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1 Introduction

Let Rn, Sn and Sn+ denote the n-dimensional Euclidean space, the set of n × n symmetric
matrices and the set of n × n positive semidefinite symmetric matrices, respectively. Let
C0 be a compact convex subset of Rn, and let c ∈ Rn, Qp ∈ Sn, qp ∈ Rn, and γp ∈ R
(p = 1, 2, . . . ,m). Consider a QOP (quadratic optimization problem) of the form

minimize cTx
subject to x ∈ C0, x

TQpx+ qTpx+ γp ≤ 0 (p = 1, 2, . . . ,m).

}
(1)

We denote the feasible region of the QOP above by F ;

F =
{
x ∈ C0 : xTQpx+ qTpx+ γp ≤ 0 (p = 1, 2, . . . ,m)

}
.

We assume that C0 is a bounded polyhedral set represented by a finite number of linear
inequalities in practice, although C0 can be any compact convex subset of Rn in theory.

If all the coefficient matrices Qp (p = 1, 2, . . . ,m) involved in the quadratic inequality
constraints are positive semidefinite, the QOP (1) turns out to be a convex program. In this
case, every local minimizer is a global minimizer, and we can utilize many existing nonlinear
programming codes to compute an approximate global minimizer. In particular, we can
reformulate the convex QOP (1) in terms of an SOCP (second order cone programming)
problem to which we can apply the primal-dual interior-point method [19].

Throughout the paper, we deal with nonconvex QOPs where some of Qp’s are not
positive semidefinite. Nonconvex QOPs are known to be NP-hard, and they cover various
difficult nonconvex optimization problems and combinatorial optimization problems; for
example, linearly constrained nonconvex quadratic programs, bilevel linear programs, linear
programs with equilibrium constraints, maximum clique problems, and 0-1 integer programs.
To compute an approximate global minimizer of such a nonconvex QOP, we need to take
two distinct techniques into account. The one is to generate a feasible solution (or an
approximate feasible solution) with a smaller objective value. The other technique is to
derive a tighter lower bound of the minimal objective value. Based on these two techniques,
we may regard a feasible solution of the QOP (1) computed by the former technique as an
ε optimal solution of the QOP if its objective value is within a given small positive number
ε from a lower bound, computed by the latter technique, of the minimal objective value.
These two techniques play essential roles in the branch-and-bound method, which has been
serving as one of the most practical and popular computational methods for nonconvex and
combinatorial optimization problems.

The aim of the current paper is to explore an SOCP (second order cone programming)
relaxation for computing a lower bound of the minimal objective value of the QOP (1). We
may regard this relaxation as a special case of more general convex relaxations described
as follows. Let C be a closed convex subset of Rn which includes the feasible of F . Then,
we have inf{cTx : x ∈ C} ≤ inf{cTx : x ∈ F}. The problem of minimizing the same linear
objective function cTx over the convex set C serves as a convex relaxation problem of the
QOP (1). Here, we implicitly assume that the minimization over the convex set C is easier
than the minimization over the original nonconvex feasible region F .
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Traditionally, LP (linear programming) has been utilized for convex relaxation of integer
programs. However, LP relaxation is not powerful enough to generate a tight lower bound
of the minimal objective value in practice, and also it does not cover general QOPs. In
recent years, a class of “lift-and-project convex relaxation methods” ([1, 5, 9, 10, 12, 13, 15,
16, 17, 18, 20, 22]) have been proposed and studied extensively. They are characterized as
the three steps:

1. Lift the QOP (1) to an equivalent problem in the space S1+n of (1 + n) × (1 + n)
symmetric matrices; the resulting problem is an LP with additional rank-1 and positive
semidefinite constraints imposed on a matrix variable

Y =

(
1 xT

x X

)
∈ S1+n.

2. Relax the rank-1 and positive semidefinite constraints so that the feasible region of
the resulting problem is convex.

3. Project the relaxed lifted problem in S1+n back to the original Euclidean space Rn.

See Section 2 for more technical details. We can classify the methods into two groups
according to a relaxation taken in Step 2.

In one group, only the rank-1 constraint is removed in Step 2, and the relaxed problem
turns out to be an SDP (semidefinite program) in the matrix variable Y in S1+n. This
group of methods are called the (lift-and-project) SDP relaxation methods [5, 9, 10, 12, 13,
15, 16, 18, 22, etc.]. We will denote the projection of the feasible region of the relaxed lifted

problem in S1+n onto Rn by FSDP.

