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reduced to a simple conic optimization problem (COP) to which the BP algorithm can
be applied. To compute the metric projection efficiently in the BP method, we introduce
a class of polyhedral cones as a basic framework for various DNN relaxations. Moreover,
we prove using the basic framework why the tight lower bounds of QOPs were obtained
numerically by the Lagrangian-DNN relaxation of QOPs in the work by the authors
in 2016. Preliminary numerical results on randomly generated POPs with binary and
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1 Introduction

Consider a polynomial optimization problem (POP): minimize a real-valued polynomial
f(x) in x ∈ Rn over a basic semi-algebraic subset of Rn. The problem serves as a
fundamental nonconvex model in global optimization, notably, quadratic optimization
problems (QOPs) with continuous and binary variables are its special cases. As many
problems from applications, including combinatorial optimization, can be formulated as
POPs with nonnegative variables, our focus is on designing efficient convex relaxation
methods and algorithms for solving such POPs.

As a relaxation method for QOPs with nonnegative variables, the semidefinite pro-
gramming (SDP) relaxation with the additional nonnegative constraint on the variable
matrix, known as the doubly nonnegative (DNN) relaxation, were used in [10, 25]. This
is a natural approach in the sense that it employs SDP relaxations [8, 21], which have
proved to be very successful in solving various QOPs. The DNN relaxation approach for
QOPs, however, suffers from computational inefficiency if the SDP relaxation is solved
by the primal-dual interior-point method [15, 20]. The inefficiency arises mainly from
the rapidly increasing sizes of the positive semidefinite matrix variables and polyhedral
constraints in the DNN relaxations. More precisely, when the DNN relaxation of a QOP
is converted to an SDP, the single nonnegative constraint imposed on the DNN matrix
variable becomes nonnegative constraints on the elements of the matrix in the SDP, which
makes the size of the SDP grow quadratically with the size of the DNN matrix variable.

The SDP relaxations for QOPs can be regarded as a special case of Lasserre’s SDP
relaxation [17] with the lowest hierarchy applied to QOPs. The hierarchy of SDP re-
laxations for POPs by Lasserre [17] is a powerful method supported by the convergence
result to the optimal values of POPs under moderate assumptions. However, the size of
Lasserre’s SDP relaxation increases exponentially with the size of a given POP and/or
the degree of polynomials. An approach to mitigate this difficulty is by exploiting the
sparsity in SDPs and SDP relaxations, as proposed in [9, 14, 23]. However, solving
large-sized DNN relaxations of QOPs and SDP relaxations of POPs still remains a very
challenging problem.

Recently, a bisection and projection (BP) algorithm was proposed by Kim, Kojima
and Toh [13] (see also [4]) for a Lagrangian and doubly nonnegative (Lagrangian-DNN)
relaxation, which was developed as a numerically tractable relaxation of the completely
positive programming (CPP) reformulation [1, 7] of a class of QOPs with linear equality,
binary and complementarity constraints in nonnegative variables. In their Lagrangian-
DNN relaxation, a QOP in the class is relaxed into a simple DNN problem which mini-
mizes a linear function in matrix X ∈ Sn subject to the DNN constraint X ∈ Sn

+ ∩ Nn

and a single linear equality constraint X11 = 1, where Sn denotes the linear space of
n × n symmetric matrices, Sn

+ the cone of positive semidefinite matrices in Sn and Nn

the cone of matrices in Sn with nonnegative elements. It was demonstrated through nu-
merical results that the BP algorithm could efficiently solve large-scale Lagrangian-DNN
relaxation problems. Here we extend the application of the BP algorithm [13] to DNN
relaxations of POPs in this paper.

We are mainly concerned with a POP in the following form:

min {f(x) : x ∈ S} , (1)
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where S =
{
x ∈ Rn : xi ∈ {0, 1} (i ∈ Ibin), xi ∈ [0, 1] (i ∈ Ibox)

}
, with Ibin and Ibox

being a partition of {1. . . . , n} such that Ibin ∪ Ibox = {1. . . . , n} and Ibin ∩ Ibox = ∅.
Binary variables are denoted by xi (i ∈ Ibin), and box constrained variables by xj
(j ∈ Ibox). Obviously, a QOP with binary and box constraints is a special case of (1),
where the degree of the objective polynomial function f(x) is 2.

The purpose of this paper is to develop a basic framework where DNN relaxations of
POP (1) are derived and the application of the BP algorithm can be performed with the
efficiency and effectiveness for computing tight bounds of POP (1). The DNN relaxations
of POP (1) that can be derived include the standard dense and sparse DNN relaxations
of QOPs with binary and box constraints, the Lagrangian-DNN relaxation of a class
of QOPs with binary and box constraints, and hierarchies of dense and sparse DNN
relaxations of POPs with binary and box constraints. The last two relaxations may
be regarded as variants of the hierarchy of SDP relaxation of POPs [17] and its sparse
version [23], respectively. All the DNN relaxations are indeed reduced to a simple conic
optimization problem (COP) of minimizing a linear function in X ∈ V subject to X ∈
K1∩K2 and a single linear equality constraint ⟨H0, X⟩ = 1. Here V is a finite dimensional
linear space endowed with the inner product ⟨·, ·⟩, K1 and K2 are closed convex cones in
V, and H0 ∈ V. The resulting simple COP satisfies a few additional assumptions: V is
the Cartesian product of some linear spaces of symmetric matrices, K1 the the Cartesian
product of cones of some positive semidefinite matrices in V, K2 a polyhedral cone in V,
and H0 ̸= O lies in the dual of K1 ∩ K2. Under these assumptions, the BP algorithm
can be applied to the simple COP.

Two main issues, which are closely related, should be dealt with for our purpose. The
first one is the construction of the polyhedral cone K2 for the simple COP. The second
is the efficient computation of the metric projection from K2 onto V, which is a very
important step of the BP algorithm for the overall computational efficiency. To handle
these two issues for the various DNN relaxations in a unified manner, we introduce a class
of polyhedral cones in V onto which the metric projection can efficiently be computed.
Then, each cone is discussed as a special case of the class of polyhedral cones, as a result,
the various DNN relaxations can be derived depending on the cones. The BP algorithm
applied to the DNN relaxations of POP (1) is shown to perform more efficiently than
the primal-dual interior-point method in solving the standard DNN relaxation when it is
tested on randomly generated POPs with binary and box constraints and the maximum
complete satisfiability problem [11]. Another aspect of using the basic framework is that
it reveals why the Lagrangian-DNN relaxation developed in [2, 13] provided a tighter
bound than the standard DNN relaxation. This is the second contribution of the paper.

In Section 2, we define the simple COP in a precise form, and describe the BP and
accelerated BP algorithm [4] for the COP. We also review additional concepts necessary
for the subsequent discussions. Section 3 includes the main results of this paper. We
define a class of polyhedral cones in V onto which the metric projection can be computed,
and study its properties. In Sections 4 and 5, the dense and sparse DNN relaxations of
POP (1) are derived, respectively, from the results established in Section 3. Section 6
introduces strong DNN relaxations of binary and box constrained QOPs, a full-DNN re-
laxation and a twin DNN relaxation, and shows that the tight lower bounds attained by
the Lagrangian-DNN relaxation developed in [13] for QOPs are at least as strong as the
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ones provided by the two strong DNN relaxations. In Section 7, we present preliminary
numerical results. We first show numerical results on the dense and sparse DNN relax-
ations of randomly generated binary POPs with degree 3 and 5 objective polynomials and
the maximum complete satisfiability problem [11]. The performance of the accelerated
BP algorithm is compared to SDPT3 [22], one of the popular primal-dual interior point
methods. Then the Lagrangian-DNN relaxation of binary and box constrained QOPs
mentioned in Section 7 is compared with their standard DNN relaxation mentioned in
Section 4 to demonstrate the theoretical advantage of the Lagrangian-DNN relaxation.
Finally, we conclude in Section 8.

2 Preliminaries

2.1 A simple conic optimization problem

Let V be a finite dimensional vector space endowed with an inner product ⟨·, ·⟩ and
its induced norm ∥·∥ such that ∥X∥ = (⟨X, X⟩)1/2 for every X ∈ V. Let K1 and
K2 be closed convex cones in V satisfying (K1 ∩ K2)∗ = (K1)∗ + (K2)∗, Q0 ∈ V and
O ̸= H0 ∈ (K1)∗ + (K2)∗, where K∗ = {Y ∈ V : ⟨X, Y ⟩ ≥ 0 for all X ∈ K} denotes
the dual cone of a cone K ⊂ V.

We introduce a simple conic optimization problem (COP):

φ∗ = min
{
⟨Q0, X⟩ : ⟨H0, X⟩ = 1, X ∈ K1 ∩K2

}
, (2)

and its dual

y∗0 = max
{
y0 : Q

0 −H0y0 −W = Y , Y ∈ (K1)∗, W ∈ (K2)∗
}
. (3)

The primal-dual pair of COPs (2) and (3) plays a crucial role throughout the paper.
All the dense and sparse DNN relaxations for QOPs and POPs with binary and box
constraints discussed in Sections 4, 5 and 6 are eventually reduced to COP (2). Then, the
accelerated bisection and projection algorithm [4], which is described as Algorithm 2.1,
is applied to the primal-dual pair of COPs to solve the relaxations.

2.2 The accelerated bisection and projection algorithm

The bisection and projection (BP) algorithm was originally proposed in [13] as a numer-
ical method for solving the Lagrangian-DNN relaxation of a class of QOPs with linear
equality, binary and complementarity constraints in nonnegative variables. While the
special case where V = Sn (the linear space of n × n symmetric matrices), K1 = Sn

+

(the cone of positive semidefinite matrices in Sn) and K1 = Nn (the cone of nonnegative
matrices in Sn) was dealt with in [13], the algorithm in [13] could be extended to the
more general COP (2) as in [3].

For every y0 ∈ R, define

G(y0) = Q0 −H0y0 and g(y0) = min
{
∥G(y0)−Z∥ : Z ∈ (K1)∗ + (K2)∗

}
.
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Then, y0 is a feasible solution of (3) if and only if g(y0) = 0. As a result, (3) is equivalent
to max{y0 : g(y0) = 0}. Recall that H0 ∈ (K1)∗ + (K2)∗. Hence, if g(ȳ0) = 0, or
equivalently, G(ȳ0) ∈ (K1)∗ + (K2)∗ for some ȳ0 ∈ R, then for every y0 ≤ ȳ0,

G(y0) = G(ȳ0) + (ȳ0 − y0)H0 ∈ (K1)∗ + (K2)∗ or equivalently, g(y0) = 0.

Thus, g(y0) = 0 for every y0 ∈ (−∞, y∗0]. Furthermore, by Lemma 4.1 of [3], g is
continuous, convex and monotonically increasing on [y∗0,+∞).

For every G ∈ V, let Π(G) and Π∗(G) denote the metric projection of G onto the
cone K1 ∩K2 and its dual cone (K1)∗ + (K2)∗, respectively, i.e.,

Π(G) = argmin
{
∥G−X∥ : X ∈ K1 ∩K2

}
,

Π∗(G) = argmin
{
∥G−Z∥ : Z ∈ (K1)∗ + (K2)∗

}
.

By the decomposition theorem of Moreau [19], we know that G(y0) = Π∗(G(y0)) −
Π(−G(y0)). Let X̂(y0) denote Π(−G(y0)) ∈ K1 ∩K2. Then

g(y0) = ∥G(y0)− Π∗(G(y0))∥ = ∥−Π(−G(y0))∥ =
∥∥∥X̂(y0)

∥∥∥ .
Next, we describe the basic idea of the BP algorithm [13]. Given an initial interval

[ℓ0, u0] of lower and upper bounds for y∗0, it starts with p = 0. First, set yp+1
0 = (ℓp+up)/2.

If g(yp+1
0 ) =

∥∥∥X̂(yp+1
0 )

∥∥∥ > 0, update the bounds such that ℓp+1 = ℓp and up+1 = yp+1
0 .

