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Abstract

We propose a hierarchy of semidefinite programming (SDP) relaxations for polyno-

mial optimization with sparse patterns over unbounded feasible sets. The convergence

of the proposed SDP hierarchy is established for a class of polynomial optimization

problems. This is done by deriving a new sum of squares sparse representation of

positivity for a system of coercive polynomials over unbounded semialgebraic sets.

We demonstrate that the proposed sparse SDP hierarchy can solve some classes of

large scale polynomial optimization problems with unbounded feasible sets using the

polynomial optimization solver SparsePOP developed by Waki et al. [24].

1 Introduction

The optimal value of a polynomial optimization over a compact semialgebraic set can be

approximated as closely as desired by solving a hierarchy of semidefinite programming

(SDP) relaxations and the convergence is finite generically under a mild assumption that

requires the compactness of the feasible region (see [11, 14, 17]). It is known that the

size of the SDP relaxations of the hierarchy, known now as the Lasserre hierarchy, rapidly

grows as the number of variables and the relaxation order increase, preventing applications

of the hierarchy to large scale polynomial optimization problems as the size of the SDP

relaxations are too large to solve. A great deal of attention has recently been focused

on reducing the size of these SDP relaxations. This has led to a sparse variant of the
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Lasserre hierarchy that allowed applications to various large scale polynomial optimization

problems over compact semialgebraic feasible sets. (see also [8, 9, 23, 3, 7]).

More recently, the standard Lasserre hierarchy of SDP relaxations has been shown to

extend to polynomial optimization over unbounded semialgebraic feasible sets via suitable

modifications [5]. The purpose of this paper is to present a convergent sparse SDP hier-

archy for solving polynomial optimization problems with sparse patterns and unbounded

semialgebraic feasible sets, extending the unbounded version of the Lasserre hierarchy [5].

More specifically, we make the following contributions to Global polynomial optimization.

(1) We first establish a sparse version of the Putinar Positivstellensatze for coercive

polynomials over unbounded semialgebraic sets which plays a key role in the con-

struction and the proof of convergence of our sparse hierarchy of SDP relaxations.

The Putinar Positivstellensatze for polynomials over compact semialgebraic sets that

lead to the convergent Lasserre hierarchy can be found in (see [12, 9]).

(2) We then present a new sparse SDP hierarchy for solving polynomial optimization

problems with unbounded feasible sets incorporating the objective function in the

construction of quadratic modules that generate the sequence of SDP relaxations.

This approach extends the relaxation scheme, developed for convex polynomial op-

timization over noncompact sets [6].

(3) By solving some numerical test problems, we illustrate that our sparse SDP hierarchy

can easily be adapted with the current large scale polynomial optimization solver

SparsePOP [24] to solve some classes of large scale polynomial optimization problems

with unbounded feasible sets.

(4) We apply our SDP hierarchy to solve a class of sparse polynomial optimization

problems with unbounded feasible sets and hidden coercivity.

The organization of the paper is as follows. In Section 2, we fix the notation and recall

some basic facts on polynomial optimization. In Section 3, we provide the sparse version of

the Putinar Positivstellensatze which applies to unbounded semialgebraic sets. In Section

4, we present our sparse SDP hierarchy for polynomial optimization with unbounded

feasible sets and establish its convergence. In Section 5, we illustrate how our proposed

scheme works by solving various large scale numerical test problems. Finally, in Section 6,

we present an application of our hierarchy to a class of polynomial optimization problems

with sparse patterns and hidden coercivity.

2 Preliminaries

Throughout this paper, Rn denotes the Euclidean space with dimension n. The inner

product in Rn is defined by 〈x, y〉 := xT y for all x, y ∈ Rn. The non-negative orthant

of Rn is denoted by Rn+ and is defined by Rn+ := {(x1, . . . , xn) ∈ Rn | xi ≥ 0}. The

closed ball with center x and radius r is denoted by B(x, r). We use en to denotes the

vector in Rn whose elements are all one. Denote by R[x] the ring of polynomials in
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x := (x1, x2, . . . , xn) with real coefficients. The degree of a real polynomial f is denoted

by degf . We say that a real polynomial f ∈ R[x] is a sum of squares (SOS) polynomial if

there exist real polynomials fj , j = 1, . . . , r, such that f =
∑r

j=1 f
2
j . The set of all sum of

squares real polynomials with variable x is denoted by Σ2[x]. The set of all sum of squares

real polynomial with variable x and degree at most d is denoted by Σ2
d[x]. An important

property of SOS polynomials is that checking a polynomial is sum of squares or not is

equivalent to solving a semidefinite linear programming problem (see [11, 14, 17]).

Recall that a quadratic module generated by polynomials −g1, . . . ,−gm ∈ R[x] is defined

as

M(−g1, . . . ,−gm) := {σ0 − σ1g1 − · · · − σmgm | σi ∈ Σ2[x], i = 0, 1, . . . ,m}.

It is a subset of polynomials that are non-negative on the set {x ∈ Rn | gi(x) ≤ 0, i =

1, . . . ,m} and possess a very nice certificate for this property.

The quadratic module M(−g1, . . . ,−gm) is called Archimedean [14, 11] if there ex-

ists p ∈ M(−g1, . . . ,−gm) such that {x : p(x) ≥ 0} is compact. When the quadratic

module M(−g1, . . . ,−gm) is compact, we have the following important characterization

of positivity of a polynomial over a compact semialgebraic set.

Lemma 2.1. (Putinar positivstellensatz) [18] Let f, gj, j = 1, . . . ,m, be real polyno-

mials with K := {x : gj(x) ≤ 0, j = 1, . . . ,m} 6= ∅. Suppose that f(x) > 0 for all x ∈ K
and M(−g1, . . . ,−gm) is Archimedean. Then, f ∈M(−g1, . . . ,−gm).