Removing both rank-1 and positive semidefinite constraints from Step 2 leads to the
other group of the methods whose formulation is represented as an LP in the matrix variable
Y in S1+n. This group of methods have been called by various names such as the lift-and-
project cutting algorithm [1], the reformulation-linearization technique [17], the matrix cut
[14] and the semi-infinite LP relaxation method [12]. In this article, we call them the lift-
and-project LP relaxation method. We will denote the projection of the feasible region of

the relaxed lifted problem in S1+n onto Rn by FLP.

The SDP relaxation FSDP of the nonconvex feasible region F of the QOP (1) is at least

as effective as the lift-and-project LP relaxation FLP;

F ⊂ c.hull(F ) ⊂ FSDP ⊂ FLP ⊂ C0. (2)

Furthermore, it is known that the SDP relaxation is more effective than the lift-and-project
LP relaxation in both theory and practice of many combinatorial optimization problems
[9, 10, 15, etc.]. In particular, the 0.878 approximation [9] of a maximum cut based on the
SDP relaxation is widely known.

For numerical computation, we can apply interior-point methods [6, 19, 21, etc.], which
are extensions of interior-point methods developed for LPs, to SDPs. Solving an SDP with
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a large scale matrix variable is still much more expensive than solving an LP with the same
number of variables as the SDP, although extensive efforts [7, 8, etc.] continue to be made
to increase the computational efficiency of interior-point methods and at the same time,
to develop efficient computational methods [2, 11, etc.] for solving large scale SDPs from
various angles. In this article, we propose a (lift-and-project) SOCP relaxation of the QOP
(1) as a reasonable compromise between the effectiveness of the SDP relaxation in getting
better lower bounds of the QOP (1) and the low computational cost of the lift-and-project
LP relaxation. The basic idea behind our SOCP relaxation is:

• Add a finite number of convex quadratic inequalities, which are valid for the positive
semidefinite cone involved in the SDP relaxation, to the lift-and-project LP relaxation.

• Reformulate the resulting convex QOP with a linear objective function and a finite
number of linear and convex quadratic inequality constraints into an SOCP problem.

The remaining of the paper is organized as follows. Section 2 describes technical details
of the lift-and-project LP relaxation and the SDP relaxation for the QOP (1). In Section 3,
we discuss how we strengthen the lift-and-project LP relaxation by adding convex quadratic
inequalities. As a result, we obtain a convex QOP which serves as a stronger relaxation of
the QOP (1) than the lift-and-project LP relaxation of the QOP (1). Section 4 includes
conversion techniques of such a convex QOP relaxation problem into an SOCP relaxation
problem. In Section 5, we present computational results on the SDP, the SOCP and the lift-
and-project LP relaxations, and confirm the effectiveness of the SOCP relaxation. Section
6 is devoted to concluding discussions.

2 Lift-and-project convex relaxation methods

We use the notation A • B =
∑n

i=1

∑n
j=1 AijBij for the inner product of A, B ∈ Sn.

Following the three steps which we have mentioned in the Introduction, we now describe
the lift-and-project SDP relaxation method for the QOP (1). First, we rewrite the QOP
(1) as

minimize cTx
subject to x ∈ C0,

Qp •X + qTpx+ γp ≤ 0 (p = 1, 2, . . . ,m),

Y =

(
1 x
x X

)
∈ S1+n

+ and rank Y = 1.

 (3)

It should be noted that the pair of the last two constraints

Y =

(
1 x
x X

)
∈ S1+n

+ and rank Y = 1
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is equivalent to X = xxT . Now, removing the constraint rank Y = 1 from the problem
(3), we have an SDP

minimize cTx
subject to x ∈ C0,

Qp •X + qTpx+ γp ≤ 0 (p = 1, 2, . . . ,m),(
1 xT

x X

)
∈ S1+n

+ .

 (4)

Let FSDP be the orthogonal projection of the feasible region of the SDP (4) in the lifted

space S1+n of the matrix variable

(
1 xT

x X

)
onto the space Rn where the original problem

(1) is defined;

FSDP =

x ∈ C0 :
∃X ∈ Sn such that

(
1 xT

x X

)
∈ S1+n

+ and

Qp •X + qTpx+ γp ≤ 0 (p = 1, 2, . . . ,m).


