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1 Introduction

We consider quadratic optimization problems (QOPs):

ζ(Q, A) = min
{
xTQx | x = (x1, . . . , xm)

T ∈ A
}
, (1)

where Q is an n×n real symmetric matrix and A ⊂ R
n is the set of constraints described

in terms of quadratic equalities and inequalities. Throughout the paper, we denote QOP
(1) by QOP(Q,A).

Let

B0 = {0, 1}n = {x = (x1, x2, . . . , xn)
T ∈ R

n : x2
i − xi = 0 (i = 1, 2, . . . , n)},

B1 = {−1, 1}n = {x = (x1, x2, . . . , xn)
T ∈ R

n : x2
i − 1 = 0 (i = 1, 2, . . . , n)}.

Then, binary QOPs can be expressed as QOP(Q,B0) and QOP(Q,B1) by taking A = B0

or A = B1 in (1). This class of binary QOPs includes the max-cut problem [5] as an
important application. Both QOP(Q,B0) and QOP(Q,B1) are known to be NP-hard.

For general QOPs, various linear conic relaxations have been proposed and exten-
sively studied. Semidefinite programming (SDP) relaxations are regarded as popular
techniques for computing lower bounds of the optimal values of QOPs. Lower bounds
for (1) obtained by the SDP relaxations, however, may not be tight in many applica-
tions. For a stronger conic relaxation than the SDP relaxations, Burer [2] reformulated
a class of linearly constrained QOPs with binary and continuous variables as completely
positive programming (CPP) problems and proved that the reformulated CPP problem
is equivalent to the original QOP. It is, however, numerically intractable.

As a numerically tractable relaxation of the CPP reformulation of QOPs, a simplified
doubly nonnegative programming (DNN) relaxation was proposed by Arima, Kim, and
Kojima in [1]. They showed through numerical results on binary QOP(Q,B0) that the
simplified DNN relaxation is stronger, but, it is still much more computationally costly
than the standard SDP relaxation. More recently, Kim, Kojima and Toh [7] further
applied the Lagrangian relaxation to the simplified DNN relaxation. They showed that
a first-order method based on their Lagrangian-DNN relaxation performed efficiently
and effectively in computation when it was tested on binary QOPs, quadratic multiple
knapsack problems, maximum stable set problems, and quadratic assignment problems.

The lower bounds obtained by the simplified DNN relaxation and the Lagrangian-
DNN relaxation for a given QOP are not equal to the optimal value in general, although
they were shown to be effective in practice. On the other hand, if we consider a QOP
as a special case of a polynomial optimization problem (POP), then we can apply the
hierarchy of SDP relaxations proposed for general POPs by Lasserre [9] to QOPs. In
particular, when it is applied to binary QOPs, the nth SDP in the hierarchy (or the SDP
with the relaxation order ω = n in the terminology used in [13, 14]), which involves 2n−1
independent variables, attains the optimal value [10]. In practice, a small relaxation order
(e.g., ω ≤ 4) is usually sufficient to compute an accurate lower bound of the optimal value
of a QOP [13, 14].

For the problem of finding the cut polytope of the complete graph Kn with n nodes,
Laurent in [8] conjectured that the lower bound for the number of iterations in Lasserre’s
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semidefinite hierarchy is ⌈n/2⌉. As the size of the SDP relaxation in Lasserre’s hierarchy
increases exponentially with the relaxation order, the bound ⌈n/2⌉ in her work shows the
amount of work required in solving the problem to optimality. The problem considered in
[8] does not include any condition on the weights of Kn. Recently, Fawzi, Saunderson and
Parrilo [3] proved the conjecture by applying their results on a finite abelian group to the
binary QOPs. More recently, this result is extended to binary polynomial optimization
problems in [11].

In this paper, we present numerical examples of binary QOPs with dimension n ∈
{3, 4, . . . , 11} for which

(i) neither the standard DNN relaxation nor the DNN relaxation derived from the CPP
reformulation is effective in terms of obtaining tight bounds for the problems.

(ii) the hierarchy of SDP relaxation requires at least ω = ⌈n/2⌉th SDP (⌈n/2⌉-SDP)
to attain the optimal value. Specifically, we show numerically that the rank of the
coefficient matrix Q of the objective function plays an important role on ω.

While the DNN relaxations are expected to be stronger than the standard SDP re-
laxation, they do not provide tighter lower bounds for the binary QOP examples given
in this paper. These problems turned out to be difficult to solve by the conic relaxations.
If tighter bounds are obtained by a conic relaxation proposed for the problems, then
the proposed relaxation can be regarded as a stronger relaxation than the DNN relax-
ations discussed in this paper. In this sense, the problems can be used to evaluate conic
relaxation methods developed for binary QOPs.

