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Abstract

For binary polynomial optimization problems (POPs) of degree d with n variables, we
prove that the ⌈(n+ d− 1)/2⌉th semidefinite (SDP) relaxation in Lasserre’s hierarchy
of the SDP relaxations provides the exact optimal value. If binary POPs involve only
even-degree monomials, we show that it can be further reduced to ⌈(n+ d− 2)/2⌉.
This bound on the relaxation order coincides with the conjecture by Laurent in 2003,
which was recently proved by Fawzi, Saunderson and Parrilo, on binary quadratic op-
timization problems where d = 2. We also numerically confirm that the bound is tight.
More precisely, we present instances of binary POPs that require solving at least the
⌈(n+ d− 1)/2⌉th SDP relaxation for general binary POPs and the ⌈(n+ d− 2)/2⌉th
SDP relaxation for even-degree binary POPs to obtain the exact optimal values.

Keywords. Binary polynomial optimization problems, the hierarchy of the SDP relax-
ations, the bound for the exact SDP relaxation, even-degree binary polynomial optimiza-
tion problems, chordal graph.

AMS Classification. 90C22, 90C25, 90C26.

1 Introduction

We are concerned with binary polynomial optimization problems (POPs):

minimize
x

f(x)(1)

subject to x ∈ {−1, 1}n,

where f is a polynomial of degree d and n is the number of variables. Binary POPs of
form (1) arise in various applications. In particular, many applications in combinatorial
optimization can be cast as binary quadratic optimization problems (QOPs), for instance,
the maximum cut problem [6], the maximum stable set problems [9], and the quadratic
assignment problems [14], which are special cases of (1). Moreover, binary POPs represent
important classes of applications such as the maximum satisfiability problems [1] and the
maximum weighted independent set problem [8].
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Lasserre’s hierarchy of semidefinite (SDP) relaxations [12] is one of the most extensively
studied solution methods for general POPs including binary POPs (1). In his hierarchy
of SDP relaxations parametrized by a parameter called the relaxation order ω, a sequence
of increasingly large SDP relaxations should be solved for a tight optimal value. The
sequence of SDP relaxations to be solved for the optimal value of general POPs is not
finite. Unlike general POPs, a binary POP has a finite number of SDP relaxations to
be solved in the hierarchy for the exact optimal value. Lasserre [11] showed that binary
POPs were equivalently transformed into the SDP with 2n − 1 variables, or nth SDP
relaxation where ω = n in the hierarchy. The result in [11] holds for arbitrary binary
constrained POPs. For binary QOPs of form (1), Laurent in [13] conjectured that solving
the SDP relaxation with the relaxation order ω = ⌈n/2⌉ in the hierarchy provided the
exact optimal value. Recently, Fawzi, Saunderson and Parrilo [4] proved the conjecture
by applying their results on optimization problems on a finite abelian group to the binary
QOPs. More recently, Kurpisz, Leppänen and Mastrolilli [10] presented the hardest binary
problem where n − 1 relaxation order in Lasserre’s hierarchy of SDP relaxations is not
tight. However, any bound smaller than n on the relaxation order for the exact optimal
value of binary POP (1) such as ⌈n/2⌉ for binary QOPs has not been proposed nor proved
to the best of our knowledge.

We prove that the relaxation order ω to obtain the exact optimal value of (1) is
⌈(n+ d− 1)/2⌉, in particular, ⌈(n+ d− 2)/2⌉ if all monomials of f are even degree. For
the binary QOPs where d = 2 and the degree of all monomials of f is even, our result
coincides with ⌈n/2⌉ shown in [4]. However, the relaxation order ⌈(n+ d− 1)/2⌉ presented
in this paper includes more general binary POPs of degree greater than or equal to 3. We
note that for the degree of (1), d ≤ n always holds since x2i = 1 (i = 1, . . . , n). Thus, the
relaxation order for the exact optimal value of (1) presented in this paper ⌈(n+ d− 1)/2⌉
is bounded by n in [11]. For the binary POP shown to have an integrality gap at ω = n−1
in [10] by Kurpisz et al., the degree of the binary POP was n as indicated in Theorem 3
of [10]. Since ⌈(n+ d− 1)/2⌉ = n if d = n, their result on the binary POP [10] can be
derived by our result in this paper.

For the proof of the relaxation order for the exact optimal value of binary POPs, we use
Theorem 1D of [4] together with the concept of chordal graphs, especially, a chordal cover
constructed from the cliques of the Cayley graph, and a Fourier support. We note that the
Cayley graph is obtained from the monomials of binary POPs (1). To apply Theorem 1D
of [4] to binary POPs, we need to find a chordal cover of the Cayley graph and then a
Fourier support of the chordal cover, which leads to the bound on the relaxation order of
Lasserre’s hierarchy.

The main idea of finding a chordal cover of the Cayley graph corresponding to binary
POP (1) in this paper is to paste cliques together along the complete graphs, utilizing the
result from the graph theory that a graph is chordal if and only if it can be constructed
recursively by pasting the complete subgraphs starting from complete graphs. Then, a
chordal cover from the pasted cliques is found to construct a Fourier support for binary
POP (1). As a result, we obtain the truncated moment matrix that corresponds to the
⌈(n+ d− 1)/2⌉th SDP relaxation in the hierarchy.

The theoretical bounds are confirmed by numerical experiments on random instances
of binary POPs (1) and the binary POP with all-one coefficients of f in (1). We randomly
generated 100 binary POPs with n = 8 and d = 1, 2, . . . , 8 to see that ω = ⌈(n+ d− 1)/2⌉
is necessary to obtain the optimal values of the test problems. The numerical results on all
100 randomly generated test problems show the discrepancy from the theoretical bound.
More precisely, the exact optimal values of the randomly generated test problems are
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obtained by the SDP relaxation with ω which is smaller than ⌈(n+ d− 1)/2⌉ for binary
POPs and ⌈(n+ d− 2)/2⌉ for even-degree binary POPs. However, we provide a binary
POP and an even-degree binary POP whose exact optimal values are obtained only at
ω = ⌈(n+ d− 1)/2⌉ and ω = ⌈(n+ d− 2)/2⌉, respectively, not with any smaller relaxation
order. The problems are the binary POPs in the form of (1) where the coefficients of f
are all ones. Thus, we observe that the numerical result is consistent with the theoretical
bound.

1.1 Notation and symbols

We list the notation used in this paper as follows:

• For a given finite set F , RF means the space of real vectors indexed by the elements
of F . Similarly, RF×F denotes the space of matrices whose rows and columns are
indexed by the elements of F .

• [n] := {1, 2, . . . , n}, 2[n] := {S : S ⊆ [n]}, Sd := {S ∈ 2[n] : |S| ≤ d}.

• For given S, T ∈ 2[n], S∆T := (S\T ) ∪ (T\S). Note that 2[n] forms a group with
this operation; the identity element is ∅ and S−1 = S for all S ∈ 2[n].

• For S, T ⊆ 2[n], S∆T := {S∆T : ∀S ∈ S, ∀T ∈ T }.