Then we can rewrite the SDP (4) as

minimize cTx subject to x ∈ FSDP. (5)

We obtain another convex relaxation of the QOP (1), the lift-and-project LP relaxation
by neglecting both of the positive semidefinite and rank-1 constraints on Y in the QOP (3):

minimize cTx
subject to x ∈ C0, Qp •X + qTpx+ γp ≤ 0 (p = 1, 2, . . . ,m),

}
(6)

or equivalently,

minimize cTx subject to x ∈ FLP, (7)

where
FLP =

{
x ∈ C0 : Qp •X + qTpx+ γp ≤ 0 (p = 1, 2, . . . ,m)

}
.

By construction, we see that the inclusion relation (2) holds.

3 Adding convex quadratic inequalities to the lift-and-

project LP relaxation

3.1 Basic analysis

The positive semidefinite condition (
1 xT

x X

)
∈ S1+n

+ (8)
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in (3) (also in (4)) is equivalent to the positive semidefinite condition X−xxT ∈ Sn+ on the
smaller matrix X − xxT . The latter condition holds if and only if C •

(
X − xxT

)
≥ 0 is

true for ∀C ∈ Sn+. Moreover, we can rewrite this inequality as

xTCx−C •X ≤ 0. (9)

Note that the left hand side of the inequality with a fixed C ∈ Sn+ is convex in x and linear
in X. This allows us to add the convex quadratic inequality to the lift-and-project LP
relaxation (6) to derive a convex QOP relaxation of the nonconvex QOP (1):

minimize cTx
subject to x ∈ C0, Qp •X + qTpx+ γp ≤ 0 (p = 1, 2, . . . ,m),

xTCx−C •X ≤ 0.

 (10)

The positive semidefinite condition (8) holds if and only if

Z∗ •
(

1 xT

x X

)
≥ 0 (11)

for ∀Z∗ ∈ S1+n
+ . We can prove, however, that a linear inequality (11) with a matrix Z∗ ∈

S
1+n
+ is weaker than the convex quadratic inequality (9) with the submatrixC ∈ Sn+ obtained

by deleting the first row and the first column of Z∗ ∈ S1+n
+ . In other words, let

Z∗ =

(
β bT/2
b/2 C

)
∈ S1+n

+ , β ∈ R+, b ∈ Rn, C ∈ Sn+, (12)

and suppose that

(
1 xT

x X

)
satisfies the convex quadratic inequality (9) with the subma-

trix C ∈ Sn+ of Z∗ ∈ S1+n
+ . Then, we have the following from the positive semidefiniteness

of Z∗

0 ≤ (1,xT )

(
β bT/2
b/2 C

)(
1
x

)
= β + bTx+ xTCx.

Combining the inequality above with (9), we obtain that

0 ≤ β + bTx+C •X = Z∗ •
(

1 xT

x X

)
.

Thus we have shown that

(
1 xT

x X

)
satisfies the inequality (11).

Theoretically there exists a C ∈ Sn+ such that the convex QOP relaxation (10), which
we have derived by adding one additional convex quadratic inequality constraint xTCx −
C •X ≤ 0 to the lift-and-project LP relaxation (6), provides us with the same upper bound
for the objective value of the QOP (1) as the SDP relaxation (4). Let us introduce the dual
of the SDP (4) to clearly observe this point. Define

A0 =

(
0 cT/2
c/2 O

)
∈ Sn+1, Am+1 =

(
1 0T

0 O

)
∈ Sn+1,

Ap =

(
γp qTp
qp Qp

)
∈ Sn+1 (p = 1, 2, . . . ,m).
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Then we can write the dual of the SDP (4) as follows:

maximize vm+1

subject to −
m∑
p=1

Apvp +Am+1vm+1 +Z = A0,

Z ∈ S1+n
+ , vp ≥ 0 (p = 1, 2, . . . ,m).

 (13)

Theorem 3.1. Assume that (Z∗,v∗) ∈ S1+n ×Rm+1 is a feasible solution of the dual SDP
(13), and that C ∈ Sn+ is the submatrix matrix obtained by deleting the first row and the
first column from Z∗ ∈ S1+n

+ as in (12). Then the objective value at any feasible solution
(x̄, X̄) of the convex QOP relaxation (10) is not less than the objective value v∗m+1 at the
feasible solution (Z∗,v∗) of the dual SDP (13).

