) to 2, . . . ,m for some m. Then, we can
rewrite QOP (2) as follows:

ζ∗ = inf
{
〈Q0, U〉

∣∣ U ∈∆1, 〈Qk, U〉 = 0 (k = 1, 2, . . . ,m)
}
. (22)

By definition, we know that

O 6= H0 ∈ S1+n
+ + N1+n =

(
D1+n

)∗
, Qk ∈

(
D1+n

)∗
(k = 1, 2, . . . ,m). (23)

We embed ∆1 in a nonconvex cone by homogenizing ∆1 as

Γ =

{
X =

(
x0
x

)(
x0
x

)T
=

(
x20 x0x

T

x0x xxT

)
∈ S1+n :

(
x0
x

)
∈ R1+n

+

}
.

Obviously, Γ forms a cone in S1+n.
Now, we consider the primal COP (3) for K = Γ and co Γ. The feasible region F (Γ)

of the first COP coincides with the feasible region of QOP (22), resulting in ζp(Γ) = ζ∗.
The second COP with a convex feasible region F (co Γ) corresponds to a convexification
of the first COP. In particular, co Γ coincides with the completely positive programming
(CPP) cone

(
C1+n

)∗
and the COP with K = co Γ =

(
C1+n

)∗
is called a completely positive

programing (CPP) relaxation of QOP (2) (or QOP (22)) [2, 3, 8, 19]. Since co Γ ⊃ Γ, we
have that

ζp(co Γ) ≤ ζ∗

where ζ∗ is the optimal value of the QOP (2).
Next we describe a condition that characterizes the equivalence between ζp(co Γ) and

ζ∗. By construction, Γ, co Γ ⊂ D1+n. From the nonemptiness of the feasible region of
QOP (2) and (23), we see that Condition (I) is satisfied for K = Γ and K = co Γ. Thus,
we can consistently define the simplified primal COP (5), the Lagrangian-conic relaxation
(7) and their duals for K = Γ and K = co Γ, and apply Lemmas 2.1 and 2.2.

To present main results of this section, we consider the following problem:

ζ∗0 = inf

{
uTQu

∣∣∣∣ u ∈ Rn
+, Au = 0,

uiuj = 0 ((i, j) ∈ E)

}
. (24)

The set of feasible solutions of this problem forms a cone in Rn
+. Hence, we see that ζ∗0 = 0

or ζ∗0 = −∞, and that ζ∗0 = 0 if and only if

uTQu ≥ 0 for every feasible solution u of (24). (25)
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Assume that the set {u ∈ Rn
+ : Au + b = 0} of vectors satisfying the linear constraints

in QOP (2) is bounded. Then {u ∈ Rn
+ : Au = 0} = {0}, which implies that the condition

(25) holds trivially. Furthermore, for every cone K satisfying K ⊂ D1+n, we see that

O ∈
{
X ∈ K : 〈H0, X〉 = 0, 〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)

}
⊂

{
X ∈ D1+n : 〈H0, X〉 = 0, 〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)

}
= {O}, (26)

where the last identity of (26)) is proved in Lemma 2.1 of [19]. This implies that the feasible
region F (K) of COP (3) is bounded. As a result, Condition (III) holds.

Lemma 5.1.

(i) Assume that ζ∗ is finite. Then,

ζp(co Γ) = ζ∗ + ζ∗0 =

{
ζ∗ if the condition (25) holds,
−∞ otherwise.

(ii) Assume that the set {u ∈ Rn
+ : Au + b = 0} is bounded and the feasible region of

QOP (2) is nonempty. Then,(
ηd(λ, co Γ) = ηp(λ, co Γ)

)
↑ = ζd(co Γ) = ζp(co Γ) = ζ∗.

Proof. (i) We apply (iii) of Lemma 3.1. Observe that X ∈ Γ and 〈H0, X〉 = 0 if and

only if X =

(
0
u

)(
0
u

)T
for some u ∈ Rn

+. With this correspondence, we see that

uTQu = 〈Q0, X〉, and that u is a feasible solution of (24) if and only if X is a feasible
solution of (13) with K = Γ. Thus, ζ∗0 = ζp0 (Γ) and the condition (25) corresponds to
Condition (IV) with K = Γ. The desired result follows from (iii) of Theorem 3.1.