We now introduce a sparse version of Putinar positivestellensatz which was derived

by Lasserre [12] and improved later on by Kojima et al [9]. Recall that, for a polynomial

f(x) =
∑

α fαx
α on Rn with degree d, the support of f is denoted by suppf and is defined

by

suppf = {α ∈ (N ∪ {0})d : fα 6= 0}.

Lemma 2.2. (Sparse version of Putinar positivstellensatz [12, 9]) Let f(x) =∑p
l=1 f

l(x) and gj(x) =
∑

α(gj)αx
α, j = 1, . . . ,m, be polynomials on Rn with degree d.

Let Il be a set of indexes such that suppf l ⊆ Il ⊆ {1, . . . , n}, l = 1, . . . , p and
⋃p
l=1 Il =

{1, . . . , n}. Suppose that for each j = 1, . . . ,m, suppgj ⊆ Il for some l ∈ {1, . . . , p}, and

the following running intersection property holds: for each l = 1, . . . , p − 1, there exists

s ≤ l such that

Il+1 ∩ (
l⋃

j=1

Ij) ⊆ Is.

Let K := {x : gj(x) ≤ 0, j = 1, . . . ,m} 6= ∅ and let M(−g1, . . . ,−gm) be Archimedean. If

f(x) > 0 on K, then

f =

p∑
l=1

(σ0l −
m∑
j=1

σjlgj)

where σjl, j = 0, 1, . . . ,m, are SOS polynomials with variables {xi : i ∈ Il}.

We note that, the assumption “suppgj ⊆ Il for some l ∈ {1, . . . , p}” and the running

intersection property are automatically satisfied in the special case where p = 1 and
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I1 = {1, . . . , n}. So, in this case, the sparse version of Putinar positivstellensatz reduces

to Putinar positivstellensatz.

3 Sparse representations of positivity over unbounded sets

In this Section, we provide SOS representations of positivity of a class of nonconvex

polynomials over unbounded semialgebraic sets. To do this, we first recall the definitions

of coercive polynomials and strongly coercive polynomials.

Definition 3.1. (Coerciveness and Strong Coerciveness) Let f(x) =
∑

α fαx
α be a

polynomial on Rn with degree d. Let f(x) =
∑d

i=0 fi(x) where each fi is a homogeneous

polynomial of degree i, i = 0, 1, . . . , d. We say the polynomial f is

• coercive if f(x)→ +∞ whenever ‖x‖ → +∞;

• s-strongly coercive for some s ∈ {1, . . . , d} if fs(x) > 0 for all x 6= 0 and fi(x) ≥ 0

for all s+ 1 ≤ i ≤ d and x ∈ Rn;

• strongly coercive if f is d-strongly coercive.

It follows from the definition that a s-strongly coercive polynomial, s = 1, . . . , d, must

be coercive. On the other hand, the converse is not true. As an example, the 2-dimensional

Rosenbrock function

f(x1, x2) = 1 + (x2 − x21)2 + (1− x2)2

is a coercive polynomial which is not s-strongly coercive for s = 1, 2, 3, 4. We also note

that it was shown in [5] that the strong coercivity can be numerically checked by solving

semidefinite programming problems. Furthermore, any polynomial of the form
∑n

i=1 aix
d
i+∑

|α|≤d−1 hαx
α where |α| =

∑n
i=1 αi with α = (α1, . . . , αn) ∈ (N∪{0})n, d ∈ 2N and ai > 0,

i = 1, . . . , n, is a strongly coercive polynomial.

The following proposition shows that a coercive polynomial is always level-bounded.

Moreover, the corresponding bound for the lower level set can be computed using the

coefficients of the underlying polynomial if the polynomial is assumed to be s-strongly

coercive for some s = 1, . . . , d.

Proposition 3.1. (Boundness of the lower level set via coercivity) Let f(x) =∑
α fαx

α be a coercive polynomial on Rn with degree d. Let f(x) =
∑d

i=0 fi(x) where each

fi is a homogeneous polynomial with degree i, i = 0, 1, . . . , d. Then, for each c ∈ R, the

lower level set {x : f(x) ≤ c} is a compact set. Furthermore, if f is s-strongly coercive for

some s = 1, . . . , d, then {x : f(x) ≤ c} ⊆ B(0, r) where

r = max{1,
c+

∑
0≤|α|≤s−1 |fα|
ρs

} and ρs = min{fs(x) : ‖x‖ = 1}.

Proof. Fix any c ∈ R. Then, the lower level set {x : f(x) ≤ c} is a compact set. To see

this, we suppose on the contrary that there exists {xn}∞n=1, with f(xn) ≤ c and {xn} is

unbounded. By passing to subsequence if necessary, we may assume that ‖xn‖ → +∞.
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As f is a coercive polynomial, we must have f(xn)→ +∞. This contradicts the fact that

f(xn) ≤ c for all n ∈ N.

To see the second assertion, we assume that f is s-strongly coercive for some s =

1, . . . , d. Let a ∈ Rn be any point such that f(a) ≤ c. Then,

ρs‖a‖s ≤ fs(a) ≤
d∑
j=s

fj(a) = f(a)−
s−1∑
j=0

fj(a) ≤ c−
s−1∑
j=0

fj(a) ≤ c+
∑

0≤|α|≤s−1

|fα| |aα|.