Proof: By the assumption, we see that x̄TCx̄−C • X̄ ≤ 0. Hence

0 ≤ Z∗ •
(

1 x̄T

x̄ X̄

)
=

(
A0 +

m∑
p=1

Apv
∗
p −Am+1v

∗
m+1

)
•
(

1 x̄T

x̄ X̄

)

= cT x̄+
m∑
p=1

(
Qp • X̄ + qTp x̄+ γp

)
v∗p − v∗m+1

≤ cT x̄− v∗m+1.

Corollary 3.2. In addition to the assumption of Theorem 3.1, let (Z∗,v∗) ∈ S1+n ×Rm+1

be an optimal solution of the dual SDP (13). Assume that the primal SDP (4) has an
interior feasible solution (x,X) ∈ S1+n × Rm;

X ∈ S1+n
++ and Qp •X + qTpx+ γp < 0 (p = 1, 2, . . . ,m),

and that the dual SDP (13) has an interior feasible solution (Z,v) ∈ S1+n × Rm+1;

Z ∈ S1+n
++ and vp > 0 (p = 1, 2, . . . ,m).

Here S1+n
++ denotes the set of n × n positive definite matrices. Then the optimal objective

value of (10) coincides with the optimal objective value of the primal SDP (4).

Proof: Let ζSDP and ζCQOP denote the optimal objective values of (4) and (10),

respectively. Then ζCQOP ≤ ζSDP since the feasible region of (10) contains the feasible

region of (4). By Theorem 3.1, v∗m+1 ≤ ζCQOP. Furthermore, by the duality theorem,

we know that v∗m+1 = ζSDP under the additional assumption of the corollary. Thus the
desired result follows.
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3.2 Convex quadratic inequalities induced from the inequality
constraints of the QOP

The observation in the previous section indicates that if we assume that we know a feasible
solution (v∗,Z∗) of the dual SDP (13) with an objective value v∗m+1 closer to the optimal

objective value ζSDP of the SDP (4), we can generate an effective convex QOP relaxation
(10) by adding a single convex quadratic inequality (9) induced from Z∗ to the lift-and-
project LP relaxation (6) of the QOP (1). It also makes possible to use v∗m+1 itself as a lower
bound of the QOP (1) without solving (10). Since advance information of such a convenient
feasible solution of the dual SDP (13) is not available in most cases, it remains to tackle
an important practical issue of how we choose a few number of effective convex quadratic
inequality constraints.

From the view of including additional constraints, we can add multiple convex quadratic
inequalities

xTCix−Ci •X ≤ 0 (i = 1, 2, . . . , `)

to the lift-and-project LP relaxation (6) to derive a convex QOP relaxation of the nonconvex
QOP (1):

minimize cTx
subject to x ∈ C0, Qp •X + qTpx+ γp ≤ 0 (p = 1, 2, . . . ,m),

xTCix−Ci •X ≤ 0 (i = 1, 2, . . . , `).

 (14)

Here our assumption is that Ci ∈ Sn+ (i = 1, 2, . . . , `). As we add more convex quadratic
inequalities, we can expect to have a better convex QOP relaxation (14) of the QOP (1),
but we need more CPU time to solve the problem (14).

We show below how to extract convex quadratic inequalities from the original quadratic
inequality constraints of the QOP (1). Let p ∈ {1, 2, . . . ,m} be fixed, and λi (i = 1, 2, . . . , n)
denote the eigenvalues of the coefficient matrix Qp ∈ Sn of the pth quadratic inequality
constraint. We may assume that

λ1 ≥ λ2 ≥ . . . ≥ λ` ≥ 0 > λ`+1 ≥ . . . ≥ λn (15)

for some ` ∈ {0, 1, 2, . . . , n}. Let ui (i = 1, 2, . . . , n) denote the eigenvectors corresponding
to λi (i = 1, 2, . . . , n), respectively, such that

‖ui‖ = 1 (i = 1, 2, . . . , n) and uTi uj = 0 (i 6= j). (16)

Then we have

Qp =
n∑
j=1

λjuju
T
j . (17)