• xα := xα1
1 xα2

2 · · ·xαn
n for a vector of variables x and a nonnegative vector α. (xα)α∈D

is a vector of monomials xα for all α in the set D of vectors. (ℓδ)δ∈D is a vector of
variables ℓδ with index δ ∈ D.

• G = (V,E) is a graph with the vertex set V and the edge set E.

• If two graphs G1 = (V1, E1) and G2 = (V2, E2) are induced from the same graph, then
G1 ∪ G2 is a graph with the vertex set V1 ∪ V2 and the edge set E1 ∪ E2. Similarly,
G1 ∩ G2 denotes a graph with the vertex set V1 ∩ V2 and the edge set E1 ∩ E2.

Let α ∈ Zn be a nonnegative vector, then the polynomial f is expressed as

f(x) =
∑

∥α∥1≤d

cαx
α,

where cα are coefficients and ∥α∥1 :=
∑n

i=1 αi. Since (1) requires x ∈ {−1, 1}n, we can
assume α ∈ {0, 1}n. Thus, ∥α∥1 denotes the number of nonzero elements in α. Note
that d ≤ n and that the set of monomials {xα : α ∈ {0, 1}n, ∥α∥1 ≤ d} forms a basis for
real-valued polynomials of degree d on {−1, 1}n. Hence, (1) can be expressed as

minimize
x

∑
α∈{0,1}n, ∥α∥1≤d

cαx
α(2)

subject to x ∈ {−1, 1}n.

1.2 An illustrative example

The following exemplary problem is used throughout the paper to illustrate our discussion.

minimize
x

1 + x1 + x2 + x3 + x1x2 + x1x3 + x2x3(3)

subject to x ∈ {−1, 1}3.
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Since n = 3 and d = 2 in (3), we notice that [n] = {1, 2, 3},

2[3] = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},

and
S2 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.

We can also apply our discussion to a binary POP of degree higher than 2, but it is
too complicated to display the Cayley graph of the binary POP, and a chordal cover of
the Cayley graph, thus, (3) is used for illustration.

1.3 Organization

This paper is organized as follows: In Section 2, we introduce basic concepts necessary
for the subsequent discussion such as the group indicator vectors, the moment polytope,
the truncated moment matrix, the Cayley graph, and the Fourier support. We use (3)
to explain the concepts. Section 3 includes the main results of this paper. We describe
pasting the cliques to construct a choral cover and a Fourier support, and how to obtain
the truncated moment matrix. In Section 4, we focus on even-degree binary POPs. The
method to obtain the reduced bound ⌈(n+ d− 2)/2⌉ is discussed. In addition, we describe
the method to extract the optimal solution of even-degree binary POPs from the truncated
moment matrix. In Section 5, we test randomly generated binary POPs and the binary
POP with all-one coefficients to confirm the theoretical bound obtained in Sections 3
and 4. Finally, we conclude in Section 6.

2 Preliminaries

We introduce the basics for the subsequent discussion and the results in [4] for x ∈
{−1, 1}n.

2.1 The group of indicator vectors

For a given S ∈ 2[n], let δS ∈ {0, 1}n be the indicator vector of S. We define D := {δS :
S ∈ 2[n]}. For a given set S ⊆ 2[n], DS := {δS : S ∈ S}. We often use δ ∈ D to express an
element of D, abbreviating its index. The product of δS , δT ∈ D is defined as

δSδT := δS∆T , S, T ∈ 2[n].

For example, if δ{1,2} = (1, 1, 0) and δ{2,3} = (0, 1, 1), then δ{1,2}δ{2,3} = δ{1,3} = (1, 0, 1).
Note that the aforementioned operation returns the exclusive disjunction for each entry.
For notational simplicity, we frequently identify an indicator vector δ with its numeric
string, for instance, δ{1,2} = 110.

Note that D forms a group with the multiplication; the identity element is δ∅ and
δ−1 = δ. We also remark that {xδ : δ ∈ D} is the set of all monomials on {−1, 1}n and
{xδ : δ ∈ DSd} is the set of monomials on {−1, 1}n whose degree is less than or equal to d.

2.2 Moment polytopes and moment matrices

Linearizing problem (2), we obtain

minimize
ℓ∈RDSd

∑
δ∈DSd

cδℓδ(4)

subject to (ℓδ)δ∈DSd ∈ conv
{
(xδ)δ∈DSd ∈ RDSd

: x ∈ {−1, 1}n
}
,
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where ℓδ (∀δ ∈ DSd) are decision variables. The feasible set can be characterized by the
moment polytope defined as follows.

Definition 2.1. The moment polytope M(S) for given S ⊆ 2[n] is defined as the convex
hull of the vectors (xδ)δ∈DS for x ∈ {−1, 1}n, i.e.,

M(S) := conv
{
(xδ)δ∈DS ∈ RDS : x ∈ {−1, 1}n

}
.

Note that problem (4) can be expressed with the moment polytope:

minimize
ℓ∈RDSd

∑
δ∈DSd

cδℓδ(5)

subject to (ℓδ)δ∈DSd ∈ M(Sd).

Definition 2.2. For a given vector ℓ ∈ RD, the moment matrix M(ℓ) ∈ RD×D is defined
as a matrix whose (δ, δ̂)th element is given by ℓ

δδ̂
for all δ, δ̂ ∈ D.

Example 2.3. For n = 3, the set of indicator vectors is

D = {000, 100, 010, 001, 110, 101, 011, 111}.

With a given vector ℓ = (ℓ000 ℓ100 ℓ010 ℓ001 ℓ110 ℓ101 ℓ011 ℓ111)
⊤ ∈ RD, the moment matrix

M(ℓ) ∈ RD×D is defined as follows:

M(ℓ) :=



ℓ000 ℓ100 ℓ010 ℓ001 ℓ110 ℓ101 ℓ011 ℓ111
ℓ100 ℓ000 ℓ110 ℓ101 ℓ010 ℓ001 ℓ111 ℓ011
ℓ010 ℓ110 ℓ000 ℓ011 ℓ100 ℓ111 ℓ001 ℓ101
ℓ001 ℓ101 ℓ011 ℓ000 ℓ111 ℓ100 ℓ010 ℓ110
ℓ110 ℓ010 ℓ100 ℓ111 ℓ000 ℓ011 ℓ101 ℓ001
ℓ101 ℓ001 ℓ111 ℓ100 ℓ011 ℓ000 ℓ110 ℓ010
ℓ011 ℓ111 ℓ001 ℓ010 ℓ101 ℓ110 ℓ000 ℓ100
ℓ111 ℓ011 ℓ101 ℓ110 ℓ001 ℓ010 ℓ100 ℓ000


.

Definition 2.4. Let T ⊆ 2[n]. For a given vector ℓ ∈ RDT ∆T , the truncated moment
matrix MT (ℓ) ∈ RDT ×DT is defined as a matrix whose (δ, δ̂)th element is given by ℓ

δδ̂
for

all δ, δ̂ ∈ DT .