In Section 2, we describe the SDP relaxation, the standard DNN relaxation, and
the DNN relaxation derived from the CPP reformulation. In Section 3, we state our
numerical results and numerical evidence for (i) and (ii). In addition, we provide two
classes of binary QOPs which are difficult to solve by the standard DNN relaxation, the
DNN relaxation derived from the CPP reformulation and the hierarchy of SDP relaxation
as their dimension increases. In Section 4, we discuss the bound ⌈n/2⌉. Finally, we
conclude in Section 5.

2 Preliminaries

2.1 SDP relaxation (s) of QOP(Q, B1)

Let Sn be the space of n× n symmetric matrices and Q ∈ S
n. We rewrite QOP(Q, B1)

as

minimize Q • xxT subject to x2
i = 1 (i = 1, 2, . . . , n).

Obviously, xxT ∈ S
n
+ holds for every x ∈ R

n. If xxT ∈ S
n
+ is replaced by a single sym-

metric matrix variable X, the standard SDP relaxation (s) of QOP(Q, B1) is obtained:

(s): minimize Q •X subject to Xii = 1 (i = 1, 2, . . . , n), X ∈ S
n
+.
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Here Q•X denotes the inner product of Q and X; Q•X =
∑n

i=1

∑n
j=1QijXij . Problem

(s) is equivalent to QOP(Q, B1) if it includes the constraint rank(X) = 1.

Now suppose that n ≥ 2 and Q = E ∈ S
n, where E denotes the n × n matrix

of all 1’s. Then, it is easy to verify that X ∈ S
n with Xii = 1 (i = 1, 2, . . . , n) and

Xij = Xji = −1/(n− 1) (1 ≤ i < j ≤ n) is an optimal solution of QOP(E, B1), and that
the optimal value is zero. This shows that the optimal value of QOP(E, B1) is 0, which
will also be shown numerically in Table 1 for n = 3, 5, 7, 9, 11 in Section 3.

2.2 DNN relaxation (d1) of QOP(R, B0)

Let R ∈ S
n. We write QOP(R, B0) as

minimize

(
0 0T

0 R

)
•

(
1 yT

y yyT

)
subject to y2i − yi = 0 (i = 1, 2, . . . , n).

Note that

(
1 yT

y Y

)
is contained in the intersection of S

1+n
+ and the cone N

1+n of

(1 + n) × (1 + n) nonnegative symmetric matrices. If yyT is replaced by a single sym-
metric matrix variable Y , the following standard DNN relaxation (d1) of QOP(R, B0)
is obtained:

(d1):
minimize R • Y

subject to yi = Yii (i = 1, 2, . . . , n),

(
1 yT

y Y

)
∈ S

1+n
+ ∩ N

1+n.

Let diag(v) be a diagonal matrix whose diagonal is v ∈ R
n. For every Q ∈ S

n,
QOP(Q,B1) can be converted to an equivalent binary QOP(R,B0), where R = 4(Q −
diag(Qe)) and e = (1, 1, . . . , 1)T ∈ R

n. In fact, if an affine transformation x = 2y− e is
applied to QOP(Q,B1), then

y ∈ {0, 1}n if and only if x ∈ {−1, 1}n,

xTQx = 4yTQy − 4eTQy + eTQe = yTRy + eTQe for every y ∈ {0, 1}n.

Here the last equality follows from eTQy = yTdiag(Qe)y for every y ∈ {0, 1}n. There-
fore, ζ(Q, B1) = ζ(R, B0) + eTQe. Specifically, if F = 4(E − nI), then ζ(E, B1) =
ζ(F , B0) + n2.

Let ηs(Q) and ηd1(Q) denote the lower bounds for the optimal value of QOP(Q,B1)
obtained by the SDP relaxation (s) and DNN relaxation (d1), respectively. From ζ(Q, B1) =
ζ(R, B0) + eTQe, we have that ηs(Q) ≤ ηd1(R) + eTQe ≤ ζ(Q, B1). That is, the lower
bound ηd1(R)+eTQe obtained by the standard DNN relaxation (d1) of QOP(R, B0) for
the optimal value ζ(Q, B1) of QOP(Q, B1) is at least as tight as the lower bound ηs(Q)

by the standard SDP relaxation (s). To see this, suppose that

(
1 yT

y Y

)
∈ S

1+n is a

feasible solution of (d1). Let X = 4Y − 2eyT − 2yeT + eeT . Then

Q •X = 4Q • Y − 4eTQy + eTQe = R • Y + eTQe.
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Here the last equality follows from yi = Yii (i = 1, 2, . . . , n). Using Y � yyT , we have
that

X � 4yyT − 2eyT − 2yeT + eeT = (2y − e)(2y − e)T � O.

From yi = Yii (i = 1, 2, . . . , n), Xii = 1 (i = 1, 2, . . . , n) follows. Therefore, we have
shown that X is a feasible solution of (s) with the objective value R •Y + eTQe, which
implies ηs(Q) ≤ ηd1(R) + eTQe.