(ii) The CPP cone co Γ = (C1+n)∗ is known to be a closed convex cone. Thus Condition
(II) holds for K = co Γ. We have observed that the assumption implies that Condition (III)
holds for K = Γ and that F (co K) is bounded. The desired result follows from (iii) of
Theorem 2.1 and assertion (i).

5.2 DNN and Lagrangian-DNN relaxations

In this subsection, we present the DNN and Lagrangian-DNN relaxations of QOP (22).
First, we let K be the doubly nonnegative cone D1+n = S1+n

+ ∩ N1+n. Note the relation

co Γ =
(
C1+n

)∗ ⊂ D1+n ⊂ S1+n
+ + N1+n =

(
D1+n

)∗ ⊂ C1+n.

Hence, ζp(D1+n) ≤ ζp(
(
C1+n

)∗
) ≤ ζ∗. By (23), Condition (I) is satisfied for K = D1+n. As

a result, we can introduce the simplified primal COP (5), the Lagrangian-conic relaxation
(7) and their duals for K = D1+n.

Lemma 5.2.

(i) Assume that the set {u ∈ Rn
+ : Au + b = 0} is bounded. Then,

ζ∗ ≥ ζd(D1+n) = ζp(D1+n) =
(
ηd(λ,D1+n) = ηp(λ,D1+n)

)
↑
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(ii) Assume that the condition (25) does not hold. Then, ζp(D1+n) = −∞.

Proof. (i) Since Conditions (I), (II) and (III) hold for K = D1+n, the desired result follows
from Theorem 2.1. Note that Condition (III) was verified in the paragraph above Lemma 5.1.

(ii) Since co Γ ⊂ D1+n, we know that ζ∗ ≥ ζp(co Γ) ≥ ζp(D1+n). Hence ζp(D1+n) = −∞
follows from (i) of Lemma 5.1.

We can apply all the discussions in Section 4 to the Lagrangian-conic relaxation and its
dual (7)–(8) with K = D1+n. In particular, the computation of ηd(λ,D1+n) is reduced to the
simple problem: ηd(λ,D1+n) = sup{y0 : gλ(y0) = 0}, where gλ : R → R+ is defined as the
norm of the metric projection of −(Q0 +λH1−H0y0) onto D1+n. To compute ηd(λ,D1+n),
we can employ the numerical methods such as the bisection method and the 1-dimensional
Newton method described in Section 4. In fact, Kim, Kojima and Toh [19] implemented
the bisection method combined with the proximal alternating direction multiplier method
[11] and the accelerated proximal gradient method [6], for solving the Lagrangian-conic
relaxation and its dual (7)–(8) arising from QOPs of the form (2). It was assumed in [19]
that the linear constraint set {u ∈ Rn : Au + b = 0} is bounded. Thus, by Lemma 5.2, a
common optimal value ηp(λ,D1+n) = ηd(λ,D1+n) of the Lagrangian-conic relaxation and its
dual (7)–(8) converges to the optimal value ζp(D1+n) of the DNN relaxation of QOP (2). In
addition, the primal Lagrangian-conic relaxation problem, the Lagrangian-conic relaxation
(7) with K = D1+n is strictly feasible (i.e., its feasible region intersect with the interior of
the DNN cone). These properties contributed to the effectiveness, efficiency, and stability of
their numerical method. Notice that Assertion (ii) of Lemma 5.2 shows that their method
will not work if condition (25) does not hold.

6 Exploiting sparsity in the DNN and Lagrangian-

DNN relaxations for QOP (2)

As another demonstration of the usefulness and power of the unified framework introduced
through the primal-dual COPs (5)–(6) and their Lagrangian-conic relaxations (7)–(8), here
we show how to apply the framework to derive sparse DNN and sparse Lagrangian-DNN
relaxations for the QOP (2).

6.1 Notation, symbols and basics

Let N0 = {0, 1, . . . , n}. We say that a subset G ⊂ N0×N0 is symmetric if (i, j) ∈ G implies
(j, i) ∈ G. For every symmetric subset G of N0 ×N0 and every cone J ⊂ S1+n, let

Gc = {(i, j) ∈ N0 ×N0 : (i, j) 6∈ G} ,

S1+n(G, 0) =
{
X ∈ S1+n : Xij = 0 if (i, j) 6∈ G

}
,

J(G, 0) = J ∩ S1+n(G, 0),

J(G, ?) = J + S1+n(Gc, 0) =
{
X ∈ S1+n : Xij = X̄ij ((i, j) ∈ G) for some X̄ ∈ J

}
.