Example 2.5. If T ⊆ 2[3] is given by T = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}, then
T ∆T = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Hence DT = {000, 100, 010, 001,
110, 101, 011} and DT ∆T = {000, 100, 010, 001, 110, 101, 011, 111}. Thus for a given vector
ℓ = (ℓ000 ℓ100 ℓ010 ℓ001 ℓ110 ℓ101 ℓ011 ℓ111)

⊤ ∈ RDT ∆T , the truncated moment matrix
MT (ℓ) ∈ RDT ×DT is defined as follows:

MT (ℓ) :=



ℓ000 ℓ100 ℓ010 ℓ001 ℓ110 ℓ101 ℓ011
ℓ100 ℓ000 ℓ110 ℓ101 ℓ010 ℓ001 ℓ111
ℓ010 ℓ110 ℓ000 ℓ011 ℓ100 ℓ111 ℓ001
ℓ001 ℓ101 ℓ011 ℓ000 ℓ111 ℓ100 ℓ010
ℓ110 ℓ010 ℓ100 ℓ111 ℓ000 ℓ011 ℓ101
ℓ101 ℓ001 ℓ111 ℓ100 ℓ011 ℓ000 ℓ110
ℓ011 ℓ111 ℓ001 ℓ010 ℓ101 ℓ110 ℓ000


.

Notice that for the given moment matrix M(ℓ), the truncated moment matrix MT (ℓ) is
the submatrix of M(ℓ) such that the rows and columns are obtained from M(ℓ) according
to DT .
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The moment polytope is characterized by the moment matrix in the following propo-
sition. For the proof, we refer the reader to [4].

Proposition 2.6. The moment polytope with respect to S ⊆ 2[n] can be expressed as
follows:

M(S) = {ℓ ∈ RDS : ∃y ∈ RD s.t. yδ = ℓδ for all δ ∈ DS , yδ∅ = 1, M(y) ⪰ 0}.

2.3 Expressing the moment polytope with the truncated moment matrix

In Proposition 2.6, the moment polytope has been represented with the moment matrix.
To describe how the moment polytope can be expressed by the truncated moment matrix,
we briefly introduce the chordal graph, the Cayley graph and a Fourier support. We note
that the chordal completion theorem (see, e.g., [2, §12.3] ) played an important role in the
proof of Theorem 1D of [4], which is the main result for proving the conjecture in [13].

The graph G = (V,E) is chordal if any cycle of length at least four has a chord. A
chordal cover of G is a graph G′ = (V,E′) where E ⊂ E′ and G′ is chordal. A subset C ⊆ V
is a clique in G if {i, j} ∈ E for all i, j ∈ C, i ̸= j. The clique C is called maximal if it is
not a strict subset of another clique C′ of G.

Definition 2.7. For a given set S ⊆ 2[n], the Cayley graph Cay(S) is the graph such that
the vertex set is 2[n] and two distinct vertices S, T ∈ 2[n] are connected by an edge if and
only if S∆T ∈ S.

Definition 2.8. Let Γ be a graph with vertices 2[n]. We say T ⊆ 2[n] is a Fourier support
of Γ if for any maximal clique C ⊆ 2[n] of Γ, there exists a node SC ∈ 2[n] such that
SC∆C ⊆ T .

Example 2.9. For n = 3 and S2 = {S ∈ 2[3] : |S| ≤ 2}, Figure 1 displays the Cayley
graph Cay(S2), the chordal cover Γ, and the Fourier support T of Γ. Cay(S2) consists
of all eight vertices of 2[3] and edges shown by solid lines. The graph obtained by adding
three dashed lines to Cay(S2) is a chordal cover Γ of Cay(S2). The vertex set T = {T ∈
2[3] : |T | ≤ 2} is a Fourier support of Γ. Indeed, the chordal graph Γ has two maximal
cliques C0 = {S ∈ 2[3] : |S| ≤ 2} and C1 = {S ∈ 2[3] : |S| ≥ 1}, for which SC0 = ∅ satisfies
SC0∆C0 ⊆ T and SC1 = {1, 2, 3} does SC1∆C1 ⊆ T .

We are now in the position to describe Theorem 1D of [4] that gives the expression of
the moment polytope with an appropriately truncated moment matrix. More precisely,
the feasible set of the problems (5) can be expressed with a smaller moment matrix. For
the proof, see [4].

Theorem 2.10. [4] Let S be a given subset of 2[n]. If Cay(S) has a chordal cover Γ with
Fourier support T ⊆ 2[n], then the moment polytope can be expressed as follows:

M(S) =
{
ℓ ∈ RDS : ∃y ∈ RDT ∆T s.t.

yδ = ℓδ for all δ ∈ DS ,
yδ∅ = 1, and MT (y) ⪰ 0

}
.

It is not hard to confirm S ⊆ T ∆T to ensure that ℓδ (δ ∈ S) is well defined by
yδ (δ ∈ DT ∆T ), although the proof in [4] is in a more general setting. Since T ∆T always
contains ∅, we now show that arbitrary nonempty S ∈ S is in T ∆T . If S ∈ S, then
∅∆S = S ∈ S, thus Cay(S) has the edge (∅, S), which means that the chordal cover Γ also
has the edge (∅, S). Since any edge is included in some maximal clique, the edge (∅, S)
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Figure 1: For the case n = 3 and S2, the solid lines represent the edges of the Cayley
graph Cay(S2), and its chordal cover Γ is obtained by adding the dashed lines to the
edge set. Note that Γ does not contain the edge between ∅ and {1, 2, 3}. The vertex set
T = {T ∈ 2[3] : |T | ≤ 2} is the Fourier support (indicated by filled circles) of Γ since, for
all maximal cliques, C0 = {S ∈ 2[3] : |S| ≤ 2} and C1 = {S ∈ 2[3] : |S| ≥ 1} of Γ, we have
∅∆C0 ⊆ T and {1, 2, 3}∆C1 ⊆ T .

is included in some maximal clique C of Γ. Therefore, by the definition of the Fourier
support T , there exists a node SC such that SC∆∅ ∈ T and SC∆S ∈ T . Hence,

S = ∅∆S = (SC∆∅)∆(SC∆S) ∈ T ∆T ,

consequently, S ⊆ T ∆T holds.

3 Truncation of the moment matrix for binary POPs

Recall that M(Sd) in Definition 2.1 provides the feasible set of the problem (5). In what
follows, we focus on finding an appropriate Fourier support T of a chordal graph Γ that
covers Cay(Sd). If such T is obtained, then we can characterize the moment polytope
M(Sd) with a truncated moment matrix MT (y) using Theorem 2.10.

3.1 Constructing a chordal cover

If G is a graph with subgraphs G1,G2 such that G = G1 ∪ G2, we say that G arises from
G1 and G2 by pasting these graphs together along H := G1 ∩ G2. We have the following
proposition for the construction of a chordal graph (see [3, Proposition 5.5.1.] for the
proof).

Proposition 3.1. A graph is chordal if and only if it can be constructed recursively by
pasting along complete subgraphs, starting from complete graphs.

For example, in Figure 1, the chordal cover Γ is obtained by pasting two complete
graphs C0 = {S ∈ 2[3] : |S| ≤ 2} and C1 = {S ∈ 2[3] : |S| ≥ 1} along the complete graph
C0 ∩ C1 whose vertex set is {S ∈ 2[3] : 1 ≤ |S| ≤ 2}.