This gives us that either ‖a‖ ≤ 1 or

ρs‖a‖s ≤ c+
∑

0≤|α|≤s−1

|fα| |aα| ≤ c+
∑

0≤|α|≤s−1

|fα|‖a‖|α| ≤ (c+
∑

0≤|α|≤s−1

|fα|)‖a‖s−1,

where the second inequality follows from the fact that |xα| ≤ ‖x‖|α| for all ‖x‖ ≥ 1 and

the last inequality is from the fact that ‖x‖|α| ≤ ‖x‖s−1 for all |α| ≤ s − 1 and ‖x‖ ≥ 1.

So, we have

‖a‖ ≤ max{1,
c+

∑
0≤|α|≤s−1 |fα|
ρs

},

and hence, the conclusion follows.

Corollary 3.1. Let f(x) =
∑

α fαx
α and gj(x) =

∑
α(gj)αx

α, j = 1, . . . ,m, be polyno-

mials on Rn with degree d.

(i) If there exist µj ≥ 0, j = 0, 1, . . . ,m, such that µ0f +
∑m

j=1 µjgj is coercive, then,

for each c ∈ R, the set {x : gj(x) ≤ 0, j = 1, . . . ,m, f(x) ≤ c} is a compact set.

(ii) If µ0f +
∑m

j=1 µjgj is s-strongly coercive for some s ∈ {1, . . . , d}, then

{x : gj(x) ≤ 0, j = 1, . . . ,m, f(x) ≤ c} ⊆ B((0, r),

where

r = max{1,
µ0c+

∑
0≤|α|≤s−1 |µ0fα +

∑m
j=1 µj(gj)α|

ρs
}

and

ρs = min{(µ0f +

m∑
j=1

µjgj)s(v) : ‖v‖ = 1}.

Proof. Note that

{x : gj(x) ≤ 0, j = 1, . . . ,m, f(x) ≤ c} ⊆ {x : µ0f(x) +

m∑
j=1

µjgi(x) ≤ µ0c}.

The conclusion follows by applying the Proposition 3.1 with f replaced by µ0f+
∑m

j=1 µjgi.

We now present a sparse representation result for positivity of polynomials over a

unbounded semialgebraic set. The proof of this result makes use of Lemma 2.2, the sparse

Putinar positivestellensatz, and Proposition 3.1.
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Theorem 3.1. (Sparse representation for positivity over an unbounded semi-

algebraic set) Let f(x) =
∑p

l=1 f
l(x) and gj(x) =

∑
α(gj)αx

α, j = 1, . . . ,m, be polyno-

mials on Rn with degree d. Let Il be a set of indexes such that suppf l ⊆ Il ⊆ {1, . . . , n},
l = 1, . . . , p and

⋃p
l=1 Il = {1, . . . , n}. Let K = {x : gj(x) ≤ 0, j = 1, . . . ,m} and x0 ∈ K.

Let c > max1≤l≤p{f l(x0)}.Suppose that for each j = 1, . . . ,m, suppgj ⊆ Il for some l ∈
{1, . . . , p}, and the following running intersection property holds: for each l = 1, . . . , p−1,

there exists s ≤ l such that

Il+1 ∩ (

l⋃
j=1

Ij) ⊆ Is.

Assume that for each l = 1, . . . , p, there exist µ0l ≥ 0, l = 1, . . . , p µj ≥ 0, j = 1, . . . ,m,

such that
∑p

l=1 µ0lf
l +
∑m

j=1 µjgj is coercive, and f > 0 over K. Then, there exist sum-of

squares polynomials σ0l, . . . , σml, σ̄l with variables {xi : i ∈ Il}, l = 1, . . . , p, such that

f =

p∑
l=1

(
σ0l −

m∑
j=1

σjlgjl + σ̄l(c− f l)
)
.

Proof. It follows from Proposition 3.1 that {x :
∑p

l=1 µ0l(c− f
l(x)) +

∑m
j=1 µj(−gj)(x) ≥

0} is compact. So, by definition, we see that M(−g1, . . . ,−gm, c − f1, . . . , c − fp) is

Archimedean. Note that f > 0 over K̂ where

K̂ = {x : gj(x) ≤ 0, j = 1, . . . ,m, f l(x)− c ≤ 0, l = 1, . . . , p}.

Hence, by Lemma 2.2, we obtain that

f =

p∑
l=1

(
σ0l −

m∑
j=1

σjlgj + σ̄l(c− f l)
)
,

for some sum-of squares polynomials σ0l, . . . , σml, σ̄l with variables {xi : i ∈ Il}, l =

1, . . . , p.

Remark 3.1. It is worth noting that, if a polynomial f on Rn is convex in the sense

that ∇2f(x) is positive semi-definite for all x ∈ Rn and there exists x∗ ∈ Rn such that

∇2f(x∗) is positive definite, then it is coercive (for example see [6]). Therefore, our

coercive assumption of Theorem 3.1 that, “there exist µ0l ≥ 0, l = 1, . . . , p µj ≥ 0,

j = 1, . . . ,m, such that
∑p

l=1 µ0lf
l +

∑m
j=1 µjgj is coercive” is satisfied, if one of the

polynomials f l, gj, l = 1, . . . , p and j = 1, . . . ,m, is convex and has a positive definite

Hessian at some point x∗ ∈ Rn.

As a corollary, we obtain the dense representation of positivity of a polynomial over a

noncompact semialgebraic set given in [5].

Corollary 3.2. (Representation of positivity over an unbounded semialgebraic

set) Let f(x) =
∑

α fαx
α and gj(x) =

∑
α(gj)αx

α, j = 1, . . . ,m, be polynomials on Rn

with degree d. Let K = {x : gj(x) ≤ 0, j = 1, . . . ,m}, x0 ∈ K and c > f(x0). Suppose
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that there exist µj ≥ 0, j = 0, 1, . . . ,m, such that µ0f +
∑m

j=1 µjgj is coercive , and f > 0

over K. Then, there exist sum-of squares polynomial σ0, . . . , σm, σ̄ such that

f = σ0 −
m∑
i=1

σjgj + σ̄(c− f).