2.3 DNN relaxation (d2) derived from a CPP reformulation of
QOP(R, B0)

LetR ∈ S
n. To describe the DNN relaxation (d2) of QOP(R, B0), we convert QOP(R, B0)

into

minimize yTRy

subject to y2i − yi = 0 (i = 1, 2, . . . , n), (2)

u2
i − ui = 0 (i = 1, 2, . . . , n), y + u = e,

y ≥ 0, u ≥ 0,
n∑

i=1

yiui = 0.





(3)

Here u ∈ R
n serves as a vector of slack variables, (2) indicates the entire problem and

the constraints in (3) are called as the added constraints. The added constraints (3) are
redundant for QOP(R, B0), but the DNN relaxation derived from QOP(R, B0) with the
added constraints is stronger than the DNN relaxation (d1). In particular, the last three
constraints in (3) form a complementarity condition on y ∈ R

n and u ∈ R
n.

We derive the DNN relaxation (d2). Let

A = (−e I I), H1 = ATA, H2 =




0 0T 0T

0 O I

0 I O


 .

Then, we can rewrite (2) as

minimize R • yyT

subject to y0 = 1, Hk •




y0 yT uT

y yyT yuT

u uyT uuT


 = 0 (k = 1, 2),

y0 = 1, y ≥ 0, u ≥ 0,

y2i − yi = 0 (i = 1, 2, . . . , n), u2
i − ui = 0 (i = 1, 2, . . . , n).

We note that for every y0 ≥ 0, y ≥ 0 and u ≥ 0, the matrix




y0 yT uT

y yyT yuT

u uyT uuT


 lies

in the cone of (1 + 2n)× (1 + 2n) completely positive matrices C1+2n, which is included
in the intersection of S1+2n

+ and N
1+2n.
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As a conic relaxation of QOP(R, B0), we obtain a linear conic optimization problem:

LCOP(K):





minimize R • Y

subject to y0 = 1, Hk •




y0 yT uT

y Y W T

u W U


 = 0 (k = 1, 2),

y0 = 1, Yii − yi = 0 (i = 1, 2, . . . , n),
Uii − ui = 0 (i = 1, 2, . . . , n),


y0 yT uT

y Y W T

u W U


 ∈ K,

where K stands for either C1+2n (the CPP cone) or S1+2n
+ ∩ N

1+2n (the DNN cone). We
denote the latter, a DNN relaxation LCOP(S1+2n

+ ∩ N
1+2n), by (d2).

If the complementarity constraint

n∑

i=1

yiui = 0 is removed in the previous discussion,

the resulting LCOP(K) does not involve the equality constraintH2•




y0 yT uT

y Y W T

u W U


 =

0. In this case, the previous construction of LCOP(C1+2n) corresponds to the CPP refor-
mulation of QOP(R, B0), which was shown to be equivalent to QOP(R, B0) in a more
general framework for a class of linearly constrained QOPs in continuous and binary
variables by Burer [2].

On the other hand, if the 0-1 constraints y2i − yi = 0, u2
i − ui = 0 (i = 1, 2, . . . , n)

are removed from (2) and all the other constraints remain, then the resulting CPP or
DNN relaxation LCOP(K) do not include the constraints Yii − yi = 0, Uii − ui = 0 (i =
1, 2, . . . , n). This construction corresponds to the simplified CPP and DNN relaxation of
QOP(R, B0) by Arima, Kim and Kojima in [1]. The simplified CPP relaxation is also
equivalent to QOP(R, B0). See [1] for more details.

If we take R = 4(Q− diag(Qe)), then the DNN relaxation (d2), which corresponds
to LCOP(S1+2n

+ ∩N
1+2n), is the strongest relaxation of QOP(Q, B1) among (s), (d1) and

(d2); ηs(Q) ≤ ηd1(R) + eTQe ≤ ηd2(R) + eTQe ≤ ζ(Q, B1), where ηd2(R) denotes the
lower bound for the optimal value of QOP(R,B0) obtained by the DNN relaxation (d2).

Suppose that n ≥ 3 is odd. Let Q = E ∈ S
n, R = F = 4(E−nI), y = (1/2)e ∈ R

n,
and Y be a matrix in S

n defined by

Yii = yi = 1/2 (i = 1, 2, . . . , n), Yij = Yji = (n− 2)/(8⌊n/2⌋) (1 ≤ i < j ≤ n).

Then, we can verify that (y,Y ) is a feasible solution of (d1) with R = 4(E − n2I), and
that the objective value is −n2. Hence ηd2(F ) + n2 ≤ 0. From the discussion in Sections
2.1 and 2.2, we know that 0 = ηs(E) ≤ ηd2(F ) + n2. Consequently, ηd2(F ) + n2 = 0.