For notational convenience, let

(6) Tk := {S ∈ 2[n] : |S| = k}, k = 0, 1, . . . , n.
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Note that 2[n] = T0 ∪T1 ∪ · · · ∪ Tn. We define n− d+1 cliques whose vertex sets are given
by

(7) Ck := Tk ∪ Tk+1 ∪ · · · ∪ Tk+d, k = 0, 1, . . . , n− d.

For simplicity, we also use Ck to express the clique itself whose vertex set is given by (7).
We now describe how to construct a chordal cover Γ of Cay(Sd). Let Γ be a graph

obtained by pasting Ck and Ck+1 along the complete graph Ck ∩ Ck+1 for k = 0, 1, . . . , n−
d − 1. Observe that the vertex set of Γ is 2[n] and that S, T ∈ 2[n] are connected in Γ if
and only if ||S| − |T || ≤ d holds. Then, Γ is chordal by Proposition 3.1 since Γ is obtained
by pasting complete graphs Ck (k = 0, 1, . . . , n − d) along the complete graph Ck ∩ Ck+1.
Moreover, Γ covers Cay(Sd) since all connected vertices S, T ∈ 2[n] in Cay(Sd) satisfy
|S∆T | ≤ d, which implies ||S| − |T || ≤ d.

Figure 2: A sketch of the Cayley graph Cay(Sd), the chordal cover Γ and the Fourier
support T . In Cay(Sd), there exists a pair of connected nodes S ∈ Ti and T ∈ Tj
if and only if |i − j| ≤ d. The chordal cover Γ is obtained by pasting the cliques Ck
and Ck+1 along Ck ∩ Ck+1 for k = 0, 1, . . . , n − d − 1 and the Fourier support of Γ is
T = T0 ∪ T1 ∪ · · · ∪ T⌈(n+d−1)/2⌉, which is shown in the next subsection.

3.2 A Fourier support of the chordal cover

Let T ⊆ 2[n] be a vertex set defined as

(8) T := T0 ∪ T1 ∪ · · · ∪ T⌈n+d−1
2 ⌉.

We show that T is a Fourier support of Γ defined in Section 3.1.
We first examine whether the cliques Ck (k = 0, 1, . . . , n − d) are maximal in Γ. To

show this, we prove that for all S /∈ Ck there exists T ∈ Ck such that S and T are disjoint
in Γ. Note that all vertices S /∈ Ck satisfy either |S| < k or |S| > k + d. If |S| < k, for a
vertex T ∈ Tk+d ⊂ Ck, we have

|S∆T | ≥ ||S| − |T || > d.

Thus S and T are disjoint. Similarly, if |S| > k + d, there is a vertex T ∈ Tk ⊂ Ck that
satisfies |S∆T | > d. Since the aforementioned discussion holds for k = 0, 1, . . . , n− d, the
cliques Ck (k = 0, 1, . . . , n− d) are maximal in Γ.
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We next prove that T defined in (8) is a Fourier support of Γ, i.e., for all maximal
cliques Ck (k = 0, 1, . . . , n − d), there exists SCk ∈ 2[n] such that SCk∆Ck ⊆ T . Let us
choose SCk for Ck (k = 0, 1, . . . , n− d) as follows:

If k ≤
⌈
n+d−1

2

⌉
− d, then Ck ⊆ T and thus SCk = ∅.

If k ≥
⌈
n+d−1

2

⌉
− d+ 1, then

n− k ≤ n+ d− 1−
⌈
n+ d− 1

2

⌉
≤

⌈
n+ d− 1

2

⌉
.

Hence,

[n]∆Ck = Tn−(k+d) ∪ Tn−(k+d)+1 ∪ · · · ∪ Tn−k ⊆ T0 ∪ T1 ∪ · · · ∪ T⌈n+d−1
2 ⌉ = T .

Thus, SCk = [n].

As a consequence, we obtain the following result by Theorem 2.10.

Theorem 3.2. Let T be the subset of 2[n] defined by (8). Then the moment polytope
M(Sd) can be expressed as follows:

M(Sd) =

{
ℓ ∈ RDSd

: ∃y ∈ RDT ∆T s.t.
yδ = ℓδ for all δ ∈ DSd ,
yδ∅ = 1, and MT (y) ⪰ 0

}
.

For binary POP (1), Theorem 3.2 provides the exact SDP relaxation with the truncated
moment matrix indexed by δS ∈ D such that |S| ≤

⌈
n+d−1

2

⌉
.

3.3 Illustrating the truncation for example (3)

For the problem (3) in Section 1.2, linearizing the moment polytope leads to the following
problem with variables ℓ ∈ RDS2

:

minimize
ℓ∈RDS2

ℓ000 + ℓ100 + ℓ010 + ℓ001 + ℓ110 + ℓ101 + ℓ011

subject to



ℓ000
ℓ100
ℓ010
ℓ001
ℓ110
ℓ101
ℓ011


∈



ℓ : ∃y111 s.t. ℓ000 = 1 and

1 ℓ100 ℓ010 ℓ001 ℓ110 ℓ101 ℓ011 y111
ℓ100 1 ℓ110 ℓ101 ℓ010 ℓ001 y111 ℓ011
ℓ010 ℓ110 1 ℓ011 ℓ100 y111 ℓ001 ℓ101
ℓ001 ℓ101 ℓ011 1 y111 ℓ100 ℓ010 ℓ110
ℓ110 ℓ010 ℓ100 y111 1 ℓ011 ℓ101 ℓ001
ℓ101 ℓ001 y111 ℓ100 ℓ011 1 ℓ110 ℓ010
ℓ011 y111 ℓ001 ℓ010 ℓ101 ℓ110 1 ℓ100
y111 ℓ011 ℓ101 ℓ110 ℓ001 ℓ010 ℓ100 1


⪰ 0


.

The Cayley graph, the chordal cover and the Fourier support are as shown in Example 2.9.
Since

⌈
n+d−1

2

⌉
= 2 for n = 3 and d = 2, Theorem 3.2 indicates that the moment matrix

can be truncated by T = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}} and the above problem can
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be equivalently rewritten as

minimize
ℓ∈RDS2

ℓ000 + ℓ100 + ℓ010 + ℓ001 + ℓ110 + ℓ101 + ℓ011(9)

subject to



ℓ000
ℓ100
ℓ010
ℓ001
ℓ110
ℓ101
ℓ011


∈



ℓ : ∃y111 s.t. ℓ000 = 1 and

1 ℓ100 ℓ010 ℓ001 ℓ110 ℓ101 ℓ011
ℓ100 1 ℓ110 ℓ101 ℓ010 ℓ001 y111
ℓ010 ℓ110 1 ℓ011 ℓ100 y111 ℓ001
ℓ001 ℓ101 ℓ011 1 y111 ℓ100 ℓ010
ℓ110 ℓ010 ℓ100 y111 1 ℓ011 ℓ101
ℓ101 ℓ001 y111 ℓ100 ℓ011 1 ℓ110
ℓ011 y111 ℓ001 ℓ010 ℓ101 ℓ110 1


⪰ 0


.

Note that this problem has the positive semidefinite matrix whose size is one less than the
original one.

4 Further truncating for even-degree binary POPs

In this section, we assume that only even-degree monomials appear in f of problem (1).
Under the assumption, we prove that the truncated moment matrix MT (y) shown in
Theorem 3.2 can be further reduced.