Otherwise, g(yp+1
0 ) =

∥∥∥X̂(yp+1
0 )

∥∥∥ = 0. Then, update the bounds such that ℓp+1 = yp+1
0

and up+1 = up. In either case, y∗0 ∈ [ℓp+1, up+1] holds. After replacing p + 1 by p, the
iteration continues until the length of the interval becomes sufficiently small.

For the BP algorithm in [13] to be used as a reliable solution method, a few numer-
ical issues should carefully be addressed. The first issue is on the computation of the
decomposition G(y0) = Ŵ (y0) + Ŷ (y0) − X̂(y0) with Ŷ (y0) ∈ (K1)∗, Ŵ (y0) ∈ (K2)∗

and X̂(y0) ∈ K1 ∩ K2, which is very important for successful implementation of the
BP algorithm. For this computation, the accelerated proximal gradient method [5]
was applied in [13]; See Section 4.2 and Algorithm C of [13]. Nevertheless, the pro-

jection X̂(y0) = Π(−G(y0)) cannot be obtained exactly for a given y0 ∈ R with double-
precision floating point arithmetic, which frequently results in a positive numerical value

of g(y0) =
∥∥∥X̂(y0)

∥∥∥ even when y0 ≤ y∗0. A reasonable approach to address this difficulty

is to determine whether y0 is greater than y∗0 according to whether the numerical value

of the relative magnitude f(y0) =
∥∥∥X̂(y0)

∥∥∥ /max{1, ∥G(y0)∥} is greater than a suffi-

ciently small positive number ϵ. Even in this approach, no matter how small ϵ is used,
y∗0 ∈ [ℓp, up] at every iteration cannot be guaranteed due to possible numerical errors in

the computation of X̂(yp0). The second numerical difficulty of the BP algorithm is that
an initial interval [ℓ0, u0] containing y∗0 is required. In many practical applications, u0 is
available but a reasonable ℓ0 is not.

For the aforementioned numerical difficulties, Arima, Kim, Kojima and Toh [4] pro-
posed an improvement of the BP algorithm under the additional assumptions:
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• We know an I ∈ V which lies in the interior of (K1)∗ and a positive number ρ such
that ⟨I, X⟩ ≤ ρ holds for every feasible solution X of COP (2).

• For any A ∈ V, it is easy to compute µ(A) = sup{µ : A− µI ∈ (K1)∗}. (Since I
lies in the interior of (K1)∗, µ(A) is finite for any A ∈ V).

The problem with V = Sn, K1 = Sn
+, K

2 = Nn and I = the n × n identity matrix was
considered in [4], where µ(A) coincides with the minimum eigenvalue of A ∈ Sn. Under
the assumptions previously mentioned, COP (2) is equivalent to

φ∗ = min
{
⟨Q0, X⟩ : ⟨H0, X⟩ = 1, ⟨I, X⟩ ≤ ρ, X ∈ K1 ∩K2

}
.

For the computation of a valid lower bound for φ∗, we consider the dual:

max
{
y0 + ρt : Q0 −H0y0 − It−W = Y , Y ∈ (K1)∗, W ∈ (K2)∗, t ≤ 0

}
. (4)

Suppose that a decomposition Ŵ (yp0) + Ŷ (yp0) − X̂(yp0) of G(yp0) is computed approxi-
mately at the pth iteration of the BP algorithm, specifically, that G(yp0) is nearly equal

to Ŵ (yp0) + Ŷ (yp0)− X̂(yp0) with Ŵ (yp0) ∈ (K2)∗. We note that either Ŷ (yp0) ∈ (K1)∗ or

X̂(yp0) ∈ K1 ∩K2 is not required at this point. Let

tp = min{µ(Q0 −H0yp0 − Ŵ (yp0)), 0},
Ỹ

p
= Q0 −H0yp0 − Ŵ (yp0)− Itp.

(5)

Then tp ≤ 0 and Ỹ
p
∈ (K1)∗. As a result, (y0, t,W ,Y ) = (yp0, t

p, Ŵ (yp0), Ỹ
p
) is a feasible

solution of (4), and the associated objective value yp0 + ρtp provides a valid lower bound
for φ∗ by the weak duality.

The BP algorithm incorporating this technique can generate a valid lower bound
ℓp+1 = yp0 + ρtp for φ∗ at each iteration, even if the algorithm starts with ℓ0 = −∞.
The numerical results in [4] showed that this technique also served to accelerate the BP
algorithm. In the numerical results in Section 7, the accelerated BP algorithm has been
used.

To describe the accelerated BP algorithm, we denote the numerical value of f(y0) =∥∥∥X̂(y0)
∥∥∥ /max{1, ∥G(y0)∥} by h(y0).

Algorithm 2.1. (Accelerated BP Algorithm)

Step 0. Choose positive numbers ϵ and δ sufficiently small (e.g., ϵ = 1.0 e-11 and
δ = 1.0 e-4). Here δ determines the target length of an interval [ℓp, up] ⊂ R which
is expected to contain y∗0. Let p = 0.

Step 1. Find a u0 ∈ R such that y∗0 ≤ u0. Let ℓ0 = ℓ0 = −∞. Choose y00 ≤ u0.

Step 2. If up − ℓp < δmax{1, |ℓp|, |up|}, output ℓp as a lower bound for y∗0. Otherwise,

compute a decomposition G(yp0) = Ŵ (yp0) + Ŷ (yp0)− X̂(yp0).

Step 3. Take tp ∈ R and Ỹ
p
∈ V as in (5). Let ℓp+1 = max{ℓp, yp0 + ρtp}. If

h(yp0) ≤ ϵ, then let ℓp+1 = yp0 and up+1 = up. Otherwise, let ℓp+1 = max{ℓp+1, ℓp}
and up+1 = yp0.
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Step 4. Let yp+1
0 = (ℓp+1 + up+1)/2. Replace p+ 1 by p and go to Step 2.

See Section 3 of [4] for more details.

In the simple COP (2), K1 is usually the cone (or the Cartesian product of cones) of
positive semidefinite matrices as in Section 4, 5 and 6, and the metric projection ΠK1(Z)
of each Z ∈ V onto K1 can be computed by the eigenvalue decomposition. Thus the
only remaining important step is the metric projection onto the cone K2, which should
be carried out efficiently for the overall computational efficiency. In particular, if V = Sn

and K2 coincides with the cone of nonnegative matrices in Sn, then the metric projection
ΠK2(Z) can be obtained efficiently by taking the componentwise maximum of Z ∈ Sn and
O ∈ Sn. This is the case where the BP algorithm [13] and the accelerated BP algorithm
[4] were originally proposed. In Section 3, we present a class of polyhedral cones onto
which the metric projection can efficiently be computed.

2.3 QOPs with binary and box constraints and their standard
DNN relaxations

Any quadratic function in x ∈ Rn can be written as ⟨Q0, (1,x)T (1,x)⟩, where x is an
n-dimensional row vector and Q0 ∈ S1+n. As a special case of (1), we consider the QOP
with binary and box constraints

min
{
⟨Q0, (1,x)T (1,x)⟩ : x ∈ S

}
. (6)

Introducing a symmetric matrix variable

(
X00 x
xT X

)
∈ S1+n, and a subset

T =

{(
X00 x
xT X

)
∈ S1+n : X = xxT , x ∈ S, X00 = 1

}
,

we rewrite (6) as

min

{⟨
Q0,

(
X00 x
xT X

)⟩
:

(
X00 x
xT X

)
∈ T

}
. (7)

Thus QOP (6) in Rn is lifted to the equivalent problem (7) in S1+n. Between a feasible

solution x ∈ Rn of (6) and a feasible solution

(
X00 x
xT X

)
∈ S1+n of (7), the following

correspondence holds:

1↔ X00, xi ↔ xi (i = 1, . . . , n), xixj ↔ Xij (i = 1, . . . , n, j = 1, . . . , n). (8)

To derive a DNN relaxation of QOP (6), we relax the feasible region T of the lifted
problem (7) to a convex subset of S1+n, which is described as the intersection of a hyper-

plane and two closed convex cones K1, K2 as in (2). By construction, if

(
X00 x
xT X

)
∈ T

then

(
X00 x
xT X

)
∈ S1+n

+ ,

(
X00 x
xT X

)
≥ O,

⟨
H0,

(
X00 x
xT X

)⟩
= X00 = 1. Here
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H0 denotes the (1 + n) × (1 + n) matrix in S1+n with 1 as the (0, 0)th element and 0
elsewhere. It follows from x ∈ S that the identity xi = x2i (i ∈ Ibin) and the inequality
xj ≥ x2j (j ∈ Ibox) hold for every x ∈ S. Since x2i corresponds to Xii (i = 1, . . . , n), the
identity and inequality induce xi = Xii (i ∈ Ibin) and xj ≥ Xjj (j ∈ Ibox), respectively.
By defining

L =

{(
X00 x
xT X

)
∈ N1+n : xi = Xii (i ∈ Ibin), xj ≥ Xjj (j ∈ Ibox)

}
, (9)

which forms a polyhedral cone in S1+n, we see that every

(
X00 x
xT X

)
∈ T lies in L.

Here N1+n denotes the cone of (1 + n) × (1 + n) symmetric matrices with all elements
nonnegative. Therefore, COP (2) with K1 = S1+n

+ and K2 = L serves as the standard
DNN relaxation of QOP (6).

2.4 Notation and symbols for POPs and their DNN relaxations

For the extension of the discussion in Section 2.3 to a general POP (1) with binary and
box constraints and its dense and sparse DNN relaxations in the subsequent sections, we
introduce the following notation and symbols.

Let Zn
+ denote the set of n-dimensional nonnegative integer vectors. For each x =

(x1, . . . , xn) ∈ Rn and α = (α1, . . . , αn) ∈ Zn
+, let x

α = xα1 · · · xαn denote a monomial.
We call deg(xα) = max{αi : i = 1, . . . , n} the degree of a monomial xα. Each polynomial
f(x) is represented as f(x) =

∑
α∈F c(α)xα for some nonempty finite subset F of

Zn
+ and c(α) ∈ R (α ∈ F). We call suppf = {α ∈ F : c(α) ̸= 0} the support of

f(x); hence f(x) =
∑

α∈suppf c(α)xα is the minimal representation of f(x). We call

degf = max{deg(xα) : α ∈ suppf} the degree of f(x).

Let A be a nonempty finite subset of Zn
+ with cardinality |A|, and let SA denote the

linear space of |A| × |A| symmetric matrices whose rows and columns are indexed by A.
The (α,β)th component of each X ∈ SA is written as Xαβ ((α,β) ∈ A×A). The inner
product of X, Y ∈ SA is defined by ⟨X, Y ⟩ =

∑
α∈A

∑
β∈AXαβYαβ, and the norm of

X ∈ SA by ∥X∥ = (⟨X, X⟩)1/2. We denote a |A|-dimensional row vector of monomials
xα (α ∈ A) by xA, and a |A| × |A| symmetric matrix (xA)T (xA) of monomials xα+β

((α,β) ∈ A×A) by x2A ∈ SA. We call x2A a moment matrix.

For pair of subsets A and B of Zn
+, let A+B = {α+β : α ∈ A, β ∈ B} denote their

Minkowski sum. Let SA
+ denote the cone of positive semidefinite matrices in SA, and NA

the cone of nonnegative matrices in SA. By construction, x2A ∈ SA
+ for every x ∈ Rn,

and x2A ∈ NA for every x ∈ Rn
+.
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2.5 Lifting POP (1) in Rn to the space of higher dimensional
symmetric matrices

Define r : Zn
+ → Zn

+ by

ri(α) =


0 if i ∈ Ibin and αi = 0,
1 if i ∈ Ibin and αi > 0,
αi otherwise (i.e., i ∈ Ibox).

(10)

Then, for each monomial xα with α ∈ Zn
+ and x ∈ S, we observe that

xα = Πi∈Ibinx
αi
i Πj∈Iboxx

αj

j = Πi∈Ibinx
ri(α)
i Πj∈Iboxx

αj

j = xr(α).