2.4 Relation between QOP(Q, B1) and QOP(R, B0)

For a given Q ∈ S
n, we have seen that QOP(Q, B1) is equivalent to QOP(R, B0) with

R = 4(Q − diag(Qe)I) and ζ(Q, B1) = ζ(R, B0) + eTQe. We note that if x ∈ R
n is

6



a feasible solution of QOP(Q, B1) with the objective value xTQx, then −x is a feasible
solution with the same objective value. It means that the resulting QOP(R, B0) also
satisfies this symmetry. If y ∈ R

n is a feasible solution of QOP(R, B0) with the objective
value yTRy, then e− y is a feasible solution with the same objective value.

Now let R ∈ S
n. In general, QOP(R, B0) does not satisfy the aforementioned sym-

metry. To convert QOP(R, B0) into an equivalent QOP(Q, B1), we need to increase the
dimension of the problem or introduce an additional variable x0 as shown in the following.
Define

Q =
1

4

(
eTRe eTR

Re R

)
.

Then, it is easy to verify that the QOP

minimize xTQx subject to x = (x0, x1, . . . , xn) ∈ {−1, 1}1+n, x0 = 1

is equivalent to QOP(R, B0). Since this problem satisfies the symmetry, we can remove
the constraint x0 = 1, which results in QOP(Q, B1) in R

1+n.

3 Main result

We focus on solving QOP(Q,B1) by varying the rank of Q from rank-1 Q to full rank
Q and a convex combination of rank-1 and full rank Q, using the conic relaxations
mentioned in Section 2.

We first consider QOP(E,B1) as an instance of binary QOPs. The objective quadratic
function can be written as xTEx = (

∑n
i=1 xi)

2
. The optimal value ζ(E, B1) of QOP(E,B1)

is 1 if the dimension n is odd, and 0 otherwise. Since xTEx = 2
∑

1≤i<j≤n xixj +n holds
for every x ∈ {−1, 1}n, QOP(E,B1) corresponds to the max-cut problem with equal
weight.

Lasserre in [10] showed that ⌈n⌉-SDP in the hierarchy applied to QOP(Q,B1) always
attains the optimal value ζ(Q, B1) for every Q ∈ S

n, and ⌈n⌉-SDP was reduced to ⌈n/2⌉-
SDP in [8, 3]. We will see from the numerical results in this section that it requires at
least ⌈n/2⌉-SDP in the hierarchy to attain the optimal value ζ(E, B1) = 1 when the
dimension n is odd.

We consider the following conic relaxations discussed in Section 2.

(s) the standard SDP relaxation of QOP(E,B1),

(d1) the standard DNN relaxation of QOP(F ,B0),

(d2) the DNN relaxation derived from the CPP reformulation of of QOP(F ,B0) [1, 2],

(h) the hierarchy of SDP relaxations of QOP(E,B1) proposed by Lasserre [9].

The lower bound for the optimal value of QOP(Q,B) obtained by each relaxation is
denoted by ηs(Q), ηd1(Q), ηd2(Q) and ηh(Q, ω), respectively. Here B stands for either
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B1 or B0, and ω denotes the relaxation order used in (h). Although it is known from the
discussion in Section 2 that ηs(Q) ≤ ηd1(Q) + eTQe ≤ ηd2(Q) + eTQe for any Q ∈ S

n

by construction, (s) and (d1) are included to compare the tightness of the lower bounds.
In addition, we could consider

(h’) the hierarchy of SDP relaxations of QOP(F ,B0),

but (h) and (h’) are known to be equivalent [15]. For more details on (h), we refer to
[9, 10].

We report numerical results on the relaxation methods (s), (d1), (d2), and (h) ap-
plied to binary QOP(Q,B1) and QOP(R,B0), where R = 4(Q − diag(Qe)). All the
experiments were performed in Matlab on a Mac Pro with 3.0GHZ 8-core Intel Xeon
E5 CPU and 64 GB memory.

Table 1 shows the lower bounds obtained by the relaxation methods (s), (d1) and (d2).
SparseCoLO [4] was used to convert the DNN problems (d1) and (d2) into SDPs, and
SeDuMi [12] to solve SDPs. All the lower bounds ηs(E)), ηd1(F ) + n2 and ηd2(F ) + n2

are nearly 0, which is the trivial lower bound for the optimal value ζ(E, B1) = 1 of
QOP(E,B1). We note that the values in Table 1 (and Table 2) must involve some
numerical error. For example, ηs(E) ≤ ηd1(F ) + n2 must hold theoretically since the
lower bound provided by the standard DNN relaxation (d1) is at least as tight as the
standard SDP relaxation (s). From Table 1, we see that all the methods (s), (d1), (d2)
are not effective at all for QOP(E,B1) and QOP(F ,B0) when n is odd. Theoretically,
ηs(E) = ηd1(F ) + n2 = 0 if n ≥ 3 is odd, as shown in Section 2.3.