Let the degree of f be 2d̂ throughout this section. We note that the discussion in this
section is a generalization of [4, §4.1], where d̂ is restricted to 1.

As in Section 2.2, problem (1) is linearized in the form of (5) with an appropriate set

S ⊆ 2[n]. Since f has only even-degree monomials, we define S as S2d̂
even:

S2d̂
even := {S ∈ 2[n] : |S| = 0, 2, . . . , 2d̂}.

Observe that any two vertices S, T ∈ 2[n] are connected in Cay(S2d̂
even) if and only if |S∆T |

is even and |S∆T | ≤ 2d̂ holds. Thus Cay(S2d̂
even) has two connected components

Teven := T0 ∪ T2 ∪ · · · ∪ T2⌊n/2⌋ and Todd := T1 ∪ T3 ∪ · · · ∪ T2⌈n/2⌉−1,

where Tk (k = 0, 1, . . . , n) are defined by (6). More precisely, the Cayley graph Cay(S2d̂
even)

has an edge between S and T if and only if

(i) S, T ∈ Teven and |S∆T | ≤ 2d̂, or,

(ii) S, T ∈ Todd and |S∆T | ≤ 2d̂.

We define a map ϕ : 2[n] → 2[n] by ϕ(S) := {1}∆S for the succeeding discussion.

Note that ϕ is an automorphism of Cay(S2d̂
even) that exchanges Teven and Todd. In addition,

ϕ(S)∆ϕ(T ) = S∆T holds for all S, T ∈ 2[n].

Example 4.1. We show an example of the Cayley graph Cay(S2d̂
even) and the map ϕ for

an even-degree binary POP with n = 4 and d̂ = 1, a modified problem of (3) where all
linear terms are multiplied with an additional variable x4. The resulting problem is

minimize
x

1 + x1x4 + x2x4 + x3x4 + x1x2 + x1x3 + x2x3

subject to x ∈ {−1, 1}4.
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Figure 3: An example of the Cayley graph for the case of n = 4 and S2
even =

{∅, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. Observe that ϕ(S) = {1}∆S is the auto-
morphism of the Cayley graph that exchanges Teven and Todd. The graph generated by
adding dash lines to Cay(S2

even) is a chordal cover Γ of Cay(S2
even) and the Fourier support

T is T = T0 ∪ T2 (indicated by filled circles) of Γ.

In Section 4.5, we see that the solution for original problem (3) can be obtained by solving
the above problem.

Figure 3 shows the Cayley graph Cay(S2
even) for the case of n = 4 and S2

even =
{∅, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. Cay(S2

even) consists of two connected com-
ponents, Teven and Todd. The vertex set of Cay(S2

even) is 2[4] and edges are shown by solid
lines. Notice that ϕ(S) = {1}∆S is the automorphism of the Cayley graph that exchanges
Teven and Todd.

Next, as in Section 3, we find a Fourier support T of a chordal graph Γ that covers

Cay(S2d̂
even). For that, we check whether

⌈
n+2d̂−2

2

⌉
of a given even-degree POP is even

or odd. We first discuss the case where
⌈
n+2d̂−2

2

⌉
is even in detail. Then, we briefly

mention the required modification for the case where
⌈
n+2d̂−2

2

⌉
is odd. Let us first assume⌈

n+2d̂−2
2

⌉
is even.

4.1 Constructing a chordal cover

For the construction of a chordal cover for Cay(S2d̂
even), we define

⌊
n
2

⌋
− d̂+1 cliques whose

vertex sets are given by

(10) Ck := Tk ∪ Tk+2 ∪ · · · ∪ T
k+2d̂

, k = 0, 2, . . . , 2
⌊n
2

⌋
− 2d̂.

As previously, we abuse the notation Ck to express the clique itself whose vertex set is
given by (10). Note that the cliques Ck are indexed by even integer k. With the cliques,

we construct a chordal cover Γ of Cay(S2d̂
even) as follows:

(i) Paste Ck and Ck+2 along the complete graph Ck ∩Ck+2 for k = 0, 2, . . . , 2
⌊
n
2

⌋
− 2d̂− 2.

We denote the resulting connected component by Γeven.
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(ii) Paste ϕ(Ck) and ϕ(Ck+2) along the complete graph ϕ(Ck) ∩ ϕ(Ck+2) for k = 0, 2, . . . ,
2
⌊
n
2

⌋
− 2d̂− 2. The obtained connected component is denoted by Γodd.

Now, define Γ := Γeven ∪ Γodd, which is chordal by Proposition 3.1. Observe that Γeven

and Γodd satisfy the followings:

(iii) S, T ∈ Teven, which is the vertex set of Γeven, are connected in Γeven if and only if
||S| − |T || ≤ 2d̂ holds.

(iv) S, T ∈ Todd, which is the vertex set of Γodd, are connected in Γodd if and only if
||ϕ(S)| − |ϕ(T )|| ≤ 2d̂ holds.

Thus, Γ = Γeven ∪ Γodd covers Cay(S2d̂
even).

4.2 A Fourier support of the chordal cover

Let T ⊆ 2[n] be a vertex set defined as

(11) T := T0 ∪ T2 ∪ · · · ∪ T⌈n+2d̂−2
2

⌉.
We see that T is a Fourier support of Γ.

First, check that the cliques Ck and ϕ(Ck) for k = 0, 2, . . . , 2
⌊
n
2

⌋
− 2d̂ are maximal in

Γ. To show this, we observe that for all S /∈ Ck, there exists T ∈ Ck such that S and T are
disjoint in Γ. If S /∈ Ck, then S satisfies

(a) S ∈ Todd or,

(b) S ∈ Teven and |S| < k or,

(c) S ∈ Teven and |S| > k + 2d̂.

If S ∈ Todd, then all vertices in Ck are not connected to S. If S ∈ Teven and |S| < k, then
all vertices in T

k+2d̂
⊆ Ck are not connected to S. If S ∈ Teven and |S| > k + 2d̂, then

all vertices in Tk ⊆ Ck are not connected to S. Therefore, for any S /∈ Ck, there exists
T ∈ Ck such that S and T are disjoint in Γ, which implies Ck (k = 0, 2, . . . , 2

⌊
n
2

⌋
− 2d̂) are

maximal in Γ. Since ϕ is an automorphism of Γ, the cliques ϕ(Ck) are also maximal in Γ.
We then prove that T defined in (11) is a Fourier support of Γ. To show this, we

examine that for all Ck (k = 0, 2, . . . , 2
⌊
n
2

⌋
−2d̂), there exists SCk ∈ 2[n] such that SCk∆Ck ⊆

T . This is sufficient because, for the cliques ϕ(Ck), we have ϕ(SCk)∆ϕ(Ck) = SCk∆Ck ⊆ T .
The following gives an appropriate choice of SCk :

• If k ≤
⌈
n+2d̂−2

2

⌉
− 2d̂, then Ck ⊆ T and thus SCk = ∅.

• If k ≥
⌈
n+2d̂−2

2

⌉
− 2d̂+ 2 and n is even, we have

n− k ≤ n+ 2d̂− 2−

⌈
n+ 2d̂− 2

2

⌉
≤

⌈
n+ 2d̂− 2

2

⌉
.