Clearly, r : Zn
+ → Zn

+ is the identity map if Ibin = ∅ and r(r(α)) = r(α) for every
α ∈ Zn

+. Thus, each monomial xα in the objective function f(x) of POP (1) with binary
and box constraints may be replaced by xr(α). We may assume without loss of generality
that supp(f) = r(supp(f)).

To construct a doubly nonnegative (DNN) relaxation of POP (1), we first decide a
nonempty finite subset A of Zn

+ satisfying the condition

0 ∈ A = r(A) and suppf = r(supp(f)) ⊂ A+A. (11)

By choosing a |A| × |A| matrix Q0 ∈ SA such that f(x) = ⟨Q0, x2A⟩, we rewrite POP
(1) as

min{⟨Q0, X⟩ : X ∈ T}, (12)

where T =
{
x2A ∈ SA : x ∈ S

}
. As mentioned in Section 2.4, we will relax T to a convex

subset of SA, which is the intersection of a hyperplane and two polyhedral cones K1, K2

in SA.

3 A class of polyhedral cones and the metric projec-

tion onto them

Before describing the class of polyhedral cones we are interested in, we first discuss why
the cones become essential for the subsequent discussions. Recall that POP (1) in the n-
dimensional space Rn has been lifted to the problem (12) in the symmetric matrix space
SA. The two problems are equivalent under the correspondence SA ∋ x2A ↔ X ∈ SA,
or componentwisely (x2A)αβ = xα+β ↔ Xαβ (α,β) ∈ A×A. In addition to that, many
identities and inequalities hold among elements (x2A)αβ = xα+β of x2A ((α,β) ∈ A×A)
for all x ∈ S, which are translated to equalities and inequalities in Xαβ (α,β) ∈ A×A.

In particular, if the relation r(α + β) = r(α + δ) holds, then (x2A)αβ = xα+β =
(x2A)γδ = xγ+δ. Thus, the relation r(α+β) = r(α+δ) naturally induces an equivalence
relation ∼ in A×A such that (α,β) ∼ (γ, δ) if and only if r(α+β) = r(α+ γ) holds.
With this equivalence relation ∼, a common nonnegative value can be assigned to Xαβ
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for all (α,β) in each equivalence class. The use of the equivalence class in this way
considerably simplifies the description of the polyhedral cone L used for K2 in the DNN
relaxation (2).

Translating the inequalities in (x2A)αβ (α,β) ∈ A×A to the ones in Xαβ (α,β) ∈
A×A for the construction of L is not as straightforward as in the case for equalities. In
fact, only a subset of the inequalities in (x2A)αβ is translated to the ones for L. If all
the inequalities from (x2A)αβ (α,β) ∈ A×A are included in the resulting cone L, then
the computation of the metric projection from SA onto L may be neither efficient nor
accurate. Thus, the resulting cone L should be constructed with the simplest possible
structure for efficient and accurate computation of the metric projection.

For this purpose, a chain of equivalence classes [(α1,β1)], . . . , [(αm,βm)] along which
the chain of inequalities (x2A)α1β1

≥ · · · ≥ (x2A)αmβm
is satisfied for every x ∈ S is

defined by introducing a preorder ⪰ in A×A. The inequalities generated from a family
of disjoint chains are used to construct L. The cone L constructed this way is essential
for the algorithm in Section 3.4, as the most crucial step of the algorithm is computing
the metric projection onto L.

Suppose that S = [0, 1]2. Then x1 ≥ x21 ≥ x21x2, x2 ≥ x22 ≥ x1x
2
2, x1x2 ≥ x21x

2
2 form a

family of three disjoint chains of inequalities, which can be translated to the corresponding
inequalities in Xαβ ((α,β) ∈ A × A) to construct L. But an inequality x1x2 ≥ x1x

2
2

cannot be added since it is not disjoint with the last two chains. As for the case when
x1 ∈ {0, 1} and x2 ∈ [0, 1], equivalence classes should be considered more carefully. For
example, x21x2 and x1x2 are monomials in an equivalence class since r((2, 1)) = r((1, 1)).
Thus, the family of chains above itself is not disjoint.

Throughout this section, for simplicity, the symmetric matrix space SA is identified
with the |A| × |A|-dimensional Euclidean space. Although the symmetry is lost by this
generalization, it does not affect the construction of the class of polyhedral cones. Indeed,
this generalization enables us to apply the result and the method in this section directly
to the sparse DNN relaxation of POP (1) in Section 5, and to the discussion related to
the Lagrangian-DNN relaxation derived from the CPP reformulation of a class of QOPs
with equality, binary and complementarity constraints [13] in Section 6. This is another
motivation for the generalization.

3.1 Preorder, equivalence relations and a chain of equivalence
classes

Let Θ be a nonempty finite set, and RΘ be the |Θ|-dimensional Euclidean space of row
vectors X whose elements are indexed by Θ; the θth element of X is denoted by Xθ

(θ ∈ Θ). Let RΘ
+ denote the nonnegative orthant {X ∈ RΘ : Xθ ≥ 0 for every θ ∈ Θ}

of RΘ. We call a binary relation ⪰ in Θ a preorder if it satisfies

θ ⪰ θ for every θ ∈ Θ (reflexive),

θ1 ⪰ θ2 and θ2 ⪰ θ3 ⇒ θ1 ⪰ θ3 (transitive).

The preorder ⪰ induces a strict preorder ≻ and an equivalence relation ∼:
θ ≻ η ⇔ θ ⪰ η and η ̸⪰ θ,
θ ∼ η ⇔ θ ⪰ η and η ⪰ θ.

(13)
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Let [θ] denote the equivalence class which contains θ ∈ Θ; [θ] = {η ∈ Θ : η ∼ θ}. We
can consistently use ⪰ and ≻ in the family of equivalence classes {[θ] : θ ∈ Θ} such that
[θ] ⪰ [η] (or [θ] ≻ [η]) if θ ⪰ η (or θ ≻ η). In fact, ⪰ acts as a partial order in the family,
which is reflexive, transitive, and antisymmetry, i.e., [θ] ⪰ [η] and [η] ⪰ [θ]⇒ [θ] = [η].
An equivalence class is frequently denoted by Eσ, where σ means a representative element
of the equivalence class or a symbol attached to the class.

A finite sequence of equivalence classes Eσ1 , . . . , Eσℓ for ℓ ≥ 1 is called a chain if
Eσ1 ≻ · · · ≻ Eσℓ . In particular, a single equivalence class itself is a chain. For simplicity
of notation, each chain Eσ1 , . . . , Eσℓ of equivalence classes is identified with the family of
equivalence classes {Eσ1 , . . . , Eσℓ}. A chain Γ is maximal if it is not a proper subfamily
of any other chain. Two chains of equivalence classes Γ1 and Γ2 are disjoint if Γ1∩Γ2 = ∅.

3.2 A class of polyhedral cones

Let {Γ1, . . . ,Γr} be a family of chains of equivalence classes. Define

L =

{
X ∈ RΘ

+ :
Xθ = Xη if θ ∼ η,
Xθ ≥ Xη if Γp ∋ [θ] ≻ [η] ∈ Γp (p = 1, . . . , r)

}
.

Obviously, L forms a polyhedral cone in RΘ.

Remark 3.1. As a special case of families {Γ1, . . . ,Γr} of chains of equivalence classes,
we can consider “the finest family” of chains of equivalence classes

{{[θ], [τ ]} : θ ∈ Θ, τ ∈ Θ, θ ≻ τ}
to impose all the inequalities induced from the preorder ⪰ on L. In this case, the resulting
“smallest” cone L is of the form

L =

{
X ∈ RΘ

+ :
Xθ = Xη if θ ∼ η,
Xθ ≥ Xη if [θ] ≻ [η]

}
.

The finest family, however, is not necessarily disjoint. We impose the disjoint property
on the family {Γ1, . . . ,Γr} in the next section for efficient computation of the metric
projection from RΘ onto L.

Since [θ] itself is a chain of equivalence classes (θ ∈ Θ), we may assume without
loss of generality that the family {Γ1, . . . ,Γr} covers the family of equivalence classes
{[θ] : θ ∈ Θ} such that

r∪
p=1

Γp = {[θ] : θ ∈ Θ}. (14)

Then the cone L can be rewritten as

L =

{
X ∈ RΘ :

Xθ = ξσ ∈ R+ if θ ∈ Eσ ∈ Γp (p = 1, . . . , r),
ξσ ≥ ξτ if Γp ∋ Eσ ≻ Eτ ∈ Γp (p = 1, . . . , r)

}
. (15)

If the chain Γp is represented as

Γp = {Eσ1 , . . . , Eσℓ}, where Eσ1 ≻ · · · ≻ Eσℓ (16)

for a fixed p ∈ {1, . . . , r}, the inequalities ξσ ≥ ξτ for Γp ∋ Eσ ≻ Eτ ∈ Γp are written as
ξσj ≥ ξσj+1 (j = 1, . . . , ℓ− 1). Specifically, when Γp consists of a single equivalence class
Eσ1 , these inequalities vanish.
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3.3 The metric projection from RΘ onto L

Now we consider the metric projection ΠL from RΘ onto L. First, we show a fundamental
property of ΠL. Let Z ∈ RΘ and X = ΠL(Z). By definition, X is the unique optimal
solution of the strictly convex quadratic optimization problem:

min

{∑
θ∈Θ

(Xθ − Zθ)
2 : X ∈ L

}

= min

{∑
θ∈Θ

(ξσ − Zθ)
2 :

Xθ = ξσ ∈ R+ if θ ∈ Eσ ∈ Γp (p = 1, . . . , r),
ξσ ≥ ξτ if Γp ∋ Eσ ≻ Eτ ∈ Γp (p = 1, . . . , r)

}
. (17)

To characterize X = ΠL(Z) in a compact way, we use the notation µ(Z, E) =(∑
θ∈E Zθ

)
/ |E| to denote the average of Zθ (θ ∈ E), and µ+(Z, E) = max{µ(Z, E),0}

for every Z ∈ RΘ and E ⊂ Θ.

Lemma 3.2. Let Z ∈ RΘ and X = ΠL(Z). Assume that the family of chains
Γ1, . . . ,Γr is a partition of the family of equivalence classes {[θ] : θ ∈ Θ}, i.e., assume
that Γi

∩
Γj = ∅ (i ̸= j) in addition to (14). For an arbitrary fixed p ∈ {1, . . . , r}, denote

the chain Γp as in (16).

(a) If ℓ = 1 (i.e., Γp consists of a single equivalence set Eσ1) or µ(Z, Eσ1) ≥ · · · ≥
µ(Z, Eσℓ), then Xθ = µ+(Z, Eσj) (θ ∈ Eσj , j = 1, . . . , ℓ).

(b) Suppose that µ(Z, Eσk) < µ(Z, Eσk+1) for some k = 1, . . . , ℓ − 1. Then Xθ = Xη

for every θ ∈ Eσk and η ∈ Eσk+1.

Proof. By the assumption, we can transform the problem (17) further into

min


r∑

q=1

∑
Eσ∈Γq

∑
θ∈Eσ

(ξσ − Zθ)
2 :

Xθ = ξσ ∈ R+ if θ ∈ Eσ ∈ Γq (q = 1, . . . , r),
ξσ ≥ ξτ if Γq ∋ Eσ ≻ Eτ ∈ Γq (q = 1, . . . , r)


=

r∑
q=1

min

 ∑
Eσ∈Γq

∑
θ∈Eσ

(ξσ − Zθ)
2 :

Xθ = ξσ ∈ R+ if θ ∈ Eσ ∈ Γq,
ξσ ≥ ξτ if Γq ∋ Eσ ≻ Eτ ∈ Γq

 .