Table 1: Numerical results on SDP and DNN relaxations

n ζ(E) ηs(E) ηd1(F ) + n2 ηd2(F ) + n2

3 1 +6.66e-16 -8.24e-10 -1.83e-09
5 1 +8.01e-09 -1.93e-09 -1.22e-08
7 1 +1.84e-14 -1.87e-08 -1.96e-09
9 1 +9.59e-09 -1.01e-08 -3.40e-08
11 1 +1.72e-12 -1.56e-08 -4.25e-09

In Table 2, we display the numerical results on the hierarchy of SDP relaxation (h)
applied to QOP(E,B1) with odd dimension n = 3, 5, 7, 9, 11. We used two software
packages GloptiPoly [6] and SparsePOP [14] which implemented (h). SeDuMi [12] was
used in the both software packages to solve the SDPs. GloptiPoly is designed to generate
all optimal solutions when the optimal value is obtained. Although SparsePOP can only
provide the optimal value of QOP(E,B1), it is faster and can deal with larger dimensional
QOPs than GloptiPoly. In all cases of n = 3, 5, 7, 9, 11, the optimal value of the SDP
relaxation of order ⌊n/2⌋ is close to the trivial bound 0, and the optimal value 1 is attained
with relaxation order ⌈n/2⌉. For n = 11, we notice that the lower bound ηh(11, ⌈11/2⌉)
obtained by SparsePOP displays a wider gap 1-9.999785904e-01 ≥ 2.14e-05 than the
other cases. This is because SeDuMi, the SDP solver used in SparsePOP, stopped with
numerical error before attaining the given accuracy 1.0e-9.
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Table 2: Numerical results on the hierarchy of SDP relaxations [9].

Opt GloptiPoly SparsePOP

n ζ(E, B1) ηh(E, ⌊n/2⌋) ηh(E, ⌈n/2⌉) ηh(E, ⌊n/2⌋) ηh(E, ⌈n/2⌉) (sec)
(sec) (sec) (sec) (sec)

3 1 −1.11e−11 +9.999999993e-01 −8.56e-12 +9.999999983e-01
(0.1) (0.1) (0.1) (0.1)

5 1 +8.39e−09 +1.000000002e+00 −2.78e-11 +9.999999987e-01
(0.1) (1.1) (0.1) (0.1)

7 1 +2.30e−07 +1.000000049e+00 −5.65e-09 +9.999999941e-01
(11.8) (678.1) (0.5) (6.1)

9 1 not tested not tested −7.93e-09 +9.999999332e-01
(50.7) (591.2)

11 1 not tested not tested −1.32e-09 +9.999785904e-01
( 11182.2) (54716.8)

Remark. Both GloptiPoly and SparsePOP are designed to solve general POPs, thus
their construction of SDP relaxation problems are not specialized for binary QOPs. We
could considerably simplify SDP relaxation problems derived from binary QOPs to obtain
smaller SDPs, which would enable us to solve large scale QOPs. However, the size of
SDPs constructed this way still grows very rapidly as the dimension n of the binary
QOP and the relaxation order ω increase. Therefore, binary QOP(E, B1) that can be
solved numerically by the hierarchy of SDP relaxation will still be limited to small-sized
problems. See Section 4 and [10].

3.1 Even dimensional case

If n = 2, it is easy to see that ηs(E, B1) = ζ(E, B1). Let X =

[
X11 X12

X12 X22

]
∈ S

2. Then

the standard SDP relaxation of (1) is

minE •X subject to X11 = 1, X22 = 1,X � O.

Clearly, X∗ =

[
1 −1
−1 1

]
is a feasible solution whose objective value E •X∗ coincides

with ζ(E, B1).

Suppose that n ≥ 4 is even. Define the n× n rank-1 matrix G ∈ S
n such that

G =

(
E 0
0T 0

)
,

where E denotes the (n−1)× (n−1)-dimensional matrix of 1’s. Obviously, QOP(G, B1)
in even number of variables x1, x2, . . . , xn is equivalent to QOP(E, B1) in odd number of
variables x1, x2, . . . , xn−1 in the sense that ζ(G, B1) = ζ(E, B1). If we define

H = 4(G− diag(Ge)) = 4

(
E − (n− 1)I 0

0T 0

)
,
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then ζ(G, B1) = ζ(H, B0) + (n − 1)2. Hence ζ(H, B0) = ζ(F , B0) holds. As a re-
sult, QOP(G, B1) and QOP(H , B0) in R

n can be regarded as binary QOPs obtained
by introducing an additional variable xn to QOP(E, B1) and QOP(F , B0) in R

n−1, re-
spectively. It is easy to verify that ηs(G) = ηs(E), ηd1(H) = ηd1(F ), ηd2(H) = ηd2(F )
and ηh(G, ω) = ηh(E, ω) for every ω = 1, 2, . . .. Therefore, the discussions on binary
QOP(E, B1) and QOP(F , B0) in the odd dimensional space Rn−1 can be applied to ones
on binary QOP(G, B1) and QOP(H , B0) in the even dimensional space R

n. We note
that ⌊n/2⌋ = ⌈n/2⌉ = ⌈(n− 1)/2⌉.