Thus,

[n]∆Ck = T
n−(k+2d̂)

∪ T
n−(k+2d̂)+2

∪ · · · ∪ Tn−k ⊆ T0 ∪ T2 ∪ · · · ∪ T⌈n+2d̂−2
2

⌉ = T .

Thus, SCk = [n].
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• If k ≥
⌈
n+2d̂−2

2

⌉
−2d̂+2 and n is odd, we have

⌈
n+2d̂−2

2

⌉
=

⌈
n
2

⌉
+ d̂−1 = n−

⌈
n
2

⌉
+ d̂

and thus

n− k + 1 ≤ n+ 2d̂− 1−

⌈
n+ 2d̂− 2

2

⌉
= n−

⌈n
2

⌉
+ d̂ =

⌈
n+ 2d̂− 2

2

⌉
.

Hence,

ϕ([n])∆Ck = [n]∆ϕ(Ck)
⊆ [n]∆(Tk−1 ∪ Tk+1 ∪ · · · ∪ T

k+2d̂+1
)

⊆ T
n−k−2d̂−1

∪ T
n−k−2d̂+1

∪ · · · ∪ Tn−k+1

⊆ T0 ∪ T2 ∪ · · · ∪ T⌈(n+2d̂−2)/2⌉
= T .

As a result, SCk = ϕ([n]) = {2, 3, . . . , n}.

Consequently, T is a Fourier support of Γ that covers the Cayley graph Cay(S2d̂
even).

Example 4.2. As in Figure 3, if n = 4 and d̂ = 1, the graph obtained by adding dash lines
to Cay(S2

even) is a chordal cover Γ of Cay(S2
even). The Fourier support T is T = T0 ∪ T2

(indicated by filled circles). Note that there are four maximal cliques for Γ; from the left
component in Figure 3, C0 := T0 ∪ T2 (induced by small filled circles), C2 := T2 ∪ T4 (by
large open circles), and from the right component, ϕ(C0) := {1}∆C0 (by small open circles),
ϕ(C2) := {1}∆C2 (by large open circles). We can make sure that T = T0 ∪ T2 is a Fourier
support from the following

• ∅∆C0 ⊆ T ,

• [4]∆C2 ⊆ T ,

• ϕ(∅)∆ϕ(C0) = ∅∆C0 ⊆ T and

• ϕ([4])∆ϕ(C2) = [4]∆C2 ⊆ T .

4.3 A Fourier support for the odd case

In the case where
⌈
n+2d̂−2

2

⌉
is odd, we define the cliques

Ck := Tk ∪ Tk+2 ∪ · · · ∪ T
k+2d̂

, k = 1, 3, . . . , 2
⌈n
2

⌉
− 2d̂− 1.

Note that Ck are indexed by odd integers. Then we construct Γeven and Γodd as follows:

• Construct Γodd by pasting Ck and Ck+2 along Ck∩Ck+2 for k = 1, 3, . . . , 2
⌈
n
2

⌉
−2d̂−3.

• Construct Γeven by pasting ϕ(Ck) and ϕ(Ck+2) along ϕ(Ck)∩ϕ(Ck+2) for k = 1, 3, . . . ,
2
⌈
n
2

⌉
− 2d̂− 3.

Thus we obtain the chordal cover Γ := Γodd ∪ Γeven for Cay(S2d̂
even). The maximal cliques

of Γ are Ck for k = 1, 3, . . . , 2
⌈
n
2

⌉
− 2d̂− 1 together with the corresponding ϕ(Ck).

The Fourier support of Γ is given by

T := T1 ∪ T3 ∪ · · · ∪ T⌈n+2d̂−2
2

⌉.
We check this by choosing SCk satisfying SCk∆Ck ⊆ T for each maximal clique Ck as
follows:
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• If k ≤
⌈
n+2d̂−2

2

⌉
− 2d̂, then SCk = ∅.

• If k ≥
⌈
n+2d̂−2

2

⌉
− 2d̂+ 2 and n is even, then SCk = [n].

• If k ≥
⌈
n+2d̂−2

2

⌉
− 2d̂+ 2 and n is odd, then SCk = ϕ([n]).

Thus, our desired result for the case with odd
⌈
n+2d̂−2

2

⌉
follows. By the discussion up to

this point and Theorem 2.10, we present the following result:

Theorem 4.3. Let T be the subset of 2[n] defined as

T :=


T0 ∪ T2 ∪ · · · ∪ T⌈n+2d̂−2

2

⌉ if
⌈
n+2d̂−2

2

⌉
is even

T1 ∪ T3 ∪ · · · ∪ T⌈n+2d̂−2
2

⌉ if
⌈
n+2d̂−2

2

⌉
is odd

.

Then, the moment polytope M(S2d̂
even) can be expressed as

M(S2d̂
even) =

{
ℓ ∈ RDS2d̂

even : ∃y ∈ RDT ∆T s.t.
yδ = ℓδ for all δ ∈ DS2d̂

even ,
yδ∅ = 1, and MT (y) ⪰ 0

}
.

Thus, if the objective function f consists of only even monomials, problem (1) can be
equivalently transformed into a smaller size SDP whose moment matrix is truncated with
T := T0 ∪ T2 ∪ · · · ∪ T⌈n+2d̂−2

2

⌉ or T := T1 ∪ T3 ∪ · · · ∪ T⌈n+2d̂−2
2

⌉.
Note that for the binary QOPs where d̂ = 1 and all monomials have even degrees,

the above T becomes T0 ∪ T2 ∪ · · · ∪ T⌈n
2 ⌉ or T1 ∪ T3 ∪ · · · ∪ T⌈n

2 ⌉. The result coincides

with Laurent conjecture in [13] that solving the SDP relaxation with the relaxation order
ω = ⌈n/2⌉ in the hierarchy gives the exact optimal value, which is recently shown in [4].

4.4 Computing the optimal solution for the original problem

By solving the SDP relaxation with the truncated moment matrix, the optimal solution
of linearized decision variables ℓ∗ ∈ RDS2d̂

even can be obtained. However, the variables
ℓδ{1} , ℓδ{2} , . . . , ℓδ{n} corresponding to x1, x2, . . . , xn are not included in ℓ ∈ RDS2d̂

even , and
thus it is not trivial to extract the optimal solution x∗ = (x∗1, x

∗
2, . . . , x

∗
n) from the truncated

moment matrix for the original problem.
For even-degree binary POPs, we describe a method to extract the optimal solution x∗

from ℓ∗ ∈ RDS2d̂
even . The map ϕ(S) := {1}∆S is applied to ℓ∗δS , ∀S ∈ {∅, {1, 2}, {1, 3}, . . . ,

{1, n}}, which leads to the optimal solution ℓ∗δS , ∀S ∈ {{1}, {2}, {3}, . . . , {n}}. First,

define a vector ℓ̂ ∈ {−1, 1}n−1 using the elements of ℓ∗ as follows:

ℓ̂ := (ℓ∗δ{1,2} , ℓ
∗
δ{1,3}

, . . . , ℓ∗δ{1,n}
).