Proof. Let p = 1 and I1 = {1, . . . , n}. Note that the assumption “for each j = 1, . . . ,m,

suppgj ⊆ Il” for some l ∈ {1, . . . , p}, and the running intersection property holds auto-

matically in this case. Then, the conclusion follows from the preceding theorem.

4 A sparse hierarchy for optimization over unbounded sets

Consider the polynomial optimization problem

(P ) min

p∑
l=1

f l(x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m,

where f l, gj are (nonconvex) polynomials on Rn, l = 1, . . . , p and j = 1, . . . ,m. Let the

feasible set be denoted by K, that is, K = {x : gj(x) ≤ 0, j = 1, . . . ,m}.
Let f(x) =

∑p
l=1 f

l(x) and gj(x) =
∑

α(gj)αx
α, j = 1, . . . ,m, be polynomials on Rn

with degree d. Let Il be a set of indices such that suppf l ⊆ Il ⊆ {1, . . . , n}, l = 1, . . . , p

and
⋃p
l=1 Il = {1, . . . , n}. Let x0 ∈ {x : gj(x) ≤ 0, j = 1, . . . ,m} and let c be a number

such that c > max1≤l≤p{f l(x0)}. For each integer k, we define the truncated sparse version

of the quadratic module M̄k by

M̄k := {
p∑
l=1

(
σ0l +

∑
j∈Il

σjlgj + σ̄l(c− f l)
)
| σ0l, σjl, σ̄l ∈ Σ2[xl],

deg σ0l ≤ 2k, deg σjlgj ≤ 2k,deg σ̄l(c− f l) ≤ 2k},

where Σ2[xl], l = 1, . . . , p, denotes the set of all SOS polynomials with variable {xi : i ∈ Il}.
Consider the following relaxation problem

f̄∗k := sup{µ ∈ R | f − µ ∈ M̄k}. (4.1)

By construction, f̄∗k ≤ f̄∗k+1 ≤ · · · ≤ min(P ). Note that, if we set σ̄l ≡ 0, l = 1, . . . , p, then

the hierarchy (4.1) reduces to the known sparse SDP hierarchy proposed in [8, 9].

Theorem 4.1. (Convergence of sparse SDP hierarchy) Let f(x) =
∑p

l=1 f
l(x) and

gj(x) =
∑

α(gj)αx
α, j = 1, . . . ,m, be polynomials on Rn with degree d. Let Il be a set

of indexes such that suppf l ⊆ Il ⊆ {1, . . . , n}, l = 1, . . . , p and
⋃p
l=1 Il = {1, . . . , n}.

Consider the SDP hierarchy (4.1) and denote its optimal value by f̄∗k . Let K = {x :

gj(x) ≤ 0, j = 1, . . . ,m}, x0 ∈ K and c > max1≤l≤p{f l(x0)}. Suppose that for each
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j = 1, . . . ,m, suppgj ⊆ Il for some l ∈ {1, . . . , p}, and the following running intersection

property holds: for each l = 1, . . . , p− 1, there exists s ≤ l such that

Il+1 ∩ (
l⋃

j=1

Ij) ⊆ Is.

If, for each l = 1, . . . , p, there exist µ0l ≥ 0, l = 1, . . . , p, µj ≥ 0, j = 1, . . . ,m, such that∑p
l=1 µ0lf

l +
∑m

j=1 µjgj is coercive, then limk→∞ f̄
∗
k = min(P ).

Proof. Let ε > 0. Then, we have f−min(P )+ε > 0 over the feasible set K. As there exist

µj ≥ 0, j = 0, 1, . . . ,m, such that µ0f+
∑m

j=1 µjgj is coercive, we see that µ0(f−min(P )+

ε) +
∑m

j=1 µjgj is also coercive. Thus, the sparse positivity representation result (3.1)

implies that there exist sum-of squares polynomial σ0l, . . . , σjl, j = 1, . . . ,m, σ̄l ∈ R[xl],

l = 1, . . . , p, such that

f −min(P ) + ε =

p∑
l=1

(
σ0l −

m∑
j=1

σjlgj + σ̄l(c− f l)
)
.

Thus, for each ε > 0, there exists k0 ∈ N such that f̄∗k ≥ min(P )− ε. On the other hand,

from the construction of the hierarchy, we see that f̄∗k ≤ f̄∗k+1 ≤ · · · ≤ min(P ). Therefore,

the conclusion follows.

In the special case where p = 1 and I1 = {1, . . . , n}, the optimization problem (P )

reduces to

minx∈Rn f(x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m.

In this case, the sparse truncated quadratic module M̄k reduces to the truncated quadratic

module Mk generated by the polynomials c− f and −g1, . . . ,−gm given by

Mk := {σ0 +
m∑
j=1

σjgj + σ̄(c− f) | σ0, σ, σ̄ ∈ Σ2[x] ⊂ R[x],

deg σ0 ≤ 2k, deg σjgj ≤ 2k, and deg σ̄(c− f) ≤ 2k},

and the corresponding relaxation problem collapses to

f∗k := sup{µ ∈ R | f − µ ∈Mk}. (4.2)

So, Theorem 4.1 collapses to the convergence result of the dense SDP hierarchy for

polynomial optimization problem with noncompact sets proposed in [5].

5 Numerical experiments

In this Section, we show the effectiveness of the proposed sparse SDP hierarchy in

Section 4 by solving some numerical test problems with unbounded feasible sets. All the
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numerical tests were conducted on a computer, with a 2.8 GHz Intel Core i7 and 8 GB

RAM, equipped with Matlab 7.14 (R2012a).