This implies that the computation of X = ΠL(Z) is divided into r subproblems

min

 ∑
Eσ∈Γq

∑
θ∈Eσ

(ξσ − Zθ)
2 :

Xθ = ξσ ∈ R+ if θ ∈ Eσ ∈ Γq,
ξσ ≥ ξτ if Γq ∋ Eσ ≻ Eτ ∈ Γq

 (18)

(q = 1, . . . , r). By assumption, the pth problem to compute (Xθ (θ ∈ Eσ ∈ Γp) is written
as

min


ℓ∑

j=1

∑
θ∈Eσj

(ξσj − Zθ)
2 :

Xθ = ξσj ∈ R+ if θ ∈ Eσj (j = 1, . . . , ℓ),
ξσj ≥ ξσj+1 (j = 1, . . . , ℓ− 1)

 . (19)
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We note that each term
∑

θ∈Eσj
(ξσj−Zθ)

2 of the objective function of the pth subproblem

(19) is a strictly convex quadratic function in a single variable ξσj ∈ R with the unique
minimizer µ(Z, Eσj). Hence, if ξ̄σj > ξ̂σj ≥ µ(Z, Eσj) or µ(Z, Eσj) ≥ ξ̂σj > ξ̄σj , then∑

θ∈Eσj
(ξ̂σj − Zθ)

2 <
∑

θ∈Eσj
(ξ̄σj − Zθ)

2. This fact is used to prove both assertions (a)

and (b).

(a) For each j = 1, . . . , ℓ, ξ̄σj = µ+(Z, Eσj) is the minimizer of the problem

min

 ∑
θ∈Eσj

(ξσj − Zθ)
2 : ξσj ≥ 0

 .

Since they satisfy ξ̄σ1 ≥ · · · ≥ ξ̄σm , Xθ = ξ̄σj (θ ∈ Eσj , j = 1, . . . , ℓ) provide the
minimizer of the subproblem.

(b) Since X is feasible, there exist ξ̄j such that Xθ = ξ̄j ∈ R+ if θ ∈ Eσj (j =

1, . . . , ℓ). To prove assertion (b), assume on the contrary that ξ̄σk > ξ̄σk+1 . Consider ξ̂
such that ξ̂σj = ξ̄σj (j ̸= k, j ̸= k + 1). We consider two cases. First, suppose that
µ+(Z, Eσk) < ξ̄σk . Set ξ̂σk = ξ̂σk+1 = max{µ+(Z, Eσk), ξ̄σk+1}. Then we observe that

ξ̂σ1 ≥ · · · ≥ ξ̂σk−1 ≥ ξ̄σk > ξ̂σk = ξ̂σk+1 ≥ ξ̄σk+1 ≥ ξ̂σk+2 ≥ · · · ≥ ξ̂σℓ .

Hence∑
θ∈Eσk

(ξ̂σk − Zθ)
2 <

∑
θ∈Eσk

(ξ̄σk − Zθ)
2 (since µ+(Z, Eσk) ≤ ξ̂σk < ξ̄σk),

∑
θ∈Eσk+1

(ξ̂σk+1 − Zθ)
2


<

∑
θ∈Eσk+1

(ξ̄σk+1 − Zθ)
2 if ξ̄σk+1 < µ+(Z, Eσk) ≤ µ+(Z, Eσk+1),

=
∑

θ∈Eσk+1

(ξ̄σk+1 − Zθ)
2 otherwise.

It follows that (X̂θ = ξ̂σj (θ ∈ Eσj , j = 1, . . . , ℓ)) is a feasible solution of the sub-
problem (19), and that the objective value

∑ℓ
i=1

∑
θ∈Eσj

(ξ̂σj − Zθ)
2 is smaller than the

optimal value
∑ℓ

j=1

∑
θ∈Eσj

(ξ̄σj − Zθ)
2. This is a contradiction. Next suppose that

ξ̄σk ≤ µ+(Z, Eσk). In this case, set ξ̂σk = ξ̂σk+1 = ξ̄σk . Then

ξ̂σ1 ≥ · · · ≥ ξ̂σk−1 ≥ ξ̄σk = ξ̂σk = ξ̂σk+1 > ξ̄σk+1 ≥ ξ̂σk+2 ≥ · · · ≥ ξ̂σℓ ,∑
θ∈Eσk+1

(ξ̂σk+1 − Zθ)
2 <

∑
θ∈Eσk+1

(ξ̄σk+1 − Zθ)
2 (since ξ̄σk+1 < ξ̄σk = ξ̂σk+1 ≤ µ+(Z, Eσk)).

As we can similarly derive a contradiction, assertion (b) follows.

Based on Lemma 3.2, we present an algorithm for computing the metric projection
X = ΠL(Z) of a given Z ∈ SA.

Algorithm 3.3. For p = 1, . . . , r, execute the following steps.

Step 0. Represent Γp as in (16). Compute µ+(Z, Eσj) (j = 1, . . . , ℓ).
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Step 1. If ℓ = 1 or µ(Z, Eσ1) ≥ · · · ≥ µ(Z, Eσℓ), output Xθ = µ+(Z, Eσj) (θ ∈
Eσj , j = 1, . . . , ℓ).

Step 2. Otherwise, find k ∈ {1, . . . , ℓ− 1} such that µ(Z, Eσk) < µ(Z, Eσk+1). Replace
Γp by {Eσ1 , . . . , Eσk−1 , Eσk ∪Eσk+1 , Ek+2, . . . , Eσℓ}, where Eσk ∪Eσk+1 is regarded
as a single equivalence class, and go to Step 0.

4 Dense DNN relaxations of POP (1)

Recall that POP (1) in Rn has been lifted in Section 2.5 to the problem (12) in SA, where
A ⊂ Zn

+ satisfies (11). Then, the lifted problem (12) is relaxed to a COP of the form
(2). The construction of the cone Ld for K2 used in (2) is presented in Section 4.1 using
the results in Section 3. For the computation of the metric projection ΠLd

, Lemma 3.2
and Algorithm 3.3 can be applied. We illustrate the computation with an example
in Section 4.2. In Sections 4.3 and 4.4, we describe the standard choices of A for DNN
relaxations of QOPs with binary and box constraints, and a hierarchy of DNN relaxations
of POPs with binary and box constraints, respectively.

4.1 Construction of a polyhedral cone Ld for K2

Assume that a nonempty subset A of Zn
+ satisfying (11) is given throughout this section.

Let Θ = A×A. Then, SA can be identified with RΘ where the (α,β)th element of X ∈
RΘ is written as Xαβ ((α,β) ∈ Θ). We may regard Q0 ∈ RΘ and x2A ∈ RΘ in (12). To
generalize the inequality xi ≥ x2i for every xi ∈ [0, 1] to monomials in x2A, we introduce
a binary relation ⪰ in Θ such that for every pair of (α,β), (γ, δ) ∈ Θ, (α,β) ⪰ (γ, δ) if
and only if there exists a positive number c ≥ 1 such that ri(α+β) = ri(γ+δ) (i ∈ Ibin)
and c(αj + βj) = γj + δj (j ∈ Ibox). Using the definition (10) of r : Zn

+ → Zn
+, it is easy

to verify that ⪰ is a preorder. By definition, we see that

(x2A)αβ = xα+β = xr(α+β) ≥ xr(γ+δ) = xγ+δ = (x2A)γδ

if x ∈ S and (α,β) ⪰ (γ, δ), (20)

where (x2A)αβ denotes the (α,β)th element of x2A ∈ SA.

As shown in Section 3, the preorder ⪰ induces a strict preorder ≻ and an equivalence
relation ∼ by (13). Let (α,β) ∈ Θ. Then [θ] = {(γ, δ) ∈ Θ : r(γ + δ) = r(α + β)}.
Each equivalence class is characterized by σ ∈ r(A +A), and the family of equivalence
classes is denoted by {Eσ (σ ∈ r(A+A)} where Eσ = {(α,β) ∈ Θ : r(α + β) = σ}.
By definition, (x2A)αβ = (x2A)γδ if and only if (α,β) ⪰ (γ, δ) and (γ, δ) ⪰ (α,β).
Hence, by (20),

(x2A)αβ = (x2A)γδ if x ∈ S and (α,β) ∼ (γ, δ). (21)

Lemma 4.1.

(a) For each equivalence class Eσ (σ ∈ r(A+A)), there exists a unique maximal chain
Γcontaining Eσ, which is represented as

Γ = {Eτ : τi = σi (i ∈ Ibin), cτj = σj (j ∈ Ibox) for some c > 0 } .
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(b) The family of maximal chains partitions the family of equivalence classes. If we
denote the family of maximal chains as Γ1, . . . ,Γr then

∪r
p=1 Γp = {Eσ : σ ∈

r(A+A)} and Γp

∩
Γq = ∅ (p ̸= q).

(c) If Ibox = ∅, then every maximal chain consists of a single equivalence class Eσ for
some σ ∈ r(A+A).

Proof. It suffices to show assertion (a) because assertions (b) and (c) follow from (a).
Since each equivalence class itself is a chain, there is at least one maximal chain containing
it. We show the uniqueness. Let σ ∈ r(A+A) be fixed. By definition,

Eσ = {(α,β) ∈ Θ : r(α+ β) = σ},
Eτ ≻ Eσ ⇔ τi = σi (i ∈ Ibin) and cτj = σj (j ∈ Ibox) for some c > 1,

Eσ ≻ Eτ ⇔ τi = σi (i ∈ Ibin) and cσj = τj (j ∈ Ibox) for some c > 1.

Therefore, the maximal chain Γ containing Eσ is uniquely determined as described in
(a).

Let Γ1, . . . ,Γr be the family of maximal chains of equivalence classes. Define

H0 = the |A| × |A| matrix in SA with 1 at the (0,0)th element

and 0 elsewhere,

Ld =

X ∈ NA
+ :

Xαβ = Xγδ if (α,β) ∼ (γ, δ),
Xαβ ≥ Xαβ if Γp ∋ [(α,β)] ≻ [(γ, δ)] ∈ Γp

(p = 1, . . . , r)


=

{
X ∈ SA :

Xαβ = ξσ ∈ R+ if (α,β) ∈ Eσ ∈ Γp (p = 1, . . . , r),
ξσ ≥ ξτ if Γp ∋ Eσ ≻ Eτ ∈ Γp (p = 1, . . . , r)

}
.

Here the last identity follows from (b) of Lemma 4.1. If x is a feasible solution of (12)
with the objective value ⟨Q0, x2A⟩ = f(x), then X = x2A satisfies that

⟨Q0, x2A⟩ = ⟨Q0, X⟩,
X ∈ SA

+, X ∈ NA
+, ⟨H0, X⟩ = X00 = 1,

Xαβ = Xγδ if (α,β) ∼ (γ, δ),

Xαβ ≥ Xγδ if Γp ∋ [(α,β)] ≻ [(γ, δ)] ∈ Γp (p = 1, . . . , r).

Note that the last two relations are obtained by (20) and (21). This implies that X is a
feasible solution of COP (2) with K1 = SA

+ and K2 = Ld and attains the same objective
value ⟨Q0, x2A⟩. Therefore, COP (2) serves as a DNN relaxation of POP (1). Notice
that the construction of Ld depends on the choices of A satisfying (11). The standard
choices of A are discussed for QOPs in Section 4.3 and for POPs in Section 4.4.

Lemma 4.2. Let X be a feasible solution of COP (2) with K1 = SA
+ and K2 = Ld.

(a) 0 ≤ Xαβ ≤ 1 for every ((α,β) ∈ Θ).

(b) ⟨I, X⟩ ≤ |A|, where I denotes the identity matrix in SA.
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Proof. As assertion (b) follows from assertion (a), we only prove (a). It follows from
the definition of Ld that each element of X is nonnegative. Since X ∈ SA

+, it suffices
to prove that all the diagonal elements of X is not greater than 1. We know that
1 = ⟨H0, X⟩ = X00. Let 0 ̸= α ∈ A be fixed. We will show Xαα ≤ 1. Consider the

2 × 2 principal submatrix

(
X00 X0α

Xα0 Xαα

)
=

(
1 X0α

Xα0 Xαα

)
of X ∈ SA

+. The positive

semdifiniteness of the submatrix implies that 0 ≤ Xαα−X2
0α. On the other hand, we see

that ri(0+α) = ri(α+α) (i ∈ Ibin) and 2rj(0+α) = 2αj = rj(α+α) (j ∈ Ibox). As a
result, (0,α) ⪰ (α,α), andX0α ≥ Xαα. It follows that 0 ≤ Xαα−X2

αα = Xαα(1−Xαα),
which implies 0 ≤ Xαα ≤ 1.