Since ℓ∗δ{1,i} is the linearization of x∗1x
∗
i , we have x∗1ℓ

∗
δ{1,i}

= x∗1
2x∗i = x∗i for i = 2, 3, . . . , n.

As a result, we have two candidates for the optimal solution x∗ corresponding to the two
cases x∗1 = ±1 as follows:

x∗ = (x∗1, x
∗
2, . . . , x

∗
n) = (x∗1, x

∗
1ℓ̂) =

{
(1, ℓ̂) if x∗1 = 1

(−1,−ℓ̂) if x∗1 = −1
.

Note that f is an even function, and thus, both of these two solutions give the optimal
value, i.e., the optimal value is f((1, ℓ̂)) = f(−(1, ℓ̂)).
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4.5 Formulating general binary POPs as even-degree binary POPs

The objective function f of general binary POP (1) can be written as the sum of the
monomials of odd and even degree. Let ĉα denote the coefficients of the monomials of
even degree and c̃α the coefficients of the monomials of odd degree. Then,

f(x) =
∑

||α||1≤d

cαx
α =

∑
||α||1≤d

ĉαx
α +

∑
||α||1≤d

c̃αx
α.

By introducing the additional variable xn+1 ∈ {−1, 1}, binary POP (1) can be expressed
as the following even-degree binary POP on {−1, 1}n+1, to which Theorem 4.3 can be
applied:

minimize
x

f̃(x) :=
∑

||α||1≤d

ĉαx
α +

∑
||α||1≤d

c̃αx
αxn+1(12)

subject to x ∈ {−1, 1}n+1.

Let the degree of f̃ be d̃. Obviously, d̃ = d if d is even, and d̃ = d+1 if d is odd. Therefore,
d ≤ d̃.

If problem (12) has an optimal solution x∗ ∈ {−1, 1}n+1 with x∗n+1 = 1, then an
optimal solution for the original problem (1) is obtained as (x∗1, x

∗
2, . . . , x

∗
n). We note

that problem (12) always has an optimal solution with x∗n+1 = 1. More precisely, if
problem (12) has an optimal solution x∗ such that x∗n+1 = −1, then −x∗ is also an

optimal solution since f̃ is an even function. Therefore, any general binary POP (1) with
the constraint x ∈ {−1, 1}n can be formulated as an even-degree binary POP with the
constraint x ∈ {−1, 1}n+1.

However, we mention that applying Theorem 4.3 to problem (12) results in a larger
truncated moment matrix than the one obtained by applying Theorem 3.2 to problem (1).
To see this, we define T n

k := {S ∈ 2[n] : |S| = k}. Observe that the size of [n] is included
in the definition of T n

k . If Theorem 3.2 is applied to problem (1), the moment matrix is
truncated by the following Fourier support:

T n := T n
0 ∪ T n

1 ∪ · · · ∪ T n

⌈n+d−1
2 ⌉.

On the other hand, if Theorem 4.3 is applied to problem (12), the moment matrix is
truncated by the Fourier support defined as follows:

T̃ n+1 :=


T n+1
0 ∪ T n+1

2 ∪ · · · ∪ T n+1⌈
(n+1)+d̃−2

2

⌉ if
⌈
(n+1)+d̃−2

2

⌉
is even

T n+1
1 ∪ T n+1

3 ∪ · · · ∪ T n+1⌈
(n+1)+d̃−2

2

⌉ if
⌈
(n+1)+d̃−2

2

⌉
is odd

.

We now prove |T n| ≤ |T̃ n+1|. Let ω := ⌈(n+ d− 1)/2⌉ and ω̃ :=
⌈
(n+ d̃− 1)/2

⌉
.

Notice that ω ≤ ω̃ by d ≤ d̃, and thus

(13) |T n| = |T n
0 |+ |T n

1 |+ · · ·+ |T n
ω | =

ω∑
i=0

(
n

i

)
≤

ω̃∑
i=0

(
n

i

)
.

We show that the right hand side of (13) coincides with |T̃ n+1| by considering the two
cases where ω̃ is even and where ω̃ is odd. If ω̃ is even, then

ω̃∑
i=0

(
n

i

)
=

(
n

0

)
+

ω̃/2∑
i=1

{(
n

2i− 1

)
+

(
n

2i

)}
=

(
n+ 1

0

)
+

ω̃/2∑
i=1

(
n+ 1

2i

)
= |T̃ n+1|.
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Similarly, if ω̃ is odd, then

ω̃∑
i=0

(
n

i

)
=

⌊ω̃/2⌋∑
i=0

{(
n

2i

)
+

(
n

2i+ 1

)}
=

⌊ω̃/2⌋∑
i=0

(
n+ 1

2i+ 1

)
= |T̃ n+1|.

Consequently, the desired result |T n| ≤ |T̃ n+1| follows.

Example 4.4. In Section 3.3, we have seen that the truncated moment matrix of the
problem (3) is T 3 := T 3

0 ∪ T 3
1 ∪ T 3

2 where the size of the truncated moment matrix is
|T 3| = 7.

We can reformulate problem (3) as an even-degree binary POP in Example 4.1 using an
additional variable x4. Then the Fourier support is T̃ 4 := T 4

0 ∪T 4
2 = {∅, {1, 2}, {1, 3}, {1, 4},

{2, 3}, {2, 4}, {3, 4}} which gives a truncated moment matrix with the size |T̃ 4| = 7. Con-
sequently, problem (3) can be equivalently rewritten with the truncated moment matrix by
T̃ 4 as

minimize
ℓ∈RS2

even

ℓ0000 + ℓ1001 + ℓ0101 + ℓ0011 + ℓ1100 + ℓ1010 + ℓ0110

subject to



ℓ0000
ℓ1100
ℓ1010
ℓ1001
ℓ0110
ℓ0101
ℓ0011


∈



ℓ : ∃y1111 s.t. ℓ0000 = 1 and

1 ℓ1100 ℓ1010 ℓ1001 ℓ0110 ℓ0101 ℓ0011
ℓ1100 1 ℓ0110 ℓ0101 ℓ1010 ℓ1001 y1111
ℓ1010 ℓ0110 1 ℓ0011 ℓ1100 y1111 ℓ1001
ℓ1001 ℓ0101 ℓ0011 1 y1111 ℓ1100 ℓ1010
ℓ0110 ℓ1010 ℓ1100 y1111 1 ℓ0011 ℓ0101
ℓ0101 ℓ1001 y1111 ℓ1100 ℓ0011 1 ℓ0110
ℓ0011 y1111 ℓ1001 ℓ1010 ℓ0101 ℓ0110 1


⪰ 0


.

As shown in Section 4.4, we can retrieve an optimal solution (x∗1, x
∗
2, x

∗
3, x

∗
4) from (ℓ∗1100,

ℓ∗1010, ℓ
∗
1001). We note that solving the above modified problem does not have any computa-

tional advantage over solving problem (9) generated by T 3 := T 3
0 ∪T 3

1 ∪T 3
2 since the sizes

of the moment matrices of the two problems are the same.