The purpose of the numerical experiments is to illustrate how our proposed sparse SDP

hierarchy works for solving polynomial optimization problems with unbounded feasible

sets. Therefore, we first select some known test problems which are coercive and test

them by minimizing them over unbounded feasible sets. The selected test problems are:

(1) a nonconvex quadratic programming problem with an unbounded feasible set, in

which Lasserre’s hierarchy is known to fail;

(2) the Rosenbrock function over the nonnegative orthant;

(3) the Chain-wood function over the nonnegative orthant;

For the numerical tests, let the objective function f(x) take the form f(x) =
∑p

l=1 f
l(x).

We added additional constraints f l(x) ≤ c, l = 1, . . . , q, to the test problems with un-

bounded feasible sets for the proposed sparse SDP hierarchy, where c is appropriately cho-

sen. We note that the resulting test problems are different from the Rosenbrock function

and the Chain-wood function solved in [23]. We then used a Matlab software SparsePOP

[24] to solve the problems. SparsePOP can solve polynomial optimization problems ex-

ploiting the sparsity described in Section 4 by setting the parameter sparseSW = 1, and

can also implement Lasserre’s hierarchy by setting the parameter sparseSW = 0. In addi-

tion, a parameter, called the relaxation order, can be chosen in SparsePOP, depending on

the degree of the polynomial optimization problem. The larger value for the relaxation or-

der is used, the better approximation to the optimal value of the polynomial optimization

problem can be expected.

In SparsePOP, the accuracy of an obtained objective value is computed by

Relative objective error (Rel.Er) =
POP.objValue - SDP.objValue

max{1, |POP.objValue|}
,

where POP.objValue means the value of the objective function of a polynomial optimiza-

tion problem computed using a candidate for the optimal solution, and SDP.objValue the

value of the objective function of the SDP relaxation of the polynomial optimization prob-

lem. Moreover, CPU time reported in the subsequent discussion is measured in seconds.

For details, we refer to [24].

5.1 A 2-dimensional QP with an unbounded feasible set

Consider the following nonconvex quadratic optimization problem:

(QP ) min(x1,x2)∈R2 x21 + x22
s.t. x22 − 1 ≥ 0

x21 −Mx1x2 − 1 ≥ 0

x21 +Mx1x2 − 1 ≥ 0.

(5.3)
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It was shown in [15, 13] that the global minimizers are (±M+
√
M2+4
2 ,±1) and its global

minimum is 1 +

√
2M2+4+2M

√
M2+4

4 . For instance, if M = 5, then, the global minimizers

are (±5.1926,±1) and its global minimum is 27.9629.

Let M = 5. It was shown in [15] that Lasserre’s hierarchy only provides a lower bound

2, no matter how large the relaxation order k is chosen. As explained in [15], the main

reason why the Lasserre’s hierarchy fails to achieve the global minimum of this quadratic

problem is that the feasible set of this nonconvex quadratic problem is unbounded.

Notice that the objective f(x1, x2) := x21 + x22 is coercive. Thus, we can apply the

proposed sparse hierarchy. Since the problem has only two variables without sparsity, we

test the problem using our dense SDP hierarchy (4.2) with c = 40. Note that c > f(6, 1)

and the point (6, 1) is feasible for this quadratic optimization problem.

As shown in Table 5.1, by running the sparsePOP with sparseSW=0 and the relaxation

order 4, the relaxation problem in the dense hierarchy (4.2) solves the original problem

and returns a good approximation to the true global minimizer (5.1296, 1.000). Table 5.1

summarizes the optimal values for the dense SDP hierarchy (4.1) with relaxation order

k = 2, 3, 4, which illustrates the effectiveness of our approach.

RelaxOrder c Optimal val. Optimal sol. Rel.Er CPU

DenseHierarchy (4.2) 2 40 1.1729 - 3.9e+0 0.27

DenseHierarchy (4.2) 3 40 14.2398 - 5.6e-5 0.31

DenseHierarchy (4.2) 4 40 27.9629 (5.1296,1.000) 2.6e-5 0.39

Table 5.1: Numerical test on problem (QP2).

5.2 The Rosenbrock function over nonnegative orthant

The Rosenbrock function is described as

fR(x1, . . . , xn) = 1 +
n∑
i=2

(
(xi − x2i−1)2 + (1− xi)2

)
, n ≥ 2.

Clearly, fR is a SOS polynomial, and is coercive. We add constraints to the Rosenbrock

function to have a polynomial optimization problem with an unbounded region as follows:

(EPR) minx∈Rn fR(x)

s.t. xi ≥ 0, i = 1, . . . , n.

It can be easily verified that this problem has a unique global minimizer en := (1, . . . , 1︸ ︷︷ ︸
n

).

Let Il = {l, l+1}, l = 1, . . . , n−1 and gj(x) = xj , j = 1, . . . , n. Then, the assumptions

in Theorem 4.1 are satisfied as

suppgj = {j} ⊆

{
Ij , if j = 1, . . . , n− 1,

In−1, if j = n,
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and for each l = 1, . . . , n− 1,

Il+1 ∩ (

l⋃
j=1

Ij) = {l} ⊆ Il.

Therefore, according to Theorem 4.1, the optimal value of the proposed sparse SDP hier-

archy (4.1) converges to the optimal value of the global minimum of (EPR).