Obviously, S1+n(G, 0) forms a linear subspace of S1+n. J(G, 0) and J(G, ?) are cones in S1+n,
and

S1+n(G, 0)⊥ = S1+n(G, 0)∗ = S1+n(Gc, 0) and J(G, 0) ⊂ J ⊂ J(G, ?). (27)
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We denote the dual of J(G, 0) by J(G, 0)∗.

Lemma 6.1. Let G be a symmetric subset N0×N0 and J a cone in S1+n. Then, the following
assertions hold.

(i) J(G, ?)∗ = J∗ ∩ S1+n(G, 0).

(ii) Moreover, if J is a closed convex cone, then
(
J∗ ∩ S1+n(G, 0)

)∗
= cl (J(G, ?)).

Proof. (i) Suppose that X ∈ J∗ ∩ S1+n(G, 0). Then, for every Y + Z ∈ J(G, ?) with Y ∈ J
and Z ∈ S1+n(Gc, 0), we see that 〈X, Y +Z〉 = 〈X, Y 〉+〈X, Z〉 ≥ 0. Hence, X ∈ J(G, ?)∗.
Now suppose that X ∈ S1+n and X 6∈ J∗ ∩ S1+n(G, 0). Then we have either

X 6∈ J∗ and X ∈ S1+n(G, 0) (28)

or X 6∈ S1+n(G, 0), i.e., Xij 6= 0 for some (i, j) ∈ Gc. (29)

In the case of (28), there exists a Y ∈ J ⊂ J(G, ?) such that 〈X, Y 〉 < 0. Thus, X 6∈
J(G, ?)∗. For the case of (29), let Y ∈ S1+n be such that

Yij =

{
0 if (i, j) ∈ G,
−Xij if (i, j) ∈ Gc.

Then, Y ∈ J + S1+n(Gc, 0) = J(G, ?) and

〈X, Y 〉 =
∑

(i,j)∈Gc XijYij =
∑

(i,j)∈Gc Xij(−Xij) = −
∑

(i,j)∈Gc X
2
ij < 0.

Consequently, X 6∈ J(G, ?)∗.

(ii) It is known in general that (A∗)∗ = A and (A ∩ B)∗ = cl (A∗ +B∗) if A and B are
closed convex cone in S1+n. Thus, we obtain that(

J∗ ∩ S1+n(G, 0)
)∗

= cl
(
(J∗)∗ + S1+n(G, 0)⊥

)
= cl

(
J + S1+n(Gc, 0)

)
= cl (J(G, ?)) .

6.2 Sparse DNN and Lagrangian relaxation

We can utilize the last inclusion relation J ⊂ J(G, ?) of (27) with J = D1+n to construct
sparse DNN and Lagrangian-DNN relaxations of QOP (2). As we have seen in the previous
section, the primal COP (3) with K = D1+n serves as the DNN relaxation of QOP (22),
which has been shown to be equivalent to QOP (2). If G is a symmetric subset of N0 ×N0

and K1 is a convex cone in S1+n satisfying D1+n(G, ?) ⊂ K1, then the primal COP (3) with
K = K1 serves as a sparse DNN relaxation. To derive effective and efficient sparse DNN
and Lagrangian-DNN relaxations of QOP (22), some additional restrictions on G and K1 are
necessary. In particular, Condition (I) with K = K1 is necessary for the sparse Lagrangian-
DNN relaxation (7) with K = K1. We also want to choose a symmetric subset G of N0×N0

so that it properly reflects the sparsity of the matrices Qk (k = 0, 1, . . . ,m) for the resulting
DNN and Lagrangian-DNN relaxations to be solved efficiently.
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For such a symmetric subset G of N0×N0, we introduce the sparsity pattern (undirected)
graph G(N0, E0) such that

E0 =
{

(i, j) ∈ N0 ×N0 : i 6= j, Qk
ij 6= 0 for some k ∈ {0, 1, . . . ,m}

}
.