5 Numerical experiments

We performed numerical experiments to see whether the bounds shown theoretically in
Sections 3 and 4 could be obtained numerically. We tested our theoretical bound with
100 randomly generated binary POP (1) with n = 8 and the binary POPs with all-one
coefficients of f for d = 1, 2, . . . , 8. The numerical results on these problems are presented
in Section 5.1. In Section 5.2, we show the numerical results for even-degree binary POPs.

5.1 General binary POPs

In the case of general binary POP (1), the relaxation order ω means that the moment
matrix is truncated by T = T0 ∪ T1 ∪ · · · ∪ Tω.

5.1.1 Random instances

We generated 100 test problems randomly by choosing the coefficient cα (α ∈ {0, 1}8) of
binary POP (2) such that

cα = 10× uα,
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where uα is sampled from the standard normal distribution. We increased the relaxation
order from ⌈d/2⌉ to see what relaxation order is needed to obtain the optimal values of
the test problems.

In Table 1, we observe that the optimal values of all randomly generated test problems
could be obtained with the relaxation order ω, which is smaller than the theoretical bound
ω̄ :=

⌈
n+d−1

2

⌉
. The underlined numbers in Table 1 mean that all test problems with

specified d could be exactly solved with the relaxation order ω in the corresponding row in
the first column. For instance, when d = 2, the optimal values of all test problems could
be obtained with ω = 2.

Table 1: The number of random instances solved.

ω d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

1 100 15
2 100 100 100 100
3 100 100 100 100 100 100
4 100 100 100 100 100 100 100 99
5 100 100 100 100 100 100 100 100

ω̄ 4 5 5 6 6 7 7 8

5.1.2 Binary POPs with all-one coefficients

For binary POP (2) where cα = 1 for all α ∈ {0, 1}8, the degree of f was varied as
d = 1, 2, . . . , 8 for numerical experiments. The optimal values of the problems are known
as shown in Table 2. The last row shows the theoretical bound ω̄ :=

⌈
n+d−1

2

⌉
. As

previously, the underlined number for each d in Table 2 denotes that the exact optimal
value of the test problem was obtained with the corresponding order ω in the first column,
which is the minimum order for the exactness.

Notice that the exact optimal values of the problem of d = 2, 8 were obtained at the
theoretical bound ω̄, while the exact optimal values of the other problems were obtained
with ω smaller than the theoretical bound.

Table 2: The objective values obtained for the all-ones instances using ω = 1 to 8.

ω d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

1 −7.00 −3.50
2 −7.00 −3.50 −35.0 −7.67
3 −7.00 −3.50 −35.0 −7.67 −21.0 −8.19
4 −7.00 −3.50 −35.0 −6.18 −21.0 −5.00 −2.88 −2.74
5 −7.00 −3.00 −35.0 −5.00 −21.0 −5.00 −1.05 −4.24e-1
6 −7.00 −3.00 −35.0 −5.00 −21.0 −5.00 −1.00 −5.38e-2
7 −7.00 −3.00 −35.0 −5.00 −21.0 −5.00 −1.00 −3.94e-3
8 −7.00 −3.00 −35.0 −5.00 −21.0 −5.00 −1.00 −1.28e-12

OptV. −7 −3 −35 −5 −21 −5 −1 0
ω̄ 4 5 5 6 6 7 7 8
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5.2 Even-degree binary POPs

In the case of even-degree binary POPs, the relaxation order ω indicates that the moment
matrix is truncated by

T =

{
T0 ∪ T2 ∪ · · · ∪ Tω if ω is even

T1 ∪ T3 ∪ · · · ∪ Tω if ω is odd
.

5.2.1 Random instances

As in Section 5.1.1, we generated 100 test problems randomly by choosing the coefficient
cα (α ∈ {0, 1}8) of even-degree binary POP (2) such that

cα = 10× uα,

where uα is sampled from the standard normal distribution, and solved them via the SDP
relaxations with the truncated moment matrices.

The underline in Table 3 stands for the minimum order ω, with which the exact optimal
values of all test problems with specified d could be obtained. We observe that the optimal
values of randomly generated test problems could be obtained with the relaxation order
smaller than theoretical bound ω̄ :=

⌈
n+d−2

2

⌉
.

Table 3: The number of random instances solved

ω d = 2 d = 4 d = 6 d = 8

1 0
2 100 100
3 100 100 100
4 100 100 100 100
5 100 100 100 100

ω̄ 4 5 6 7

5.2.2 Binary POPs with all-one coefficients

We consider even-degree binary POP (2) where cα = 1 for all α ∈ {0, 1}8 such that ||α||1
is even. Even-degree binary POP (2) of degree d = 2, 4, 6, 8 with all-one coefficients were
tested. The optimal values of the problems are known as in Table 4.

The meaning of the underline in Table 4 is the same as the previous tables. We observe
that the exact optimal value of the problem of d = 8 is obtained at the theoretical bound
ω̄ :=

⌈
n+d−2

2

⌉
, while the exact optimal values of the problems of d = 2, 4, 6 were obtained

with ω smaller than the theoretical bound.
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Table 4: The objective values obtained for the all-ones instances using ω = 1 to 7.

ω d = 2 d = 4 d = 6 d = 8

1 −3.00
2 −3.00 −5.17
3 −3.00 −5.17 −3.63
4 −3.00 −5.00 −1.36 −8.66e-1
5 −3.00 −5.00 −1.00 −1.11e-1
6 −3.00 −5.00 −1.00 −7.94e-3
7 −3.00 −5.00 −1.00 −1.75e-14

Opt.V. −3 −5 −1 0
ω̄ 4 5 6 7

6 Concluding remarks

We have shown that the exact optimal values of binary POPs are obtained by solv-
ing the ⌈(n+ d− 1)/2⌉th SDP relaxation of Lasserre’s hierarchy of SDP relaxations,
and the ⌈(n+ d− 2)/2⌉th SDP relaxation for even-degree binary POPs. The bound
⌈(n+ d− 2)/2⌉ for even-degree binary POPs is the generalization of the result in [4] for
binary QOPs. We have also discussed on the construction of the optimal solution from
the truncated moment matrix for even-degree binary POPs. These bounds have been
confirmed by the numerical results in Section 5.

The moment matrix of a given binary POP has been truncated using a chordal graph
of the Cayley graph from the binary POP in this paper. In [7], the sparse SDP relaxation
was proposed by exploiting the sparsity of a given POP. Specifically, the sizes of the
moment matrices for the sparse SDP relaxation were reduced using the maximal cliques
of an extended chordal graph obtained from the sparsity pattern graph of the given POP.
It will be interesting to investigate the relationship between the two approaches.

Solving POPs by the hierarchy of SDP relaxations is a very challenging problem since
it requires to solve increasingly large SDP relaxations for the desired accuracy. More-
over, the SDPs induced from POPs are frequently degenerate, causing a great deal of
numerical difficulties for SDP solvers. It is well-known that the SDP solvers based on
the interior-point methods [5, 15, 16] cannot handle the SDPs with more than several
thousand variables, as a result, POPs with moderate size n and d cannot be solved by the
solvers. From the computational viewpoints, it is essential to have the size of the SDPs
as small as possible for accurate solutions of POPs. The bounds presented in this paper
for binary POPs provide the important information on the largest size of the SDP to be
solved for the exact optimal value of binary POPs in advance.
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