We now test our proposed sparse SDP hierarchy (4.1) using the global optimization

problem (EPR) for different dimension n with c = 2. From Table 5.2, we see that for

n = 10000 or n = 20000, the sparsePOP returns an accurate solution for the relaxation

order 2 in the proposed sparse hierarchy Sparse SDP hierarchy (4.1).

n RelaxOrder c Optimal sol. Rel.Er CPU

SparseHierarchy (4.1) 500 2 2 e500 4.1e-5 81.8

SparseHierarchy (4.1) 5000 2 2 e5000 1.0e-3 148.5

SparseHierarchy (4.1) 10000 2 2 e10000 2.1e-3 308.5

SparseHierarchy (4.1) 20000 2 2 e20000 4.3e-3 772.2

Table 5.2: Numerical tests on the problem (EPR).

When the dimension n of the problem is large, directly applying the dense SDP hier-

archy proposed in [5] without exploiting the sparsity leads to very large SDP problems

which cannot be handled by a SDP solver such as SeDuMi [22] . Indeed, we confirm in

our numerical computation that the dense SDP hierarchy proposed in [5] can only be used

to solve (EPR) up to dimension 20. The larger problems than dimension 20 resulted in

out-of-memory error.

5.3 Chained-wood function over nonnegative orthant

Let n ∈ 4N where N denotes the set of integers. Consider the Chained-wood function

given by

fC(x1, . . . , xn) = 1 +
∑
i∈J

(
(xi+1 − x2i )2 + (1− xi)2 + 90(x2i+3 − xi+2)

2 + (xi+2 − 1)2

+10(xi+1 + xi+3 − 2)2 +
1

10
(xi+1 − xi+3)

2
)
,

where J = {1, 3, 5, . . . , n − 3}. The function fC is a SOS polynomial, and is coercive.

Adding nonnegative constraints for the variables xi, i = 1, . . . , n results in the following

polynomial optimization problem:

(EPC) minx∈Rn fC(x)

s.t. xi ≥ 0, i = 1, . . . , n.

Clearly, the feasible set of this polynomial optimization is unbounded, and this problem

has a unique global minimizer en := (1, . . . , 1︸ ︷︷ ︸
n

).
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Note that fC can be equivalently rewritten as

fC(x1, . . . , xn) = 1 +

n
2
−1∑
l=1

(
(x2l − x22l−1)2 + (1− x2l−1)2 + 90(x22l+2 − x2l+1)

2 + (x2l+1 − 1)2

+10(x2l + x2l+2 − 2)2 +
1

10
(x2l − x2l+2)

2
)
.

For each l = 1, . . . , n2 − 1, let Il = {2l − 1, 2l, 2l + 1, 2l + 2} and gj(x) = xj , j = 1, . . . , n.

Then, the assumptions in Theorem 4.1 are satisfied as suppgj = {j} ⊆ I[ j
2
], where [ j2 ] is

the largest integer that is smaller than j
2 , and for each l = 1, . . . , n− 1,

Il+1 ∩ (
l⋃

j=1

Ij) = {2l + 1, 2l + 2} ⊆ Il.

Therefore, Theorem 4.1 implies that the optimal value of the proposed sparse SDP hier-

archy (4.1) converges to the optimal value of the global minimum of (EPR).

We now test our proposed sparse SDP hierarchy (4.1) on (EPC) for different values of

n with c = n + 1. From Table 5.3, we see that for dimension n = 10000 or n = 20000,

the sparsePOP with the relaxation order =2 returns an accurate solution in the proposed

sparse hierarchy Sparse SDP hierarchy (4.1).

n RelaxOrder c Optimal sol. Rel.Er CPU

SparseHierarchy (4.1) 1000 2 1001 (e1000) 2.4e-4 38.9

SparseHierarchy (4.1) 5000 2 5001 (e5000) 1.2e-3 175.2

SparseHierarchy (4.1) 10000 2 10001 (e10000) 2.4e-3 392.3

SparseHierarchy (4.1) 20000 2 20001 (e20000) 4.8e-3 1049.8

Table 5.3: Numerical tests on the problem (EPC)

The numerical experiment using the dense SDP hierarchy proposed in [5] could solve

(EPC) up to only n = 10. We observe again that much larger problems can be solved by

the sparse SDP hierarchy.

6 A class of sparse problems with hidden coercivity

Consider the following polynomial optimization problem:

(P0) min
(xl,wl)∈Rnl×Rnl ,l=1,...,q

q∑
l=1

∑
i∈Il

(wli)
2

s.t. glj(x
l) ≤ 0, j = 1, . . . ,m, l = 1, . . . , q

(1− wli)xli = 0, i ∈ Il, l = 1, . . . , q,

‖xl‖22 ≤M l, l = 1, . . . , q,
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where Il ⊆ {1, . . . , n}, l = 1, . . . , q,
⋃q
l=1 Il = {1, . . . , n}, nl = |Il|, that is, nl is the

cardinality of Il, l = 1, . . . , q, Il = {i1, . . . , inl
} and glj are polynomials, j = 1, . . . ,m, l =

1, . . . , q.

In Remark 6.1 we show the link between (P0) and the problem of finding the solution

with the least number of nonzero components of a system of polynomial inequalities.

Problems of this kind arise in signal processing and statistics [1, 2].

We now introduce a SDP hierarchy for problem (P0) using the results in Section 3. It is

worth noting that, problem (P0) is a minimization problem with variables (x,w) ∈ Rn×Rn.

Thus, the feasible set of (P0) can be unbounded in general (for example, simply take gj ≡ 0.

Then, (w, 0) is feasible for problem (P0) for any w ∈ Rn).