By (b) of Lemma 4.2, we can apply Algorithm 2.1 (Accelerated Bisection Algorithm)
to COP (2) with K1 = SA

+ and K2 = Ld generated previously.

4.2 Computation of the metric projection ΠLd
from SA onto Ld

We have already shown in Lemma 4.1 that the family of maximal chains {Γ1, . . . ,Γr}
partitions the family of equivalence classes {Eσ : σ ∈ r(A+A)}. Therefore, we can use
Lemma 3.2 and Algorithm 3.3 for the computation of the metric projection ΠLd

from SA

onto Ld.

Example 4.3. Let Ibin = {1}, Ibox = {2}, S = {(x1, x2) ∈ R2 : xi ∈ {0, 1} (i ∈
Ibin), xj ∈ [0, 1] (j ∈ Ibox)} and A = {(0, 0), (1, 0), (0, 1), (1, 1)}. In this case, we see
r(A) = A and

x2A =


1 x1 x2 x1x2
x1 x21 x1x2 x21x2
x2 x1x2 x22 x1x

2
2

x1x2 x21x2 x1x
2
2 x21x

2
2

 =


1 x1 x2 x1x2
x1 x1 x1x2 x1x2
x2 x1x2 x22 x1x

2
2

x1x2 x1x2 x1x
2
2 x1x

2
2


for every x ∈ S. We also see that r(A + A) = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)}.
As a result, we have 6 equivalence classes corresponding to the different monomials 1,
x1, x2, x1x2, x

2
2 and x1x

2
2 in the reduced moment matrix on the right, and the equiva-

lence classes are E(0,0), E(1,0), E(0,1), E(1,1), E(0,2), E(1,2). For example, E(1,2) consists of
(α,β) = ((0, 1), (1, 1)), ((1, 1), (0, 1)), ((1, 1), (1, 1)) corresponding to 3 monomials x1x

2
2

appeared in the reduced moment matrix. The maximal chains are Γ1 = {E(0,0)}, Γ2 =
{E(1,0)}, Γ3 = {E(0,1), E(0,2)}, Γ4 = {E(1,1), E(1,2)}. Thus, Ld is represented as

Ld =

{
X ∈ SA :

Xαβ = ξσ ∈ R+ if (α,β) ∈ Eσ ∈ Γp (p = 1, . . . , 4),
ξ(0,1) ≥ ξ(0,2), ξ(1,1) ≥ ξ(1,2)

}
.

To illustrate how we compute X = ΠLd
(Z) for a given Z ∈ SA, take Γp = Γ4 =

{E(1,1), E(1,2)}. By Lemma 3.2 (or applying Steps 0, 1 and 2 of Algorithm 3.3 with
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p = 4), we obtain that

Xαβ =


µ+(Z, E(1,1)) if µ(Z, E(1,1)) ≥ µ(Z, E(1,2))

(by (a) of Lemma 3.2),
µ+(Z, E(1,1) ∪ E(1,2)) otherwise (by (b) and (a) of Lemma 3.2),

for all (α,β) ∈ E(1,1),

Xαβ =


µ+(Z, E(1,2)) if µ(Z, E(1,1)) ≥ µ(Z, E(1,2))

(by (a) of Lemma 3.2),
µ+(Z, E(1,1) ∪ E(1,2)) otherwise (by (b) and (a) of Lemma 3.2),

for all (α,β) ∈ E(1,2).

4.3 Choosing A for the standard DNN relaxation of a QOP (6)
with binary and box constraints

For the standard DNN relaxation QOP (6) with binary and box constraints mentioned in
Section 2.3, we choose A =

{
α ∈ Zn

+ :
∑n

i=1 αi ≤ 1
}
= {0, e1, . . . , en}, where ei denotes

the ith coordinate vector with 1 at the ith element and 0 elsewhere (i = 1, . . . , n). Then
the moment matrix x2A coincides with (1,x)(1,x)T . The equivalence classes are Eej =
{(0, ej), (ej,0), (ej, ej)} (j ∈ Ibin) in addition to the trivial ones from the symmetry of
the moment matrix x2A. They induce the identities xj = x2j (j ∈ Ibin). The maximal
chains which have more than one equivalence classes are {Eei , E2ei} (i ∈ Ibox), which
induce the inequalities xi ≥ x2i (i ∈ Ibox). Therefore, the cone Ld used for K2 of (2) is
represented as Ld = {X ∈ NA : X0ej = Xejej (j ∈ Ibin), X0ei ≥ Xeiei (i ∈ Ibox)},
which coincides with the cone L defined by (9) if we use the coordinate 0, 1, . . . , n instead
of A and identify SA with S1+n.

4.4 Choosing A for a hierarchy of DNN relaxations POPs with
binary and box constraints

In this subsection, we briefly discuss how the idea of the hierarchy of SDP relaxations
proposed by Lasserre [17] for general POPs is incorporated in our DNN relaxation of
POP (1) with binary and box constraints. Let ω0 be the positive smallest integer not
less than (degf)/2. For each ω ≥ ω0, let Aω = {r(α) : α ∈ Zn

+,
∑n

i=1 αi ≤ ω}. We call
ω a relaxation order.

First, we apply r to the exponents of all monomials of f(x), i.e., replace every
monomial xγ of f0(x) by xr(γ). Then condition (11) is clearly satisfied with A = Aω

for every ω ≥ ω0. By increasing the relaxation order ω from ω0 and constructing a
DNN relaxation with each A = Aω, a hierarchy of DNN relaxations of POP (1) can be
obtained. If Ibin = {1, . . . , n}, i.e., S = {0, 1}n, this construction is essentially the same
as Lasserre’s when it is applied to POP (1) with S = {0, 1}n, except that a stronger
DNN relaxation than a SDP relaxation is employed at each level of the hierarchy; See
[16]. When Ibin ̸= {1, . . . , n}, our DNN relaxation and Lasserre’s SDP relaxation at
each level of the hierarchies are different. Although the theoretical convergence of the
optimal values of our hierarchy of DNN relaxations to the optimal value of POP (1) is
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not provided, it is possible to show the effectiveness of our hierarchy of DNN relaxations
with numerical experiments, which we will leave as future work.

5 Sparse DNN relaxations of POP (1)

The sparse DNN relaxation of POP (1) presented in this section is based on [23], where
a sparse version of the hierarchy of SDP relaxations of general POPs with inequality
constraints was proposed by exploiting certain structured sparsity in the objective poly-
nomial and constraints. Notice that POP (1) involves only simple constraints xi−x2i = 0
for xi ∈ {0, 1} and xi−x2i ≥ 0 for xi ∈ [0, 1], which are both separable in xi (i = 1, . . . , n).
As a result, we can focus on the objective polynomial f(x) for sparsity exploitation. The
structured sparsity of f(x) is readily observed in the nonzero pattern of its Hessian
matrix.

For each subset C of {1, . . . , n}, let ZC
+ = {α ∈ Zn

+ : αi = 0 if i ̸∈ C}. We first
assume that the objective polynomial f(x) with suppf = r(suppf) is represented as the
sum of m polynomials fk(x) (k = 1, . . . ,m) with suppfk = r(suppfk) ⊂ ZCk

+ for some
Ck ⊂ {1, . . . , n}. We assume that m and the size |Ck| of each Ck are both small, e.g.,
m ≤ n and |Ck| = O(1). Under this assumption, the construction of the cone Ls used
for K2 of the sparse DNN relaxation of the form (2) is described in Section 5.1. More
details on choices of C1, . . . , Cm from the Hessian matrix of the objective function f(x)
are presented in Section 5.2.

5.1 Construction of a polyhedral cone Ls for K2

For each k, choose Ak to be a finite subset of ZCk
+ such that 0 ∈ Ak = r(Ak) and

suppfk = r(suppfk) ⊂ Ak + Ak, and take a matrix Q0
k ∈ SAk such that fk(x) =

⟨Q0
k, x

2Ak⟩. SA1 × · · · × SAm forms a linear space with the inner product

⟨W , X⟩ =
m∑
k=1

⟨W k, Xk⟩

for every W = (W 1, . . . ,W k) ∈ SA1 × · · · × SAm

and X = (X1, . . . ,Xm) ∈ SA1 × · · · × SAm .

Let Θ = {(k,α,β) : (α,β) ∈ Ak ×Ak, k = 1, . . . ,m}. For each X = (X1, . . . ,Xm) ∈
SA1 × · · · × SAm , we denote the (α,β)th element of Xk by Xkαβ ((k,α,β) ∈ Θ) (k =
1, . . . ,m). Then we may identify SA1×· · ·×SAm with the |Θ|-dimensional Euclidian space
RΘ with the inner product ⟨W , X⟩ =

∑
(k,α,β)∈ΘWkαβXkαβ. Let Q

0 = (Q0
1, . . . ,Q

0
m) ∈

RΘ. Then, POP (1) is equivalent to

min
{
⟨Q0, X⟩ : X ∈ T

}
, (22)

where T =
{
X = (x2A1 , . . . ,x2Am) ∈ RΘ : x ∈ S

}
. Notice that neither the representa-

tion of f(x) in terms of f1(x), . . . , fm(x) nor the representation of each fk(x) in terms
of Q0

k ∈ SA is unique.
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The sparse DNN relaxations of POP (1) is derived from (22) in the same way as the
dense DNN relaxations of (1) from (12) in Section 4. Using r : Zn

+ → Zn
+ defined by

(10), we introduce a preorder ⪰ in Θ: for every pair of (k,α,β) ∈ Θ and (ℓ,γ, δ) ∈
Θ, (k,α,β) ⪰ (ℓ,γ, δ) if and only if there exists a positive number c ≥ 1 such that
ri(α+β) = ri(γ + δ) (i ∈ Ibin) and c(αj + βj) = γj + δj (j ∈ Ibox). By definition, we see
that

(x2Ak)αβ = xα+β = xr(α+β) ≥ xr(γ+δ) = xγ+δ = (x2Aℓ)γδ

if x ∈ S and Θ ∋ (k,α,β) ⪰ (ℓ,γ, δ) ∈ Θ. (23)

The preorder ⪰ induces a strictly preorder ≻ and an equivalence relation ∼ by (13). Let
(ℓ,α,β) ∈ Θ. Then [(ℓ,α,β)] = {(k,γ, δ) ∈ Θ : r(γ + δ) = r(α+β)} (the equivalence
class containing (ℓ,α,β)). As a result, each equivalence class is characterized by σ ∈∪m

k=1 r(Ak + Ak), and the family of equivalence classes is denoted by {Eσ (σ ∈
∪m

k=1

r(Ak +Ak))} where Eσ = {(k,α,β) ∈ Θ : r(α+ β) = σ}. By definition and (23),

(x2Ak)αβ = (x2Aℓ)γδ if x ∈ S and (k,α,β) ∼ (ℓ,γ, δ). (24)

We can extend Lemma 4.1 established for the dense DNN relaxation to the sparse
DNN relaxation. In fact, the extended lemma ensures that the family of maximal chains
of equivalence classes, denoted by {Γ1, . . . ,Γr}, partitions the family of equivalence classes
{Eσ (σ ∈

∪m
k=1 r(Ak +Ak))}. Now define

H0
1 = the |A1| × |A1| matrix in SA1 with 1 at the (0,0)th element

and 0 elsewhere,

H0 = (H0
1,O, . . . ,O) ∈ RΘ = SA1 × · · · × SAm ,

Ls =

X ∈ RΘ :

Xkαβ = ξσ ∈ R+ if (k,α,β) ∈ Eσ ∈ Γp

(p = 1, . . . , r),
ξσ ≥ ξτ if Γp ∋ Eσ ≻ Eτ ∈ Γp

(p = 1, . . . , r).