If 1 ≤ s ≤ t ≤ `, then the matrix C =
∑t

j=s λjuju
T
j is positive semidefinite. Similarly, if

` + 1 ≤ s ≤ t ≤ n, then the matrix C = −
∑t

j=s λjuju
T
j is positive semidefinite. In both

cases, we can add the convex quadratic inequality constraint xTCx − C •X ≤ 0 to the
lift-and-project LP relaxation (6).
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If Qp itself is positive semidefinite or the pth quadratic inequality constraint of the QOP
(1) is convex, then we can take C =

∑n
j=1 λjuju

T
j = Qp. It follows in this case that the

resulting problem includes the constraints

Qp •X + qTpx+ γp ≤ 0 and xTQpx−Qp •X ≤ 0,

which imply the pth quadratic inequality constraint itself of the original QOP (1).

In Section 4, we will convert the convex QOP relaxation (14) into an SOCP (second-oder
cone program). The cost of solving the resulting SOCP depends very much on the ranks of
Ci ∈ Sn+ (i = 1, 2, . . . , `); the larger their ranks are, the more auxiliary variables we need to
introduce and the more expensive the cost of solving the resulting SOCP becomes. In an
attempt to keep the amount of computation small, low rank Ci ∈ Sn+ (i = 1, 2, . . . , `) are
reasonable. Among many candidates, the simplest and reasonable choice is

x2
i −Xii ≤ 0 (i = 1, 2, . . . , n).

We can also employ some of the rank-1 convex quadratic inequalities

xTuiu
T
i x− uiuTi •X ≤ 0 (i = 1, 2, . . . , n),

where each ui denotes an eigenvector of the coefficeint matrx Qp of the pth quadratic
inequality constraint of the QOP (1).

3.3 Reducing the number of variables

One of the disadvantages of the lift-and-project convex relaxation methods described so far
is that the relaxed lifted problems (4), (6) and (10) involve an additional n× n symmetric
matrix variableX; the number of variables of the relaxed lifted problems grows quadratically
in the number of variables of the original QOP (1). We will discuss below how we eliminate
the matrix variable X from the convex QOP relaxation (10). Suppose that the coefficient
matrixQp ∈ Sn of the pth quadratic inequality constraint is represented as in (17), where we
denote λi (i = 1, 2, . . . , n) as the eigenvalues ofQp satisfying (15) and ui (i = 1, 2, . . . , n) the

corresponding eigenvectors satisfying (16). Let Q+
p =

∑`
j=1 λjuju

T
j . Then we can rewrite

the pth quadratic inequality constraint as

xTQ+
p x+

n∑
j=`+1

λjzj + qTpx+ γp ≤ 0,

xT (uju
T
j )x− zj = 0 (j = `+ 1, `+ 2, . . . , n).

 (18)

Relaxing the last n− ` equalities, we have a set of convex quadratic inequalities

xTQ+
p x+

n∑
j=`+1

λjzj + qTpx+ γp ≤ 0,

xT
(
uju

T
j

)
x− zj ≤ 0 (j = `+ 1, `+ 2, . . . , n).

 (19)

Depending on the constraint x ∈ C0, it is necessary to add appropriate constraints
on the variables zj (j = ` + 1, ` + 2, . . . , n) to bound them from above. Otherwise, any

8



x ∈ C0 satisfies the inequalities in (19) for some zj (j = ` + 1, ` + 2, . . . , n) (recall that
λj < 0 (j = `+ 1, `+ 2, . . . , n)). In general, the inequality

n∑
j=`+1

zj ≤ ρmax ≡ max{‖x‖2 : x ∈ C0}

holds. In fact, if x and zj (j = `+ 1, `+ 2, . . . , n) satisfy (18) then

n∑
j=`+1

zj =
n∑

j=`+1

xT (uju
T
j )x ≤ xT

(
n∑
j=1

uju
T
j

)
x ≤ ‖x‖2,

where the last inequality holds since
(∑n

j=1 uju
T
j

)
is an orthogonal matrix.