We identify (i, j) ∈ E0 and (j, i) ∈ E0 so that G(N0, E0) forms an undirected graph.
Let Ḡ(N0, Ē0) be a chordal extension of G(N0, E0). Consider the set of maximal cliques
C1, . . . , Cr of Ḡ(N0, Ē0), where each maximal clique is denoted by a subset of N0. It is
known that the number r of the maximal cliques is not greater than the size 1 + n of the
node set N0, and that the maximal cliques can be renumbered so that they satisfy the
running intersection property

∀p ∈ {1, . . . , r − 1}, ∃q > p; Cp ∩ (Cp+1 ∪ · · · ∪ Cr) ⊂ Cq. (30)

Let 2Cp = Cp × Cp (p = 1, . . . , p) and E =
⋃r
p=12Cp. In this case, we can apply

the following lemma to determine whether a matrix X ∈ S1+n belongs to S1+n
+ (E , ?) and

S1+n
+ (E , 0). If X ∈ S1+n

+ (E , ?), then Xij ((i, j) ∈ Ec) may be regarded as elements with
undetermined values, but their values can be assigned so that the completed matrix belongs
to S1+n

+ . The technique for assigning appropriate values is known as positive semidefinite
matrix completion in the literature [15]. Techniques for exploiting sparsity in SDPs based
on the positive semidefinite matrix completion were proposed in [13, 23]; see also [18, 20].
We can utilize those techniques for an efficient implementation of the method proposed in
this section.

For later discussions, we use the notation (Xij : 2Cp) to denote the submatrix extracted
from a given X ∈ S1+n by extracting the elements at (i, j) ∈ 2Cp. We also define

D(E) = S1+n
+ (E , ?) ∩ N1+n(E , ?).

Lemma 6.2. Let X ∈ S1+n.

(i) X ∈ S1+n
+ (E , ?) if and only if

X ∈
r⋂
p=1

S1+n
+ (2Cp, ?) =

r⋂
p=1

{
X ∈ S1+n : (Xij : 2Cp) is positive semidefinite

}
.

(ii) Q ∈ S1+n
+ (E , 0) if and only if Q ∈

∑r
p=1 S

1+n
+ (2Cp, 0).

(iii) X ∈ N1+n
+ (E , ?) if and only if

X ∈
r⋂
p=1

N1+n
+ (2Cp, ?) =

r⋂
p=1

{
X ∈ N1+n : (X ij : 2Cp) is a nonnegative matrix

}
.

(iv) Q ∈ N1+n(E , 0) if and only if Q ∈
∑r

p=1N
1+n(2Cp, 0).

Proof. See [15] and [1] for assertions (i) and (ii), respectively. Assertions (iii) and (iv) are
straightforward to verify.
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Note that assertion (ii) may be regarded as a dual of (i) since

S1+n
+ (E , 0) =

(
S1+n
+ (E , ?)

)∗
(by (i) of Lemma 6.1)

=

(
r⋂
p=1

S1+n
+ (2Cp, ?)

)∗
(by (i))

= cl

(
r∑
p=1

S1+n
+ (2Cp, 0)

)
=

r∑
p=1

S1+n
+ (2Cp, 0).

Note that the closedness of the cone
∑r

p=1 S
1+n
+ (2Cp, 0) can be proved easily.

As a sparse DNN relaxation of QOP (22), we employ the primal-dual pair of COPs
(3)–(4) with the convex cone K = D(E) = S1+n

+ (E , ?) ∩ N1+n(E , ?), i.e.,

ζp(D(E)) := inf

{
〈Q0, X〉

∣∣∣∣ X ∈ D(E), 〈H0, X〉 = 1,
〈Qk, X〉 = 0 (k = 1, 2, . . . ,m)

}
(31)

ζd(D(E)) := sup

{
z0

∣∣∣∣∣ Q0 +
m∑
k=1

Qkzk −H0z0 ∈ D(E)∗
}

(32)

Lemma 6.3.

(i) D(E) =
⋂r
p=1

({
X ∈ S1+n : (Xij : 2Cp) is doubly nonnegative

})
, and D(E) is closed.

(ii) D(E)∗ = S1+n
+ (E , 0) + N1+n(E , 0) =

∑r
p=1

(
S1+n
+ (2Cp, 0) + N1+n(2Cp, 0)

)
, and D(E)∗

is closed.

Proof. (i) By Lemma 6.2,

D(E) = S1+n
+ (E , ?) ∩ N(E , ?)