Let f(x,w) =
∑q

l=1 fl(x
l, wl), where fl(x

l, wl) =
∑

i∈Il(w
l
i)
2 and x = (x1, . . . , xq) ∈

R
∑q

l=1 nl and w = (w1, . . . , wq) ∈ R
∑q

l=1 nl . For each l = 1, . . . , q, define ḡil(x
l, wl) =

(1 − wli)xli, i ∈ Il and Gl(x
l, wl) := ‖xl‖22 −M l. Let c be a number such that c > nl,

l = 1, . . . , q. For each integer k, we define the following sparse truncated quadratic module

M̂k generated by the polynomials c− f l, −glj , j = 1, . . . ,m, ḡil, i ∈ Il and Gl, l = 1, . . . , q,

as follows:

M̂k :=


q∑
l=1

(
σ0l +

m∑
j=1

σjlg
l
j +

Il∑
i=1

hilḡil + σl(−Gl) + σ̄l(c− f l)
)
| σ0l, σil, σl, σ̄l ∈ Σ2[xl, wl],

hil ∈ R[xl, wl], deg σ0l ≤ 2k, deg σjlgjl ≤ 2k deg hilḡil ≤ 2k, and

deg σlGl ≤ 2k,deg σ̄(c− f l) ≤ 2k
}
.

Consider the following relaxation problem

f∗k := sup{µ ∈ R | f − µ ∈ M̂k}. (6.4)

Then, one can show that limk→∞ f
∗
k = min(P0) if the running intersection property holds.

Proposition 6.1. (Convergence of the sparse SDP hierarchy value for (P0)) For

problem (P0) and the SDP hierarchy (6.4), assume that the running intersection property

that, for each l = 1, . . . , q − 1, there exists s ≤ l such that Il+1 ∩ (
⋃l
j=1 Ij) ⊆ Is, holds.

Then, limk→∞ f
∗
k = min(P0).

Proof. Note that the problem (P0) can be equivalently rewritten as

min
(xl,wl)∈R|Il|×R|Il|

q∑
l=1

f l(xl, wl) =

q∑
l=1

∑
i∈Il

(wli)
2

s.t. glj(x
l) ≤ 0, j = 1, . . . ,m, l = 1, . . . , q

ḡil(x
l, wl) := (1− wli)xli ≤ 0, i ∈ Il, l = 1, . . . , q

−ḡil(xl, wl) = −(1− wli)xli ≤ 0, i ∈ Il, l = 1, . . . , q

Gl(x
l, wl) := ‖xl‖22 −M l ≤ 0.

As
⋃p
l=1 Il = {1, . . . , n},

∑p
l=1 f

l(xl, wl) +
∑p

l=1Gl(x
l, wl) is strongly coercive. So, the as-

sumptions in Theorem 4.1 are satisfied. Therefore, Theorem 4.1 implies that limk→∞ f
∗
k =

min(P0).
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We now illustrate the SDP hierarchy using a numerical example. For the numerical test

on the effectiveness of the proposed SDP hierarchy, we let q ∈ N. For each l = 1, . . . , q, we

generate a 3-by-4 matrix Al containing random values drawn from the uniform distribution

on the interval [0, 1] and define bl = 4Al(:, 1), where Al(:, 1) denotes the first column of

Al. Consider the problem:

(EP ) min
x=(x1,...,xq),xl∈R4,l=1,...,q

q∑
l=1

‖xl‖0

s.t. Alx
l = bl, l = 1, . . . , q

‖xl‖22 ≤ 100, l = 1, . . . , q.

It is not hard to see that an optimal solution of (EP) is x∗ := [x1∗, . . . , xq∗] with xl∗ =

[4, 0, 0, 0], l = 1, . . . , q with optimal value q.

Let Il = {4l − 3, 4l − 2, 4l − 1, 4l}, l = 1, . . . , q. Denote xl = (xli)i∈Il ∈ R4 and

wl = (wli)i∈Il ∈ R4, l = 1, . . . , q. In Remark 6.1, we see that problem (EP) is equivalent to

min
x=(x1,...,xq)∈R4q

w=(w1,...,wq)∈R4q

q∑
l=1

∑
i∈Il

(wli)
2

s.t. Alx
l = bl, l = 1, . . . , q

(1− wli)xli = 0, i ∈ Il, l = 1, . . . , q,

‖xl‖22 ≤ 100, l = 1, . . . , q.

Clearly, the running intersection property holds. So, the optimal value of the proposed

sparse SDP hierarchy (6.4) converges to the optimal value of (EP).

As shown in Table 6.1, for q = 200 and q = 1000, in our numerical experiment,

sparsePOP with the relaxation order 2, c = 5 and M = 100, returns an accurate optimal

value and an accurate optimal solution x∗ in the proposed Sparse SDP hierarchy (6.4).

We also notice that the numerical experiment using the dense SDP hierarchy proposed

in [5] could solve the above problem with number of blocks q up to only 5. We observe

again that much larger problems can be solved by the sparse SDP hierarchy.

Problem q, n c M Optimal val. Rel.Er CPU

SparseHierarchy (6.4) 200, 1600 5 100 200 3.3e-9 173.9

SparseHierarchy (6.4) 1000, 8000 5 100 1000 1.1e-5 470.2

Table 6.1: Numerical tests on the polynomial optimization problem with hidden coercivity.

n is the number of variables. The relaxation order 2 was used.

Finally, we note that one of the popular methods to find an approximate solution of

problems (EP ) is to replace the l0 norm by the l1 norm, and consider the following convex
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programming problem

(REP ) min
x=(x1,...,xq),xl∈R4,l=1,...,q

q∑
l=1

‖xl‖1

s.t. Alx
l = bl, l = 1, . . . , q

‖xl‖22 ≤ 100, l = 1, . . . , q,

where ‖ · ‖1 is the l1 norm defined by ‖x‖1 =
∑m

i=1 |xi| with x = (x1, . . . , xm) ∈ Rm.