Now we relate (19) to a convex QOP relaxation of the pth quadratic inequality constraint
of the QOP (1). Consider the lift-and-project LP relaxation

Qp •X + qTpx+ γp ≤ 0 (20)

of the pth quadratic inequality constraint of the QOP (1) together with the convex quadratic
valid inequalities

xTQ+
p x−Q+

p •X ≤ 0,
xT
(
uju

T
j

)
x−

(
uju

T
j

)
•X ≤ 0 (j = `+ 1, `+ 2, . . . , n)

}
(21)

for (x,X) ∈ Rn × Sn. Suppose that x satisfies (20) and (21) for some X ∈ Sn. Then x
and zj = uTjXuj (j = ` + 1, ` + 2, . . . , n) satisfy (19). We may regard (19) as a further
relaxation of the convex QOP relaxation consisting of (20) and (21).

It is worthy to be noted that not only the vectors uj (j = `+1, `+2, . . . , n) but also the
variables zj (j = `+ 1, `+ 2, . . . , n) depend on p. And, if we apply this relaxation technique
to each quadratic inequality constraint of the QOP (1), we obtain a convex QOP relaxation
of the QOP (1)

minimize cTx subject to x ∈ FCQOP, (22)

where

FCQOP =


x ∈ C0 :

∃zpj (j = `p + 1, `p + 2, . . . , n, p = 1, 2, . . . ,m) such that

xTQ+
p x+

n∑
j=`p+1

λjzpj + qTpx+ γp ≤ 0 (p = 1, 2, . . . ,m),

xT
(
upju

T
pj

)
x− zpj ≤ 0

(j = `p + 1, `p + 2, . . . , n, p = 1, 2, . . . ,m)


.

3.4 An illustrative example

The following case demonstrates some differences among the convex relaxations (5), (7) and
(22):

n = 2, m = 3, c = (0,−1),
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C0(ρmax) = {x ∈ R2 : x2 ≥ 0, x2
1 + x2

2 ≤ ρmax},

Q1 =

(
−1 0
0 1

)
, q1 = (0, 1)T , γ2 = −0.2,

Q2 =

(
1 0
0 −1

)
, q2 = (0, 0)T , γ1 = −1.15,

Q3 =

(
1 0
0 2

)
, q3 = (0, 0)T , γ3 = −6,

where ρmax is a parameter which takes a value of either 2.79 or 3.16. The resulting QOP is:

minimize −x2

subject to (x1, x2)T ∈ C0(ρmax),
−x2

1 + x2
2 + x2 − 0.2 ≤ 0, x2

1 − x2
2 − 1.15 ≤ 0, x2

1 + 2x2
2 − 6 ≤ 0.

(23)

For the feasible regions of the convex relaxations, we have

FSDP =

(x1, x2)T ∈ C0(ρmax) :

x2 − 1.35 ≤ 0,
3x2

2 + x2 − 6.2 ≤ 0,
x2

1 + 2x2
2 − 6 ≤ 0,

3

2
x2

1 − 4.15 ≤ 0

 ,

FLP =
{

(x1, x2)T ∈ C0(ρmax) : x2 − 1.35 ≤ 0
}
,

FCQP =

(x1, x2)T ∈ C0(ρmax) :

∃z1, z2 such that
x2

2 − z1 + x2 − 0.2 ≤ 0, x2
1 ≤ z1 ≤ ρmax,

x2
1 − z2 − 1.15 ≤ 0, x2

2 ≤ z2 ≤ ρmax,
x2

1 + 2x2
2 − 6 ≤ 0.


See [5] for computation of FSDP and FLP. Consequently,

min{cTx : x ∈ FSDP} =
1−
√

75.4

6
≈ −1.28,

min{cTx : x ∈ FLP} = −1.35,

min{cTx : x ∈ FCQP} =

{
−1.30 if ρmax = 2.79,
−1.40 if ρmax = 3.16.

It should be noted that the convex QOP relaxation (22) attains a better lower bound −1.30
of the QOP (1) than the lift-and-project LP relaxation (7) when ρmax = 2.79, while the
former obtains a worse lower bound −1.40 when ρmax = 3.16.