=
r⋂
p=1

(
S1+n
+ (2Cp, ?) ∩ N1+n(2Cp, ?)

)
=

r⋂
p=1

({
X ∈ S1+n : (Xij : 2Cp) is doubly nonegative

})
.

The closedness of D(E) follows from the above identity.

(ii) By definition, Lemmas 6.1, 6.2 and assertion (i),

D(E)∗ =
(
S1+n
+ (E , ?) ∩ N1+n(E , ?)

)∗
= cl

(
S1+n
+ (E , 0) + N1+n(E , 0)

)
= S1+n

+ (E , 0) + N1+n(E , 0)

=
r∑
p=1

(
S1+n
+ (2Cp, 0) + N1+n(2Cp, 0)

)
.

We need to prove the closedness of S1+n
+ (E , 0) + N1+n(E , 0) for the third identity above.

Suppose that Xs = Y s + Zs, Y s ∈ S1+n
+ (E , 0), Zs ∈ N1+n(E , 0) (s = 1, 2, . . . ) and
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Xs → X for some X ∈ S1+n as s → ∞. We will prove that X = Y + Z for some
Y ∈ S1+n

+ (E , 0) and Z ∈ N1+n(E , 0), so that X ∈ S1+n
+ (E , 0) + N1+n(E , 0). First we show

that the sequence {Y s} ⊂ S1+n
+ (E , 0) is bounded. Assume on the contrary that there is a

subsequence of {Y s} along which ‖Y s‖ diverges. We may assume without loss of generality
that Y s/‖Y s‖ → Y for some nonzero Y ∈ S1+n

+ (E , 0) as s → ∞. Then N1+n(E , 0) 3
Zs/‖Y s‖ = Xs/‖Y s‖ − Y s/‖Y s‖ → −Y as s→∞. Since N1+n(E , 0) is closed, we obtain
−Y ∈ N1+n(E , 0), which implies that all the diagonal elements of Y ∈ S1+n

+ (E , 0) vanish.
Therefore Y = O, which is a contradiction. Thus {Y s} is bounded. As a result {Zs} is
also bounded. From here, the required result follows.

By the construction of E , it follows that

O 6= H0 ∈ S1+n
+ (E , 0) ∩ N1+n(E , 0) ⊂ D(E)∗,

Qk ∈ S1+n
+ (E , 0) + N1+n(E , 0) = D(E)∗ (k = 1, 2, . . . ,m).

Hence COP (31) (i.e., COP (3) with K = D(E)) serves as a sparse DNN relaxation of
QOP (22) satisfying Conditions (I) and (II) with K = D(E). Lemmas 2.1, 2.2 and 2.3 can
be applied for K = D(E). In particular, we obtain the relation(

ηd(λ,D(E)) = ηp(λ,D(E))
)
↑= ζd(D(E)) ≤ ζp(D(E)). (33)

In addition, if Condition (III) is satisfied with K = D(E), then the equality ζd(D(E)) =
ζp(D(E)) holds. See Lemma 2.5. For every p = 1, 2, . . . , r, let (xk : Cp) denote a column
vector of the elements xk (k ∈ Cp\{0}) of a given x ∈ Rn.

Lemma 6.4. Assume that the sets {(xk : Cp) : Ax = b, (xk : Cp) ≥ 0} (p = 1, 2, . . . , r)
are all nonempty and bounded. Then F (D(E)) is bounded and hence Condition (III) with
K = D(E) is satisfied.

Proof. Assume on the contrary that there exists an unbounded sequence {Xs} ⊂ F (D(E)).
We may assume without loss of generality that Xs/ ‖Xs‖ converges to a nonzero D ∈ D(E)
as s→∞, which satisfies

(Dij : 2Cp) is a positive semidefinite and nonnegative matrix (p = 1, 2, . . . , r),

Dij = Dij ((i, j) ∈ E) for some nonzero D ∈ S1+n
+ ,

D 6= O, 〈H0, D〉 = 0 and 〈Q1, D〉 = 0.

Represent D ∈ S1+n
+ as D =

(
D00 dT

d D̃

)
for some D00 ∈ R, d ∈ Rn and D̃ ∈ Sn+.