 .

If x is a feasible solution, thenX = (x2A1 , . . . ,x2Am) ∈ RΘ satisfiesX ∈ SA1
+ ×· · ·×SAm

+ ,
⟨H0, X⟩ = 1, X ∈ Ls and f(x) = ⟨Q0, X⟩. Thus, we can see that it is a feasible solution
of COP (2) with K1 = SA1

+ × · · · × SAm
+ and K2 = Ls, and that it also attains the same

objective value f(x). This implies that COP (2) serves as a sparse DNN relaxation of
POP (1).

Lemma 4.2 can be extended to the sparse DNN relaxation of POP (1), so that Al-
gorithm 2.1 can be used for solving COP (2) with K1 = SA1

+ × · · · × SAm
+ and K2 = Ls.

Lemma 3.2 and Algorithm 3.3 can also be applied to the metric projection ΠLs
from RΘ

onto Ls.

5.2 The chordal graph sparsity of the Hessian matrix of the
objective polynomial of POP (1)

In this section, we describe how the objective polynomial f(x) of POP (1) can be rep-
resented as the sum of m polynomials fk(x) (k = 1, . . . ,m) with suppfk ⊂ ZCk for some
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Ck ⊂ {1, . . . , n}. We assume that f(x) =
∑

α∈suppf c(α)xα with suppf = r(suppf) ⊂
Zn

+ .

Let Hf(x) denotes the n × n Hessian matrix of f(x). Each element of Hf(x) is
a polynomial. Throughout this section, we assume that many elements of Hf(x) are
identically zero. To find a structured sparsity of Hf(x) which can be exploited, we
introduce an undirected graph G(N, E) with a node set N = {1, . . . , n} and an edge set
E ⊂ N ×N consisting of all (i, j)s with i ̸= j such that the (i, j)th element of Hf(x) is
not identically zero. We identify each edge (i, j) ∈ E with (j, i). Let G(N, E) be a chordal
extension of G(N, E), a chordal graph such that E ⊂ E . Here a graph is called chordal
when every cycle consisting of more than 3 edges has a chord. Let C1, . . . , Cm ⊂ N denote
the maximal cliques of G(N, E). See [6, 18] for chordal graphs and their fundamental
properties.

Example 5.1. (An arrow-type nonzero pattern) For nonnegative integers m, a, b and c
with m ≥ 1, b ≥ 1 and a ≤ b/2, let n = b+ (b− a)(m− 1) + c, N = {1, . . . , n},

B = {1, . . . , b}, F = {1, . . . , c}+ {n− c},
Bk = B + {(b− a)(k − 1)} (k = 1, . . . ,m), Ck = Bk ∪ F (k = 1, . . . ,m),

where + stands for the Minkowski sum of two sets. Every Ck consists of two disjoint
subsets Bk and F of N . We see that |Ck| = b+ c, |Bk ∩Bk+1| = a (k = 1, . . . ,m−1) and
Bj ∩Bk = ∅ if |j − k| ≥ 2. We may regard C1, . . . , Cm ⊂ N as the maximal cliques which
characterize the nonzero pattern of the Hessian matrix Hf(x) of a sparse polynomial
f(x). Figure 1 shows the nonzero pattern of the Hessian matrix Hf(x) of such a polyno-
mial withm = 3, b = 10, a = 2 and c = 2. We observe that each Bk induces a b×b nonzero
block along the diagonal and F leads to c nonzero rows and columns at the bottom and the
right end of Hf(x). Furthermore, the graph G(N, E) with the node set N = {1, . . . , n}
and the edge set E = {(i, j) ∈ N ×N : (i, j) ∈ Ck × Ck and i < j for some k} forms a
chordal graph having the maximal cliques C1, . . . , Cm. We see that this example with
the described Hf(x) of a sparse polynomial f(x) illustrates the previous discussion.

To represent f(x) as the sum of m polynomials fk(x) (k = 1, . . . ,m) with suppfk =
r(suppfk) ⊂ ZCk in an iterative way, we initially set fk(x) ≡ 0 (k = 1, . . . ,m) and
F = suppf = r(suppf). Choose α ∈ F . If C = {i ∈ N : αi ≥ 1} = {i} for some i ∈ N
or equivalently α = cei for some nonzero c ∈ Z+, then C is contained in some maximal
clique Ck since

∪m
k=1Ck = N . Thus, α ∈ ZCk

+ . Otherwise C consists of more than one

element, say, 1, . . . , ℓ or α =
∑ℓ

i=1 cie
i for some nonzero ci ∈ Z+. In this case, for every

(i, j) ∈ C × C, the (i, j)th element of the Hessian matrix Hf(x) of f(x) is not zero, so
that C forms a clique of G(N, E). Hence, C is contained in some maximal clique Ck and
α ∈ ZCk

+ . In both cases, update fk(x) ← fk(x) + c(α)xα and F ← F\{α}. Repeating
this procedure until F becomes empty, we obtain the desired m polynomials to represent
f(x).
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Figure 1: The arrow-type nonzero pattern of the Hessian matrix Hf(x) of f(x). m =
3, a = 2, b = 10, c = 2.

5.3 Choosing Ak (k = 1, . . . ,m) for sparse DNN relaxations of
QOPs and POPs with binary and box constraints

Suppose that degf = 2 in POP (1) to deal with a QOP with binary and box constraints. If
we represent the quadratic objective function f(x) = ⟨Q0, xxT ⟩+axT , then the Hessian
matrix Hf(x) coincides wtih Q0. Therefore, the nonzero pattern of Q0 determines the
graph G(N, E), which induces a chordal extension of G(N, E) and its maximal cliques
C1, . . . , Cm. We choose {0, ei (i ∈ Ck)} for Aω

k (k = 1, . . . ,m) to construct the cone Ls

and the sparse DNN relaxation of the form (2).

We now extend the hierarchy of dense DNN relaxations of POP (1) with binary and
box constraints presented in Section 4.4, to the sparse case. Let ω0 be the smallest
positive integer not less than (degf)/2. First, construct nonempty subsets Ck of N and
polynomial functions fk(x) with suppfk = r(suppfk ⊂ ZCk) (k = 1, . . . ,m) from the
Hessian matrix Hf(x) of f(x) as in Section 5.2. For a positive integer ω ≥ ω0, let

Aω
k =

{
r(α) ∈ ZCk

+ :
∑

i∈N αi ≤ ω
}

(k = 1, . . . ,m). Then, suppfk ⊂ Aω
k + Aω

k holds

(k = 1, . . . ,m). Thus, we can find a matrix Q0
k ∈ SAω

k such that fk(x) = ⟨Q0
k, x

Aω
k ⟩

(k = 1, . . . ,m) to lift POP (1) to the problem (22) in RΘ with Θ = SA1 × · · · SAk . Note
that Aω

k (k = 1, . . . ,m) with Ibin and Ibox determine the preorder ⪰, the equivalence
relation ∼, the family of maximal chains of equivalence classes, Ls, and eventually the
sparse DNN relaxation of the form (2) with the relaxation order ω.

6 A full preorder ⪰f in A×A and a Lagrangian-DNN

relaxation

Let A be a nonempty subset of Zn
+ satisfying (11), and let ⪰ denote the preorder intro-

duced in Section 4. A binary relation ⪰f in Θ = A × A defined by (α,β)⪰f(γ, δ) ⇔
r(α + β) ≤ r(γ + δ) also serves a preorder in Θ satisfying (20). We call ⪰f the full
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preorder in A×A.

Lemma 6.1.

(a) The preorders ⪰ and ⪰f induce a common equivalence relation ∼.

(b) For every pair of (α,β) and (γ, δ) in Θ, (α,β)⪰f(γ, δ) if and only if xα+β ≥ xγ+δ

for every x ∈ S.

Proof. Assertion (a) follows directly from the definitions of ⪰ and ⪰f. For assertion (b),
it suffices to show that r(σ) ≤ r(τ ) if and only if xr(σ) ≥ xr(τ ) for every x ∈ S. The
‘only if’ part is obvious by definition. To prove the ‘if part’, we assume that r(σ) ̸≤ r(τ )
holds, and we will show that xr(σ) < xr(τ ) for some x ∈ S. By the assumption, there
exists an i such that ri(σ) > ri(τ ). Fix xj = 1 for every j ̸= i. Then x

ri(σ)
j = x

ri(τ )
j = 1

for every j ̸= i. If i ∈ Ibin, then ri(σ) > ri(τ ) implies that ri(σ) = 1 > ri(τ ) = 0. In this

case, taking xi = 0, we obtain that xr(σ) = x
ri(σ)
i = 0 < 1 = x

ri(τ )
i = xr(τ ). Otherwise,

i ∈ Ibox and ri(σ) = σi > ri(τ ) = τi. In this case, taking xi = 0.5, we obtain that
xr(σ) = xσi

i < xτ i
i = xr(τ ).

Now, let us consider to use the preorder ⪰f instead of ⪰ to derive a DNN relaxation
of POP (1), which will be called as the full DNN relaxation. By (b) of Lemma 6.1, the
preorder ⪰f may be regarded as the strongest preorder to generate inequalities between
two monomials xα+β and xγ+δ for every x ∈ S. In particlular, the preorder ⪰f is stronger
than ⪰ in the sense that if (α,β) ⪰ (γ, δ) then (α,β)⪰f(γ, δ). This ensures that every
chain with respect to ⪰ is a chain with respect to ⪰f. Therefore, the resulting cone,
which is denoted by Lf, is expected to be smaller than the original one, and the resulting
DNN relaxation of POP (1) is exepcted to be stronger than the DNN relaxation given in
Section 4. However, the family of maximal chains with respect to ⪰f are not necessarily
disjoint with each other. This makes the computation of the metric projection from SA

onto Lf highly challenging and expensive. To apply Lemma 3.2 and Algorithm 3.3, we
need to choose a family of chains (with respect to ⪰f) which partitions the family of
equivalence classes {Eσ (σ ∈ r(A+A)}. The family of maximal chains with respect to
⪰ may be regarded as such a family.

In this section, we focus on QOP (6) with binary and box constraints to describe
its full DNN relaxation using ⪰f, and show its close relations with the Lagrangian-DNN
relaxation proposed in [2] for a class of QOPs with linear, binary and complementarity
constraints.

6.1 A full DNN relaxation of a QOP with binary and box con-
straints

First we observe that the preorder ⪰f induces the identities xi = x2i (i ∈ Ibin) and
inequalities xi ≥ x2i (i ∈ Ibox), xi ≥ xixj (1 ≤ i < j ≤ n) which hold for every x ∈ S.
Hence, the finest family of chains of equivalence classes mentioned in Remark 3.1 leads
to the full DNN relaxation

ψ1 = min

{⟨
Q0,

(
X00 x
xT X

)⟩
: X00 = 1,

(
X00 xT

x X

)
∈ S1+n

+ ∩ Lf

}
, (25)
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where

Lf =


(
V00 vT

v V

)
∈ N1+n :

vi = Vii (i ∈ Ibin),
vi ≥ Vii (i ∈ Ibox),
vi ≥ Vij (1 ≤ i < j ≤ n)

 .

6.2 Strengthening the full DNN relaxation (25) with slack vari-
ables

Introducing slack variables ui ≥ 0 (i = 1, . . . , n) into QOP (6), we consider

min{⟨Q0, (1,x)(1,x)T ⟩ : x ∈ S, x+ u = e, u ∈ S},

where e denotes the n-dimensional row vector of 1’s. Obviously this QOP is equivalent
to (6). Applying the discussion in Section 6.1 twice in the x space and u space, we have
a DNN relaxation of this problem as

ψ2 = min


⟨
Q0,

(
X00 x
xT X

)⟩
:

X00 = U00 = 1, x+ u = e,(
X00 xT

x X

)
∈ S1+n

+ ∩ Lf,(
U00 uT

u U

)
∈ S1+n

+ ∩ Lf

 . (26)

We call (26) the twin DNN relaxation of QOP (6). It is easy to see that ψ1 ≤ ψ2.