In order to confirm the above results computationally, we have tested the three convex
relaxations (5), (7) and (22) for the QOP (23) with SeDuMi Version 1.03. The SDP relax-
ation (5) has provided a bound −1.28055 in 0.2 seconds in 9 iterations, while the convex
QOP relaxation (22) with ρmax = 2.79 a bound −1.30 in 9 iterations and 0.1 seconds, the
convex QOP relaxation (22) with ρmax = 3.16 a bound −1.40 in 9 iterations and 0.1 seconds,
and the lift-and-project LP relaxation (7) a bound −1.35 in 2 iterations and 0.01 seconds.
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4 Conversion of convex QOPs into SOCPs

We notice that each inequality constraint in the relaxation problems (14) and (22) can be
written as

xTCx+ qTx+ gTy + γ ≤ 0 (24)

for some C ∈ Sn+, q ∈ Rn, g ∈ Rs and γ ∈ R. Some of the inequalities are linear so that we
can take C = O. Suppose that rank C = k ≥ 1. Then there exists an n× k matrix L such
that C = LLT ; we can compute such an L by applying the Cholesky factorization or the
eigenvalue decomposition to the matrix C. And, we can rewrite the inequality (24) as

(LTx)T (LTx) ≤ −qTx− gTy − γ. (25)

It is known and also easily verified that w ∈ Rt, ξ ∈ R and η ∈ R satisfy

wTw ≤ ξη, ξ ≥ 0 and η ≥ 0

if and only if they satisfy ∥∥∥∥( ξ − η
2w

)∥∥∥∥ ≤ ξ + η.

If we take w = LTx, ξ = 1 and η = −qTx − gTy − γ, we can convert the inequality (25)
into a linear inequality with an additional SOC (second order cone) condition

(
v0

v

)
=

 1− qTx− gTy − γ
1 + qTx+ gTy + γ

2LTx

 ∈ R2+k and ‖v‖ ≤ v0. (26)

Now, applying the conversion from the convex quadratic inequality (24) into the lin-
ear inequality (26) with an additional SOC condition to each convex quadratic inequality
xTCix−Ci •X ≤ 0, we can convert the convex QOP (10) into an SOCP

minimize cTx
subject to x ∈ C0,

Qp •X + qTpx+ γp ≤ 0 (p = 1, 2, . . . ,m),(
vi0
vi

)
=

 1 +Ci •X
1−Ci •X

2LTi x

 (i = 1, 2, . . . , `),

‖vi‖ ≤ vi0 (i = 1, 2, . . . , `),


where Ci = LiL

T
i (i = 1, 2, . . . , `).
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Similarly we can convert the convex QOP (22) into an SOCP, using Q+
p = L+

p (L+
p )T ,

minimize cTx
subject to x ∈ C0,(

wp0
wp

)
=

 1−
∑n

j=`p+1 λjzpj − qTp x− γp
1 +

∑n
j=`p+1 λjzpj + qTp x+ γp

2(L+
p )Tx

 (p = 1, 2, . . . ,m),

‖wp‖ ≤ wp0 (p = 1, 2, . . . ,m),(
vpj0
vpj

)
=

 1 + zpj
1− zpj
2uTpjx


(j = `p + 1, `p + 2, . . . , n, p = 1, 2, . . . ,m),
‖vpj‖ ≤ vpj0 (j = `p + 1, `p + 2, . . . , n, p = 1, 2, . . . ,m).



(27)

5 Numerical results

We present computational results on the SDP relaxation (4), the SOCP relaxation (27)
with the use of the technique of reducing the number of variables and the lift-and-project
LP relaxation (6). All the computation was implemented using a Matlab toolbox, SeDuMi
Version 1.03 [19] on Sun Enterprise 4500 (CPU 400MHz 8 CPU with 6 GB memory).

The set of test problems in our numerical experiments consists of

(a) Box constraint QOPs.

(b) 0-1 integer QOPs.

(c) Box and linear inequality constraint QOPs.

(d) Box and quadratic inequality constraint QOPs.

The problems in (b) and (c) are from literature [4] and [3], respectively. In both cases, the
optimal solution of the generated problem is known in advance. The problems in (d) are
randomly generated in the form of (1). We use the notations described in Table 1 in the
discussion of computational results.

5.1 Box constraint QOPs

The general form of box constraint QOPs (a) is

minimize xTQx+ qTx
subject to x2

j ≤ 1 (j = 1, 2, . . . , n)

}
We rewrite the problem as

minimize xn+1

subject to xTQx+ qTx− xn+1 ≤ 0,
−xTQx− qTx+ xn+1 ≤ 0,
x2
j ≤ 1 (j = 1, 2, . . . , n).