By the construction of H0, we know that 0 = 〈H0, D〉 = D00. Thus d = 0 and D̃ 6=
O. It follows from 〈Q1, D〉 = 0 and (21) that 0 = 〈Q1, D〉 = 〈ATA, D̃〉. Since both

ATA and D̃ are positive semidefinite, we see that ATAD̃ = O, which implies AD̃ =
O. Let j ∈ {1, 2, . . . , n} be fixed arbitrary, and let u ∈ Rn denote the jth column of

D̃. Then we can take a p ∈ {1, 2, . . . , r} such that j ∈ Cp, and we have Au = 0 and
(uk : Cp) ≥ 0. If (uk : Cp) 6= 0, then (uk : Cp) forms an unbounded direction of the set
{(xk : Cp) : Ax = b, (xk : Cp) ≥ 0}. This contradicts the assumption. Thus, (uk : Cp) = 0,

in particular, uj = D̃jj = 0. Since we have chosen j ∈ {1, 2, . . . , n} arbitrarily, we can

conclude that all the diagonal elements of the nonzero positive semidefinite matrix D̃ are
zero. This is a contradiction.
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Remark 6.1. In general, the boundedness of {x ∈ Rn
+ : Ax = b}, which has been assumed

in (i) of Lemma 5.2, is weaker than the assumption of Lemma 6.4. It is not clear whether
F (D(E)) is still bounded under the weaker assumption. We are not able to prove it nor show
a counter example of unbounded F (D(E)) under the weaker assumption.

6.3 The applications of the bisection and 1-dimensional Newton
methods to the sparse Lagrangian-DNN relaxation problems

We recall that the computation of the metric projection of each G ∈ V onto K, which is
assumed in Condition (V), is the key to apply the bisection and the 1-dimensional New-
ton methods presented in Section 4 to the primal-dual pair of Lagrangian-conic relaxation
problems (7)–(8); see also Remark 4.1. For the sparse Lagrangian-DNN relaxations of the
sparse DNN conic problems (31)–(32) with K = D(E), we would need to transform them
into a form for which the metric projection can be computed easily. The purpose of this
subsection is to describe the transformation to facilitate the efficient computation of the
metric projection.

We note that since the variables Xij ((i, j) 6∈ E) are redundant in both the equality
constraints and the cone constraint X ∈ D(E) of the primal COPs (3), (5) and (7) with
K = D(E), those variables can be eliminated from the primal COPs. On the other hand, all
matrices Qk (k = 0, 1, . . . ,m), H0, H1 and the cone D(E)∗ are contained in S1+n(E , 0) in the
dual COPs (4), (6) and (8) with K = D(E). This implies that the elementsH0

ij, H
1
ij, Q

k
ij (k =

0, 1, 2, . . . ,m) ((i, j) 6∈ E) are redundant in the inclusion constraints of the dual COPs.
Furthermore, checking whether X ∈ S1+n belongs to S1+n

+ (E , ?) can be determined by
checking whether its sub matrices (Xij : (i, j) ∈ 2Cp) (p = 1, 2, . . . , r) are all positive
semidefinite (Lemma 6.3). We note that some elements may appear in a pair of these
submatrices, i.e., 2Cp ∩2Cq 6= ∅ for some p, q. To continue the discussion, let

SCp =
{
Y p = (Y p

ij : (i, j) ∈ 2Cp) : Y p
ij = Y p

ji ∈ R
}

(p = 1, 2, . . . , r),

SCp

+ =
{
Y p ∈ SCp : positive semidefinite

}
(p = 1, 2, . . . , r),

SE =
r∏
p=1

SCp =
{
Y = (Y 1,Y 2, . . . ,Y r) : Y p ∈ SCp (p = 1, 2, . . . , r)

}
,

SE+ =
r∏
p=1

SCp

+ =
{
Y = (Y 1,Y 2, . . . ,Y r) : Y p ∈ SCp

+ (p = 1, 2, . . . , r)
}
,

LE =
{
Y = (Y 1,Y 2, . . . ,Y r) ∈ SE : Y p

ij = Y q
ij if (i, j) ∈ 2Cp ∩2Cq

}
,

K1 = SE+,

K2 =

{
Y = (Y 1,Y 2, . . . ,Y r) ∈ SE :

Y p
ij ≥ 0 (i, j) ∈ 2Cp

(p = 1, 2, . . . , r)

}
∩ LE .