Another DNN relaxation will be derived with cones K1 = S1+2n
+ and K2 = Ld ∈ S1+2n,

which is at least as strong as (26) and can be approximately solved by the accelerated BP
algorithm (Algorithm 2.1) combined with Algorithm 3.3 for the computation the metric
computation of S1+2n onto Ld.

6.3 Representing binary constraints with complementarity con-
straints

Since each binary variable xi is characterized by xi + ui = 1, xi ≥ 0, ui ≥ 0 and xiui = 0
with a slack box variable ui, QOP (6) is equivalent to

min

⟨Q0, (1,x)(1,x)T ⟩ :
x0 = 1, x ∈ [0, 1]n, u ∈ [0, 1]n,(
(−1, ej, ej)(1,x,u)

T
)2

= 0 (j = 1, . . . , n),
xiui = 0 (i ∈ Ibin)

 (27)

which becomes a box constrained QOP with equality constraints. Here, ej denote the jth

coordinate row vector in Rn. Note that the equality constraints
(
(−1, ej, ej)(1,x,u)

T
)2

= 0 (j = 1, . . . , n) are equivalent to a linear equality x+ u = e. Define

Q1
j = (−1, ej, ej)

T (−1, ej, ej) ∈ S1+2n
+ (j = 1, . . . , n),

Q2
i =

 0 0 0
0T O Eii

0T Eii O

 ∈ N1+2n (i ∈ Ibin),

Eii = the n× n matrix with 1 at the (i, i)th element and 0 elsewhere

(i ∈ Ibin).
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Then we can rewrite problem (27) as

min

⟨Q0, (1,x)(1,x)T ⟩ :
x0 = 1,x ∈ [0, 1]n, u ∈ [0, 1]n,

⟨Q1
j , (1,x,u)(1,x,u)

T ⟩ = 0 (j = 1, . . . , n),

⟨Q2
i , (1,x,u)(1,x,u)

T ⟩ = 0 (i ∈ Ibin).


Replacing (1,x,u)(1,x,u)T by Z =

 X00 x u
xT X W
uT W T U

 and taking account of the

box constraints x ∈ [0, 1]n, u ∈ [0, 1]n, we obtain a DNN relaxation of QOP (27):

ψ3 =


⟨
Q0,

(
X00 xT

x X

)⟩
:

Z ∈ S1+2n
+ ∩ Ld, ⟨H0, Z⟩ = 0,

⟨Q1
j , Z⟩ = 0 (j = 1, . . . , n),

⟨Q2
i , Z⟩ = 0 (i ∈ Ibin)

 , (28)

where

H0 = the (1 + 2n)× (1 + 2n) matrix with 1 at the (0, 0)th element,

Ld =
{
Z ∈ N1+2n : xi ≥ Xii, ui ≥ Uii (i = 1, . . . , n)

}
.

Since Ld is constructed using the preorder ⪰ in the (x,u) space, R2n (see Section 4.3),
Algorithm 3.3 can be applied for computation of the metric projection ΠLd

from S1+2n

onto Ld.

Now, we prove that the DNN relaxation (28) is at least as strong as the twin DNN
relaxation (26) by showing that ψ3 ≥ ψ2. To see this, suppose that Z is a feasible solution
of (28). Obviously,

X00 = 1,

(
X00 xT

x X

)
∈ S1+n

+ ∩ N1+n,

(
X00 uT

u U

)
∈ S1+n

+ ∩ N1+n.

Since Z ∈ S1+2n
+ , we see from the identity ⟨Q1

j , Z⟩ = 0 (j = 1, . . . , n) and the definition

of Q1
j that Z(−1, ej, ej)

T = 0 (j = 1, . . . , n), or equivalently,

X00 − xj − uj = 0 (j = 1, . . . , n),

xi −Xij −Wij = 0 (1 ≤ j ≤ n), ui − Uij −Wij = 0 (1 ≤ j ≤ n).

We also know from ⟨Q2
i , Z⟩ = 0 (i ∈ Ibin) and W ≥ O that Wii = 0 (i ∈ Ibin),

Wii ≥ 0 (i ∈ Ibox) and Wij ≥ 0 (1 ≤ j ≤ n). Thus, the previous relations imply

x+ u = e,

xi = Xii (i ∈ Ibin), xi ≥ Xii (i ∈ Ibox), xi ≥ Xij (1 ≤ i < j ≤ n),

ui = Uii (i ∈ Ibin), ui ≥ Uii (i ∈ Ibox), ui ≥ Uij (1 ≤ i < j ≤ n),

xi −Wij ≥ 0 (1 ≤ i ≤ j ≤ n), ui −Wij ≥ 0 (1 ≤ i ≤ j ≤ n).

As a result, both

(
X00 xT

x X

)
and

(
X00 uT

u U

)
lie in Lf, and they provide a

feasible solution of (26). Consequently, ψ3 ≥ ψ2 follows. The inequalities in the last
line above are irrelevant for the conclusion, but it shows that the DNN relaxation (28)
also incorporates the inequalities induced from xi − xiuj ≥ 0 (1 ≤ i ≤ j ≤ n) and
ui − xiuj ≥ 0 (1 ≤ i ≤ j ≤ n).
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6.4 A Lagrangian-DNN relaxation

Since ⟨Q1
j , Z⟩ ≥ 0 for every Z ∈ S1+n

+ (j = 1, . . . , n) and ⟨Q2
i , Z⟩ ≥ 0 for every Z ∈ N1+n

+

(i ∈ Ibin), we can rewrite (28) as

ψ3 = min

{⟨
Q0,

(
X00 xT

x X

)⟩
:
Z ∈ S1+2n

+ ∩ Ld, ⟨H0, Z⟩ = 1,
⟨H1, Z⟩ = 0,

}
, (29)

where H1 =
∑n

j=1Q
1
j +

∑
i∈Ibin Q

2
i . We notice that (29) is not in the form COP (2)

yet. The Lagraingian relaxation is further applied to (29) with a λ > 0 to obtain the
Lagrangian-DNN relaxation of (27)

ψ4(λ) = min

{⟨
Q0,

(
X00 xT

x X

)⟩
+ λ⟨H1, Z⟩ : Z ∈ S1+2n

+ ∩ Ld,
⟨H0, Z⟩ = 1,

}
, (30)

which is in the same form as COP (2). Since the term ⟨H1, Z⟩ is nonnegative for every
Z ∈ S1+2n

+ ∩ Ld, it serves as a penalty term such that if Z ∈ S1+2n
+ ∩ Ld is not feasible

for (29), then the term diverges to ∞ as λ > 0 tends to ∞. Using this fact, it is easy to
prove that the optimal value ψ4(λ) of (30) converges to the optimal value ψ3 of (29) as
λ > 0 tends to ∞.

Applying the Lagrangian-DNN relaxation (30) to QOP (27) with box constraints
serves as a a relaxation of QOP (6) with binary and box constraitns. As a result, we can
say that the Lagrangian-DNN relaxation of (27) provides another way to strengthen the
standard relaxation of QOP (6) mentioned in Sections 2.3 and 4.3, in addition to applying
the hierarchy of DNN relaxations to (6). This Lagrangian-DNN relaxation was originally
proposed in [2] for the CPP reformulation of a class of QOPs with linear, binary and
complementarity constraints. See also [13, 4]. We compare the standard DNN relaxation
applied to the QOP (6) and the Lagraingian-DNN relaxation applied to (27) through
numerical results in Section 7.3, which shows that the Lagrangian-DNN relaxation is
more effective in obtaining a tight lower bound for the optimal value of QOP (6), and
that the standard DNN relaxation requires less computational time.

7 Preliminary numerical results

We tested Algorithm 2.1 (the accelerated BP algorithm) on randomly generated binary
QOPs and POPs and the maximum complete satisfiability problem [11]. The purpose
of the numerical experiments is to demonstrate the performance of Algorithm 2.1 as
suggested in the previous sections, in comparison to the primal-dual interior-point method
in solving the hierarchy of DNN relaxations. Extensive numerical experiments will be
dealt with in a separate paper.

Each dense test problem solved by Algorithm 2.1 is of the form (2) with K1 = SA
+

and Ld ⊂ SA for some A ⊂ Zn
+ (see Section 4), while each sparse test problem is of the

form (2) with K1 = SA1
+ × · · ·×SAm

+ and Ls ⊂ SA1 × · · ·×SA1 for some A1, . . . ,Am ⊂ Zn
+

(see Section 5). In both cases, K2 is a polyhedral cone, so that (2) is equivalent to
an SDP of minimizing the same objective function ⟨Q0, X⟩ subject to ⟨H0, X⟩ = 1,
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X ∈ K1 and the additional equalities and inequalities describing the cone K2. Such an
SDP problem was constructed directly from QOP (6) and POP (1) by SparsePOP [24],
and then SDPT3 [22], an implementation of the primal-dual interior-point method, was
applied to the SDP. All the numerical experiments were run in Matlab on a Mac Pro
with Intel Xeon E5 8-core CPU (3.0 GHZ) and 64 GB memory.

7.1 Dense binary POPs

We randomly generated binary POPs with the degrees of the objective polynomials being
3 and 5. Algorithm 2.1 was applied to COPs of the form (2), which is induced from the
dense DNN relaxation of the binary POPs. For the hierarchy of DNN relaxations, the
relaxation order 2 and 3 were taken, respectively. See Section 4.4.

Table 1 shows numerical results on Algorithm 2.1 in comparison to SDPT3. We
observe that

(i) Both Algorithm 2.1 and SDPT3 attain tight lower bounds for small-sized problems.

(ii) For large-sized problems, Algorithm 2.1 computes lower bounds more reliably in
less time than SDPT3.

(iii) The lower bounds obtained by SDPT3 deteriorate as the size of the problem
increases.

(iv) Algorithm 2.1 requires much less memory than SDPT3 for large-sized problems.

The reason for (iii) is that the dual of the SDP problem converted from a DNN problem
has no interior feasible solution and such an ill-posed problem is often difficult to solve
by primal-dual interior-point methods. However, the ill-posedness of the problem with
no interior feasible solution does not affect the performance of Algorithm 2.1.

7.2 Sparse binary POPs

The test problems in Table 7.2 are randomly generated binary POPs of the form POP (1)
with S = {0, 1}n and degf = 3, 5. The optimal value was computed by generating all
feasible solutions for the problems with n ≤ 20. The nonzero pattern of the n×n Hessian
matrix Hf(x) of f(x) in each problem is of the arrow-type as shown in Example 5.1,
which is characterized by the maximal cliques C1, . . . , Cm of a chordal graph. See also
Figure 1. We fixed a = 2, b = 10 and c = 2, where the size of each clique is b + c = 12,
and increased m from 2 to 120 for the problems of degree 3, and 2 to 12 for the problems
of degree 5. The relaxation order ω = 2 for the problems of degree 3, and ω = 3 for the
problems of degree 5 were used.

The observations (i), (ii), (iii) and (iv) for the dense DNN relaxation in Section 7.1
remain valid if Algorithm 2.1 is replaced by Algorithm 2.1 applied to Sparse DNN. In
addition, Table 2 demonstrates the efficiency of the sparse DNN relaxation of POP (1)
in Section 5.3, compared to the dense DNN relaxation in Section 4.4.
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Table 1: Randomly generated dense binary POPs, POP (1) with S = {0, 1}n. Dense
DNN means the dense DNN relaxation of POP (1) in Section 4.4. † : SDPT3 failed to
attain an accurate optimal solution, and stopped with relative duality gap ≥ 1.0e-2.