3.2 Full rank binary QOPs vs. rank-1 binary QOPs

From the fact that the coefficient matrix E of the objective function of QOP(E, B1) is of
rank 1, it may be worthwhile to investigate that the rank of the coefficient matrix plays
a role in failing to obtain a tight approximation to the true optimal value of QOP(E, B1)
by the relaxation methods (s), (d1), (d2) and (h).

We consider two types of coefficient matrices for QOP(Q, B1) to examine whether
the rank of Q affects the results of the conic relaxations. For the first type of Q ∈ S

n,
each component Qij ∈ R (1 ≤ i ≤ j) is randomly generated from (100,−100). In this
case, the matrix Q is of full rank, which can be checked in Matlab. For the second type,
a rank-1 matrix Q = qqT ∈ S

n is generated with each qi ∈ R (1 ≤ i ≤ n) chosen from
(10,−10).

Figures 1 and 2 show numerical results on 100 cases of QOP(Q, B1) with the two types
of Q’s. We observe that the two cases exhibit a clear difference. In the first case, 2-SDP
in the hierarchy ∗ successfully generated tight lower bounds with respect to the relative
accuracy log10 ((ζ − η)/max{|ζ |, 1.0e-8}). On the other hand, the quality of the lower
bound obtained by 3-SDP in the hierarchy ⋄ deteriorates as the dimension n increases in
the second case.

Since the relaxation methods are implemented with floating point double precision
arithmetic, the rank of a matrix is determined based on a threshold value that decides
whether a value should be treated as zero. In computation, the numerical rank of a
matrix [16] becomes more meaningful than the theoretical rank. For instance, if rank-1
matrix Q = qqT is slightly perturbed with a small number ǫ as Q = Q + ǫR, where
R ∈ S

n is a randomly generated matrix of rank n, then the rank of the perturbed matrix
becomes n in theory. However, if ǫ is smaller than a given threshold value, the numerical
rank of Q remains as 1. Matlab provides “rank” command for the numerical rank with
a threshold value.

We investigated the rank influence on obtaining the optimal value of QOP(Q, B1).
Figures 3 and 4 shows the results for Q ∈ S

10 of rank 2, 3 and 4. For the numerical
experiments, we generated a symmetric matrix P where each element of P was randomly
generated from (100,−100) and obtained the eigen-decomposition as P =

∑n
i=1 λiqiq

T
i .

Then, we chose Q =
∑r

i=1 λiqiq
T
i by selecting λi’s such that Q could not be positive

definite, where r changes from 2 to 4. We observe that 2-SDP in the hierarchy ∗ and
3-SDP ⋄ generated tight lower bounds. The results obtained with Q of higher rank, from
5 to 9, were similar. Moreover, the results on QOP(Q, B1) with positive and negative
semidefinite Q of rank 2 to 9 were similar to those with Q of full rank. Thus, the
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Figure 1: 100 QOP(Q, B1)s with randomly generated full rank Q solved by the standard
DNN relaxation method ⊗, the DNN relaxation derived from the CPP reformulation
⋆, SparsePOP with ω = 2 ∗ and SparsePOP with ω = 3 ⋄. The vertical axis stands
for the relative accuracy log10 ((ζ − η)/max{|ζ |, 1.0e-8}), where ζ is the optimal value
of QOP(Q, B1) and η the lower bound obtained by either of the relaxations mentioned
above. The left figure shows for n = 10, and the right the change of the average relative
accuracy over 100 QOP(E, B1) (or QOP(F , B0)) as the dimension n increases from n = 2
to n = 10.
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Figure 2: 100 QOP(Q, B1)s with randomly generated rank-1 Q solved by the standard
DNN relaxation method ⊗, the DNN relaxation derived from the CPP reformulation
⋆, SparsePOP with ω = 2 ∗ and SparsePOP with ω = 3 ⋄. The vertical axis stands
for the relative accuracy log10 ((ζ − η)/max{|ζ |, 1.0e-8}), where ζ is the minimum value
of QOP(Q, B1) and η the lower bound obtained by either of the relaxations mentioned
above. The left figure displays for n = 10, and the right the change of the average relative
accuracy over 100 BQOPs, as the dimension n increases from n = 2 to n = 10.
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Figure 3: 100 QOP(Q, B1)s with randomly generated rank-2 Q solved by the standard
DNN relaxation method ⊗, the DNN relaxation derived from the CPP reformulation ⋆,
SparsePOP with ω = 2 ∗ and SparsePOP with ω = 3 ⋄. The meaning of the axises is
the same as in the left figure in Figure 1. The left figure shows for n = 10, and the right
the change of the average relative accuracy over 100 QOP(E, B1)s (or QOP(F , B0)) as
the dimension n increases from n = 2 to n = 10.
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Figure 4: 100 QOP(Q, B1)s, where Q were randomly generated with n = 10 and r = 3 or
4, were solved by the standard DNN relaxation method ⊗, the DNN relaxation derived
from the CPP reformulation ⋆, SparsePOP with ω = 2 ∗ and SparsePOP with ω = 3 ⋄.
The meaning of the axises is the same as the left figure in Figure 1. The left figure shows
the results for Q of rank 3 and the right Q of rank 4.
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numerical results show that QOP(Q, B1) with rank-1 Q requires at least ⌈n/2⌉-SDP
in the hierarchy, but QOP(Q, B1) with Q of rank > 1 can be solved by 2-SDP in the
hierarchy.