Observe that each Y ∈ SE may be regarded as a block diagonal matrix with diagonal
blocks Y 1,Y 2, . . . ,Y r. We use 〈Ũ , Y 〉 =

∑r
p=1〈Ũ

p
, Y p〉 for the inner product of Ũ =

(Ũ
1
, Ũ

2
, . . . , Ũ

r
), Y = (Y 1,Y 2, . . . ,Y r) ∈ SE .

We now associate each X ∈ S1+n(E , ?) with X̃ = (X̃
1
, X̃

2
, . . . , X̃

r
) ∈ SE where

X̃
p

= (Xij : (i, j) ∈ 2Cp) (p = 1, 2, . . . , r).
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This correspondence yields that X ∈ D(E) if and only if X̃ ∈ K1 ∩ K2. It is also possible

to choose Q̃
0
, H̃

0
, H̃

1
∈ SE such that

〈Q̃
0
, X̃〉 = 〈Q0, X〉, 〈H̃

0
, X̃〉 = 〈H0, X〉 and 〈H̃

0
, X̃〉 = 〈H0, X〉.

Consequently, we obtain the following primal-dual pair of sparse Lagrangian-DNN relaxation
COPs, which are equivalent to the original primal-dual pair of sparse Lagrangian-DNN
relaxation COPs with K = D(E):

ζ̃p(λ) = inf

{
〈Q̃

0
+ λH̃

1
, X̃〉

∣∣∣∣∣ X̃ = (X̃
1
, X̃

2
, . . . , X̃

r
) ∈ K1 ∩K2,

〈H̃
0
, X̃〉 = 1

}
(34)

ζ̃d(λ) = sup
{
y0

∣∣∣ Q̃0
+ λH̃

1
− H̃

0
y0 ∈ K∗1 + K∗2

}
. (35)

For the above pair of transformed sparse Lagrangian-DNN relaxation COPs, the metric
projections Πi from SE onto Ki (i = 1, 2) are expressed as

Πi(X̃) = (Πi1(X̃),Πi2(X̃), . . . ,Πir(X̃)) (i = 1, 2),

Π1p(X̃) = the metric projection of X̃
p
∈ SCp onto SCp

+ (p = 1, 2, . . . , r),(
Π2p(X̃)

)
ij

= max

{∑
p∈P (i,j) X̃

p

ij

#P (i, j)
, 0

}
((i, j) ∈ 2Cp, p = 1, 2, . . . , r),

where P (i, j) = {p : (i, j) ∈ 2Cp} ((i, j) ∈ E). We refer to [13, 23] for details on the conver-
sion from the primal-dual pair (7)–(8) with K = D(E) to the primal-dual pair (34) and (35),
and [6, 19] for the numerical methods for computing the metric projection onto K = K1∩K2.

7 Concluding remarks

We have provided a unified framework expressed in a primal-dual pair of COPs, which pro-
vides a convenient and effective tool to develop the theory and methods originated from
the completely positive programming relaxation of QOPs. By imposing Condition (I) on
the primal-dual pair of COPs, equivalent but simpler primal-dual pair of COPs and their
Lagrangian-conic relaxations have been derived. We have investigated some essential the-
oretical properties of the three primal-dual pairs of COPs and the conditions which yield
the equivalence for the optimal values of the COPs. When the cone K involved in the first
primal-dual pair of COPs is nonconvex, we have provided a necessary and sufficient con-
dition for the equivalence between the primal COP and its convexification, i.e., the COP
obtained by replacing the nonconvex cone K by its convex hull. This result has been applied
to a class of linearly constrained QOPs with complementarity constraints.

In our recent paper [19], some promising numerical results were reported on the Lagrangian-
DNN relaxation approach to approximately solve QOPs using a bisection method in con-
junction with efficient algorithms for computing the metric projection onto the DNN cone.
But any sparsity was not utilized there. In the current paper, we have proposed the sparse
Lagrangian-DNN relaxation for the same class of QOPs, and the 1-dimensional Newton
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method for solving the primal-dual pair of Lagrangian-conic relaxation problems (7)–(8).
One can expect that if sparsity in the data is exploited, and the 1-dimensional Newton
method is incorporated with the bisection method, then we would able to solve large scale
QOPs much more efficiently. Our next goal is to present numerical results on this topic in
the future.
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