Lower bounds (seconds)
SDPT3 Algorithm 2.1

Deg n Opt.Val Dense DNN Dense DNN
10 -1.0746e1 -1.0746e1 (8.36e-1) -1.0746e1 (2.89e0)
15 -2.7910e1 -2.7910e1 (7.92e0) -2.7911e1 (5.68e0)

3 20 -3.2664e1 -4.1077e1 (2.83e2)† -3.2667e1 (2.82e1)
30 -1.0620e2 (6.29e3)† -7.9430e1 (1.54e2)
35 Out of Memory -1.0047e2 (2.19e2)
70 -1.0268e4 (1.63e4)
5 -3.3130e0 -3.3130e0 (3.10e-1) -3.3130e0 (2.50e0)

5 10 -1.5062e1 -1.5062e1 (2.29e1) -1.5063e1 (9.76e0)
15 -3.4952e1 -3.9496e1 (3.18e3)† -3.4953e1 (2.35e2)
20 -1.3405e2 Out of Memory -1.3408e2 (3.91e3)

Table 2: Randomly generated sparse binary POPs, POP (1) with S = {0, 1}n. Dense
DNN: the dense DNN relaxation of POP (1) in Section 4.4. Sparse DNN: the sparse DNN
relaxation of POP (1) in Section 5.3. † : SDPT3 failed to attain an accurate optimal
solution, and stopped with relative duality gap ≥ 1.0e-2.

Lower bounds (seconds)
SDPT3 Algorithm 2.1

deg m n Opt.Val Sparse DNN Dense DNN Sparse DNN
3 2 20 -2.2059e1 -2.2059e1 (4.57e0) -2.2084e1 (3.43e1) -2.2059e1 (1.77e1)
3 4 36 -4.0217e1 (2.66e1) -4.0557e1 (5.11e2) -4.0218e1 (2.26e1)
3 6 52 -6.8233e1 (6.14e1) -6.8243e1 (4.92e3) -6.8235e1 (3.91e1)
3 20 164 -2.0396e2 (3.46e2) -2.0380e2 (2.01e2)
3 40 324 -4.2420e2 (2.70e3)† -4.2275e2 (2.99e2)
3 60 484 Out of Memory -6.5594e2 (5.00e2)
3 120 964 -1.2603e3 (8.64e2)
5 2 20 -5.0021e1 -5.0423e1 (3.93e2) -5.0023e1 (2.69e2)
5 4 36 -1.1732e2 (5.49e3)† -9.1637e1 (2.51e2)
5 6 52 -1.3377e2 (1.22e4)† -1.1799e2 (6.85e2)
5 12 100 -2.7068e2 (1.91e3)
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In Table 3, we show the numerical results on the maximum complete satisfiability
problem [11]. Let xi denote a boolean variable which takes 1 for true and 0 for false
(i = 1, . . . , n). For each k = 1, . . . ,m, let Ik and Jk be disjoint subsets of {1, . . . , n}, and

define a conjunctive clause

(∧
i∈Ik

xi

)∧(∧
j∈Jk

(1− xj)

)
. The maximum complete satis-

fiability problem [11] is to find an x = (x1, . . . , xn) ∈ {0, 1}n that maximizes the total
weighted sum of the satisfied clauses. This problem is different from the usual maximum
satisfiability problem (see e.g, [12]) and it is NP-hard in general. Let w = (w1, . . . , wm)
denote a weight vector. Then the problem is formulated as a binary POP with the ob-
jective polynomial f(x) =

∑m
k=1wk (Πi∈Ikxi) (Πj∈Jk(1− xj)) . For the numerical experi-

ment, each problem is constructed as follows: Let 10 ≤ m = n ≤ 120, d = 4, and choose
wk randomly from {1, . . . , n} (k = 1, . . . ,m). Choose d elements for Hk (k = 1, . . . ,m)
with the first element k and the other d−1 elements randomly from {1, . . . , n}; eliminate
any duplicated element from Hk. Finally, distribute the elements of Hk randomly to Ik
and Jk (k = 1, . . . ,m) so that Hk = Ik ∪ Jk and Ik ∩ Jk = ∅.

In Table 3, we can make the same observations as (i), (ii), (iii) and (iv) in Section 7.1
for Algorithm 2.1 applied to Sparse DNN, instead of Algorithm 2.1 applied to Dense
DNN. The structured sparsity of the test problems does not exist to the extent to be
exploited in comparison to the sparse binary POP instances presented in Section 7.2
since each conjunctive clause is generated randomly. Thus, the sparse DNN relaxation
provides no great advantage over the dense DNN relaxation. Nevertheless, as the num-
ber of conjunctive clauses with the fixed size d = 4 increases, the structured sparsity
characterized by a chordal graph gradually increase so that Sparse DNN becomes faster
than Dense DNN in Table 3.

Table 3: The maximum complete satisfiability problem [11]. Dense DNN: the dense
DNN relaxation of POP (1) in Section 4.4. Sparse DNN: the sparse DNN relaxation of
POP (1) in Section 5.3. † : SDPT3 failed to attain an accurate optimal solution, and
stopped with relative duality gap ≥ 1.0e-2.

Lower bounds (seconds)
SDPT3 Algorithm 2.1

n Opt.Val Sparse DNN Dense DNN Sparse DNN
10 -2.8000e1 -2.8000e1 (5.07e-1) -2.8000e1 (4.79e0) -2.8001e1 (5.43e0)
15 -4.7000e1 -4.7000e1 (1.78e0) -4.7025e1 (1.42e1) -4.7008e1 (3.42e1)
20 -7.7000e1 -7.7000e1 (6.09e0) -7.7043e1 (8.69e1) -7.7034e1 (8.03e1)
30 -2.3129e2 (3.68e1) -2.3128e2 (2.32e2) -2.3104e2 (2.12e2)
40 -5.0975e2 (5.13e2)† -3.3940e2 (1.08e3) -3.3904e2 (4.69e2)
50 -5.3206e2 (2.93e3)† -5.2237e2 (3.41e3) -5.2205e2 (1.07e3)
60 Out of Memory -8.1284e2 (1.31e3)
90 -1.7122e3 (1.90e4)
120 -5.7807e3 (7.27e4)
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7.3 Binary and box constrained QOPs

For the experiments on fully dense QOPs, QOPs with binary and box constraints were
randomly generated. The results are displayed in Table 4 and 5, respectively. The
number of variables n ranges from 10 to 800. When n ≤ 20 in Table 4, the optimal value
was computed by generating all feasible solutions.

In Tables 4 and 5, we observe that SDPT3 solved the SDP, which is equivalent to
COP (2), slightly more accurately than Algorithm 2.1, but spent much longer time and
required more memory as n increased. Notice that SDPT3 could not solve the problem
with n = 400 due to “out of memory” error in Matlab, while Algorithm 2.1 could solve
successfully the problems of n = 800.

In Section 6, we have shown that the Lagrangian-DNN relaxation of (6), which can be
also solved by Algorithm 2.1, provides at least as tight lower bounds as the standard DNN
relaxation derived from QOP (6) in Sections 2.3 and 4.3. The last column of Tables 4
and 5 verifies this theoretical assertion. Algorithm 2.1 consumed longer time to solve
the Lagrangian-DNN relaxation than to solve the standard DNN relaxation, but is still
much faster than SDPT3 in solving the standard DNN relaxation for large-sized QOPs.

Table 4: Randomly generated dense binary QOPs, QOP (6) with S = {0, 1}n. Dense
DNN: the standard DNN relaxation derived from QOP (6) in Section 4.3. Dense Lag-
Dual: the Lagrangian-DNN relaxation of (6) presented in Section 6.

Lower bounds (seconds)
SDPT3 Algorithm 2.1

n Opt.Val Dense DNN Dense DNN Dense Lag-DNN
10 -5.8817e0 -5.9802e0 (2.11e-1) -5.9804e0 (1.86e0) -5.8851e0 (1.96e0)
20 -1.7669e1 -1.7833e1 (3.27e-1) -1.7835e1 (1.03e0) -1.7699e1 (2.42e0)
100 -1.5645e2 (5.21e1) -1.5647e2 (9.85e0) -1.5109e2 (3.10e1)
200 -5.1778e2 (1.85e3) -5.1788e2 (2.80e1) -5.0562e2 (1.13e2)
300 -9.2689e2 (2.09e4) -9.2710e2 (9.62e1) -9.0634e2 (3.21e2)
400 Out of Memory -1.4219e3 (1.46e2) -1.3912e3 (4.92e2)
800 -4.3072e3 (9.22e2) -4.2293e3 (2.58e3)

8 Concluding remarks

For POPs with binary and box constraints, we have provided a theoretical framework
under which many DNN relaxations can be obtained and uniformly formulated as a
simple COP. Moreover, the computation of the metric projection onto the polyhedral
cone in the COP can be carried out efficiently and accurately. The framework has also
been used to prove why the (accelerated) BP algorithm was successful in obtaining tight
bounds when applied to the COP from the QOPs in [4, 13]. As the most important step
of the BP algorithm is in computing the metric projection, the framework presented in
this paper expands the applicability of the BP algorithm to the POPs from the QOPs. In
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Table 5: Randomly generated dense box constrained QOPs, QOP (6) with S = [0, 1]n.
Dense DNN: the standard DNN relaxation derived from QOP (6) in Section 4.3. Dense
Lag-Dual: the Lagrangian-DNN relaxation of (6) in Section 6.

Lower bounds (sec)
SDPT3 Algorithm 2.1

n Dense DNN Dense DNN Dense Lag-DNN
100 -2.1397e2 (4.50e1) -2.1399e2 (8.38e0) -2.0544e2 (1.17e1)
200 -6.9528e2 (1.87e3) -6.9535e2 (3.78e1) -6.7238e2 (6.50e1)
300 -1.3139e3 (2.05e4) -1.3140e3 (1.15e2) -1.2753e3 (1.97e2)
400 Out of Memory -2.1484e3 (2.00e2) -2.1000e3 (3.99e2)
800 -5.7459e3 (9.70e2) -5.6527e3 (2.32e3)

fact, a wide range of general POPs can be solved with the proposed method as described
in the following.

We see that any variable yi bounded by an interval [ℓi, ui] with −∞ < ℓi < ui < ∞
can be scaled to xi = (yi − ℓi)/(ui − ℓi) ∈ [0, 1]. Thus, it is possible to assume that all
the lower and upper bounds for variables are 0 and 1 in POPs with bounded variables.
Moreover, if an additional inequality constraint h(x) ≥ 0 is included in POP (1), it can
be written as an quality constraint h(x) − ay = 0 with a slack variable y ≥ 0, where a
is a positive number. Since h(x) is bounded in S, y ∈ [0, 1] can be added by taking a
sufficiently large a > 0.

Now, suppose that equality constraints gi(x) = 0 (i = 1, . . . ,m) are added to (1):

minimize f0(x) subject to x ∈ S, gi(x) = 0 (i = 1, . . . ,m). (31)

Assume that the resulting problem (31) is feasible. Obviously, each equality constraint
gi(x) = 0 can be rewritten as gi(x)

2 = 0. Let λ > 0 be a sufficiently large number.
Consider a Lagrangian relaxation of (31):

minimize f0(x) + λ
m∑
i=1

gi(x)
2 subject to x ∈ S. (32)

Notice that gi(x)
2 ≥ 0 for every x ∈ Rn. Hence the term λ

∑m
i=1 gi(x)

2 added to
the objective function f0(x) of (31) serves as a penalty in the sense that if x ∈ S is
not a feasible solution of (31), then the objective value f0(x) + λ

∑m
i=1 gi(x)

2 of (32)
diverges to +∞ as λ tends to +∞. Using the compactness of the feasible region S of
(32), it is easy to prove that the optimal value of (32) converges to the optimal value
of (31) as λ → ∞. Consequently, a lower bound of the optimal value of POP (31)
can be computed by applying Algorithm 2.1 to the DNN relaxation of POP (32) with
binary and box constraints for a sufficiently large λ > 0. The construction of the DNN
relaxation of POP (32) from POP (31) is similar to the Lagrangian-DNN relaxation of
QOP (6) [2] in Section 6. However, an essential difference lies in that slack variables are
introduced and the binary constraint is replaced by the complementarity constraint in
the Lagrangian-DNN relaxation, while the binary and box constraints remain unchanged
in the Lagrangian relaxation (32) of POP (31).
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