3.3 A convex combination of QOP(E, B1) and QOP(Q1, B1) with
randomly generated Q1 of full rank

Although the binary QOP(E, B1) with odd dimension is difficult to solve by the relax-
ation methods (s), (d1), (d2) and (h), it is certainly a trivial problem; the optimal value
is 1 and each optimal solution x is characterized by the property that the number of
{i : xi = 1} is either ⌊n/2⌋ or ⌈n/2⌉.

We note that not only the optimal value of QOP(Q, B1) but also its lower bounds
obtained by the relaxation methods are continuous functions of Q. Thus, if Q is suffi-
ciently close to E, QOP(Q, B1) remains difficult to solve by them. To see this, we now
consider a convex combination Q(λ) of E and Q1 ∈ S

n, where Q1
ij (1 ≤ i ≤ j ≤ n) is

randomly chosen from (−1, 1) and Q(λ) = (1 − λ)E + λQ1 for λ ∈ [0, 1]. The optimal
value and optimal solution of QOP(Q(λ), B1) are unknown. As λ increases, the difficulty
of solving QOP(Q(λ), B1) decreases as shown in Figure 5. For λ = 0.05, the optimal
value (the green line) and the lower bounds obtained by the standard DNN relaxation
method ⊗, SparsePOP with ω = 2 ∗ and SparsePOP with ω = 3 ⋄ show a clear gap. As
λ increases, the gap decreases. SparsePOP with both ω = 2 ∗ and ω = 3 ⋄ attains the
optimal value accurately when λ is near 0.4.

4 ⌈n
2
⌉ bound

By the result in [10], we know that ηh(Q, ω) ≤ ηh(Q, ω + 1) ≤ ηh(Q, n) = ζ(Q, B1) for
Q ∈ S

n and every ω = 1, 2, . . . , n− 1. From the numerical results shown in Table 2, the
discussions in Section 3.1 and the results in [8, 3, 11], we have the following:

• there exists a Q̃ ∈ S
n such that ηh(Q̃, ω) = ζ(Q, B1) = 1 if ω ≥ ⌈n/2⌉ and

ηh(Q̃, ω) = 0 otherwise; take Q̃ = E if n is odd, and Q̃ = G otherwise as shown
in Section 3.1.

We discuss the implications of this result in this section.

Recall that Laurent in [8] conjectured that the lower bound for the number of iter-
ations in Lasserre’s semidefinite hierarchies is ⌈n/2⌉ for the problem of finding the cut
polytope of the complete graph Kn with n nodes, and that the conjecture was proved re-
cently in [3]. The coefficient matrixQ of QOP(Q, B1) corresponds to the weights ofKn in
[8]. If the worst case complexity to solve a class of binary QOPs, {QOP(Q, B1) : Q ∈ S

n}
by the hierarchy of SDP relaxation method is defined as

ω∗(n) = inf {ω : ηh(Q, ω) = ζ(Q, B1) for all Q ∈ S
n} ,

then the conjecture is described as ω∗(n) = ⌈n/2⌉. Our discussion here is for Q̃ of

QOP(Q̃, B1) instances that actually need the bound ⌈n
2
⌉, among all coefficient matrices.
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Figure 5: 100 QOP(Q(λ), B1)s with Q(λ) = (1−λ)E+λQ1 solved by the standard DNN
relaxation method ⊗, SparsePOP with ω = 2 ∗ and SparsePOP with ω = 3 ⋄. Here Q1

is an 7 × 7 symmetric matrix with each Qij randomly chosen from the interval (−1, 1),
E the 7 × 7 matrix of 1’s, and λ = 0.05, 0.10, 0.20 and 0.40 (the upper left, the upper
right, the bottom left, and the bottom right, respectively). The vertical axis stands for
the minimum value of the QOP (the green), the lower bounds obtained by the standard
DNN relaxation method ⊗, SparsePOP with ω = 2 ∗ or SparsePOP with ω = 3 ⋄.