Solving this convex optimization problem provides an approximation of the solution of

the problem (EP). This method is often referred as the l1 heuristics [1] and is widely used,

because problem (REP) is a convex problem which can be efficiently solved. On the other

hand, problem (EP) is often hard to solve due to the nonconvexity and noncontinuity of

the seminorm ‖ · ‖0.
In general, the l1 heuristics may not be able to provide an accurate solution for the

problem (EP). For example, consider problem (EP) where q = 200,

Al = A :=

 2 −1 30 3

3 3 44 2

−2 7 −40 −6

 , bl = b := 4A(:, 1) =

 8

12

−8

 for all l = 1, . . . , 200.

Then, the true solution of this problem is x∗ := [x1∗, . . . , xq∗] with xl∗ = [4, 0, 0, 0], l =

1, . . . , 200. Solving the corresponding l1 heuristics (REP) gives us the solution z∗ =

[z1∗, . . . , z200∗] with zl∗ = [0, 1.2571, 0.0857, 2.2286], l = 1, . . . , 200. Interestingly, the

support of the solution z∗ found by the l1 heuristics is the complement of the true optimal

solution and z∗ is clearly not a solution of (EP ) (as the corresponding objective value at

z∗ is 600 which is much larger than the true global optimal value 200). In contrast, in

our numerical experiment, sparsePOP with the relaxation order 2 and c = 5, returns an

accurate optimal value 200 and an accurate optimal solution x∗, in the proposed Sparse

SDP hierarchy (6.4), as shown in Table 6.2.

Problem q, n c M Optimal val. Rel.Er CPU

SparseHierarchy (6.4) 200, 1600 5 100 200 5.9e-6 107.6

SparseHierarchy (6.4) 1000, 8000 5 100 1000 1.8e-6 493.5

Table 6.2: Numerical tests on the polynomial optimization problem with hidden coercivity.

n is the number of variables. The relaxation order 2 was used.

Remark 6.1. The polynomial optimization problem (P0) has a close relationship with the

problem of finding the solution with the least number of nonzero components which satisfies

a system of polynomial inequalities and simple bounds. Mathematically, the problem of

finding the solution with the least number of nonzero components which satisfies a system
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of polynomial inequalities and simple bounds, can be formulated as

(P ′0) min
(x1,...,xq)∈Rn1×...×Rnq

q∑
l=1

‖xl‖0

s.t. glj(x
l) ≤ 0, j = 1, . . . ,m, l = 1, . . . , q,

‖xl‖22 ≤M l, l = 1, . . . , q,

where nl ∈ N, l = 1, . . . , q, and ‖x‖0 denotes the l0-seminorm of the vector x ∈ Rn, which

gives the number of nonzero components of the vector x.

In the case where q = 1, I1 = {1, . . . , n}, gj(x) = aTj x − bj, j = 1, . . . ,m, gj(x) =

−(aTj x − bj), j = m + 1, . . . , 2m, the problem (P ′0) collapses to the Lasso problem with

additional simple bounds which finds the solution with the least number of nonzero com-

ponents satisfying simple bounds as well as linear equations Ax = b with more unknowns

than equalities:

(P1) minx∈Rn ‖x‖0
s.t. Ax = b,

‖x‖22 ≤M,

where A = (a1, . . . , am)T ∈ Rm×n (m ≤ n), b = (b1, . . . , bm)T ∈ Rm. We note that the

standard Lasso problem which is given by

(P2) minx∈Rn ‖x‖0
s.t. Ax = b,

arises in signal processing and was examined, for example, in Candés and Tao (2005)

[1]. Moreover, problem (P1) and (P2) has the same optimal value if M > ‖x∗‖22 for some

solution x∗ of problem (P2).

In fact, the problem (P0) and problem (P ′0) are equivalent in the sense that min(P0) =

min(P ′0) and (x1∗, . . . , xq∗) ∈ Rn1 × . . . × Rnq is a solution of problem (P0) if and only if

(xl∗, wl∗) ∈ Rnl×Rnl, l = 1, . . . , q, is a solution of problem (P ′0) where wl∗ = (wl∗i1 , . . . , w
l∗
inl

) ∈
Rnl is defined by

wl∗i =

{
1 if xl∗i 6= 0,

0 if xl∗i = 0.
i ∈ Il, l = 1, . . . , q. (6.5)

To see this, note that, for any solution (x1∗, . . . , xq∗) ∈ Rn1× . . .×Rnq of problem (P0), let

wl∗ ∈ Rnl, l = 1, . . . , q, be defined as in (6.5). Then, for each l = 1, . . . , q, (1−wl∗i )xl∗i = 0

and ∑
i∈Il

(wl∗i )2 = ‖xl∗‖0.

So, min(P0) ≥ min(P ′0). Conversely, let (xl∗, wl∗), l = 1, . . . , q, be a solution of problem

(P0). Then, xl∗, l = 1, . . . , q, is feasible for problem (P ′0), and for all (xl, wl) feasible

for problem (P0), ‖xl∗‖0 =
∑n

i=1(w
l∗
i )2 ≤

∑n
i=1(w

l
i)
2. Now take any feasible point xl,
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l = 1, . . . , q for problem (P0). Note that (xl, wl(xl)), l = 1, . . . , q, is feasible for (P ′0),

where wl(xl) is given by

wl(xl)i =

{
1 if xli 6= 0,

0 if xli = 0,
i ∈ Il,

and, for each l = 1, . . . , q, ∑
i∈Il

(wl(xl)i)
2 = ‖xl‖0.

This implies that ‖xl∗‖0 ≤ ‖xl‖0 for any feasible point xl, l = 1, . . . , q, of problem (P0), and

hence xl∗ is a solution for problem (P0). This yields min(P0) ≤ min(P ′0), thus, min(P0) =

min(P ′0). The remaining assertion follows from the construction of wl∗.
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