14



For every ω = 1, 2, . . . , n, let

B0(ω) = {α ∈ B0 :

n∑

i=1

αi = ω},

C0(ω) = {α ∈ B0 :

n∑

i=1

αi ≤ ω} =
⋃

ξ≤ω

B0(ξ),

ρ(ω) = the number of elements in C0(ω) =





ω∑

k=0

(
n
k

)
if ω < n,

2n otherwise.

The hierarchy of SDP relaxation of QOP(Q, B1) with the relaxation order ω is represented
as

SDPω(Q) : ηh(Q, ω) = min





∑

α∈B0(2)

Q̂αyα | M̂ω(y) � O



 .

Here each Q̂α (α ∈ B0(2)) corresponds to 2Qij or Qii such that Q̂α = 2Qij if αi = 1

and αj = 1 for some i, j (1 ≤ i < j ≤ n) and Q̂α = Qii if αi = 2 for some i (1 ≤ i ≤ n).

M̂(y), a moment matrix for QOP(Q, B1), is a ρ(ω) × ρ(ω) symmetric matrix whose
element corresponds to a variable from the set {yα : α ∈ C0(2ω)} of variables. See [10]
for more details. Since every variable of the set appears at least once in the moment
matrix M̂ω(y) and y0 is fixed to 1, the number of independent variables involved in

M̂ω(y) is ρ(2ω)− 1. Thus the size ρ(ω) of the moment matrix M̂ω(y) and the number
ρ(2ω)− 1 of independent variables determine the size of SDPω to be solved for ηh(Q, ω).

We now compare the size of SDP⌈n/2⌉(Q̃) with that of SDPn(Q) whose optimal value
ηh(Q, n) is guaranteed to be ζ(Q, B1) for ∀ Q ∈ S

n. In SDPn(Q), the size of the moment
matrix is ρ(n) = 2n and the number of independent variables is ρ(2n) − 1 = 2n − 1. In

SDP⌈n/2⌉(Q̃), the two numbers are:

ρ(⌈n/2⌉) =

⌈n/2⌉∑

k=0

(
n
k

)
, ρ(2⌈n/2⌉)− 1 = 2n − 1.

We observe that the size of SDP⌈n/2⌉ for ηh(Q̃, B1, ⌈n/2⌉) is smaller than the size of SDPn

for ηh(Q, B1, n), although the number of independent variables of SDP⌈n/2⌉ is the same
as that of SDPn.

If n ≥ 3 is odd, we see that

ρ(⌈n/2⌉) =

⌈n/2⌉∑

k=0

(
n
k

)
=

⌊n/2⌋∑

k=0

(
n
k

)
+

(
n

⌈n/2⌉

)

=

(
n∑

k=0

(
n
k

))
/2 +

(
n

⌈n/2⌉

)
= 2n−1 +

(
n

⌈n/2⌉

)
.
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If n ≥ 4 is even, then

ρ(⌈n/2⌉) =

⌈n/2⌉∑

k=0

(
n
k

)
=

⌊n/2⌋∑

k=0

(
n
k

)
+

(
n

⌈n/2⌉

)
/2 +

(
n

⌈n/2⌉

)
/2

=

(
n∑

k=0

(
n
k

))
/2 +

(
n

⌈n/2⌉

)
/2 = 2n−1 +

(
n

⌈n/2⌉

)
/2.

In both cases, 2n−1 < ρ(⌈n/2⌉) < 2n.

5 Concluding remarks

We have provided binary QOP instances that are difficult to solve by SDP and DNN
relaxations. The instances are based on the max-cut problem of a graph with an odd
number of nodes and equal weight. We have observed that the difficulty of solving
the binary QOPs depends on the rank of the coefficient matrix of the objective of the
binary QOP. The binary QOP takes a very simple form in the sense that it does not
involve any other constraints than the ones requiring the variables binary. In connection
with the difficulty of solving these binary QOPs, it is very interesting to mention that
the randomized approximation algorithm using the standard SDP relaxation given by
Goemans and Williamson [5] for the max-cut problem attains an optimal value of at
least 0.87856 times the optimal value. Another problem known to be very difficult to
solve is the quadratic assignment problem (QAP). The difficulty in this case rises from
the size of the problem, too large to handle with available solution methods on a regular
computer. Compared to the QAP, the size of the binary QOP instances presented in this
paper is tiny, yet the SDP and DNN relaxations fail on the problems. Thus, any relaxation
method that can approximately solve them can be regarded to have an advantage over
the relaxation methods discussed in this paper.

If the hierarchy of SDP relaxation is employed for the binary QOP(Q, B1), where Q is
a n×n matrix of rank 1, the minimum relaxation order to solve them with high accuracy
has been numerically confirmed to be ω = ⌈n/2⌉. Since the size of the SDP relaxation
in the hierarchy grows very rapidly as ω increases, the binary QOP instances with a
moderate size cannot be solved by the hierarchy of SDP relaxation method. Therefore,
the binary QOP instances presented in this paper can serve as challenging problems for
developing conic relaxation methods in the future.
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