 (28)
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n the number of variables
m the number of quadratic inequality constraints
ml the number of linear constraints
#λ the number of negative eigenvalues of Qp

SDP the SDP relaxation (4)
SOCP the SOCP relaxation (27)

LP the lift-and-project LP relaxation (6)
obj.val. the value of objective function obtained

rel.err. the relative error, i.e., rel.err. =
|obj.val.− ζ∗|
max{|ζ∗|, 1.0}

,

where ζ∗ denotes the optimal value of the test problem under consideration.
CPU the CPU time in seconds

it. the number of iterations that the corresponding relaxation takes

Table 1: Notations

The matrix Q and the vector q in (28) are generated randomly. The random number
generator in Matlab is used to produce a random number on the interval (0.0, 10.0) for
each element in q and an n × n matrix A. Then, a symmetric matrix Q is attained from
(A +AT )/2. The number of the negative eigenvalues of Q generated this way was n/2 in
all of our test problems.

The numerical results on the problem (28) are shown in Table 2. As n increases, SDP
takes CPU time about 10 times as much as SOCP, and SOCP twice as much as LP (e.g.,
n = 50, 100). The discrepancies in the object values of SOCP with SDP and LP remain
relatively unchanged; SOCP provides the objective values around the middle of those of
SDP and LP, (e.g., for n = 400, SOCP-SDP = 2425, LP-SOCP= 2014, for n = 200, SOCP-
SDP= 858, LP-SOCP= 1071), with the speed comparable to LP.

Remark 5.1. We may replace the convex quadratic inequalities x2
j ≤ 1 (j = 1, 2, . . . , n)

by the linear inequalities −1 ≤ xj ≤ 1 (j = 1, 2, . . . , n) in the QOP (28) to obtain an
equivalent but simpler QOP. It is known that the SDP relaxation and the lift-and-project
LP relaxation of the resulting simpler problem are not as effective as the SDP relaxation
and the lift-and-project relaxation of the original QOP (28), respectively. See [5] for more
details.

5.2 0-1 integer QOPs

Consider the 0-1 integer QOP

minimize xTQx+ qTx
subject to xj ∈ {0, 1} (j = 1, 2, . . . , n).

}
We used the program given in [4] to generate the coefficient matrices and vectors of the
objective functions of 3 test problems with n = 40, 60, and 80. To apply our SDP, lift-and-
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n #λ SDP SOCP LP
obj.val. CPU it. obj.val. CPU it. obj.val. CPU it.

10 5 -101.3 0.3 13 -122.1 0.2 10 -172.0 0.1 7
50 25 -1245.5 2.5 15 -1396.9 0.5 13 -1612.8 0.3 8

100 50 -3609.2 20.0 17 -4167.6 2.1 16 -4657.3 1.0 9
200 100 -10330.4 133.9 16 -11288.4 11.2 14 -12259.1 7 .1 10
400 200 -29967.9 1228.2 19 -32392.8 124.3 16 -34406.5 58.3 11

Table 2: Box constraint QOP

project LP, and SOCP relaxations, we rewrite the problem above as

minimize xn+1

subject to xTQx+ qTx− xn+1 ≤ 0,
−xTQx− qTx+ xn+1 ≤ 0,
xj(xj − 1) ≤ 0 (j = 1, 2, . . . , n),
−xj(xj − 1) ≤ 0 (j = 1, 2, . . . , n).


The numerical results are summarized in Table 3. We have generated ten problems of

the same size for each n and obtained computational results. The motivation for these
experiments is to provide test results from a large number of problems of the same size.
The minimum, average and maximum relative error, computational time, and number of
iterations from solving the ten problems are shown in Table 3. The gap in CPU time
between SDP and SOCP has widened as much as 20 times on average with n = 80. The
computational time of SOCP has stayed closely to that of LP relaxation, about 3 times
when n = 80 in maximum case. However, SOCP maintains the effectiveness in achieving a
relatively good lower bound compared to LP, as indicated in the columns of rel.err.. The
relative errors of SOCP are much smaller than LP.

Remark 5.2. Suppose that q = 0 the 0-1 integer QOP above. The well-known max cut
problem on graphs is an exemplified case. Under the assumption, our convex QOP relaxation
discussed in Section 3.3 takes the following form.

minimize xn+1

subject to xTQ+x+
n∑

j=`+1

λjzj − xn+1 ≤ 0,

−xTQ−x−
∑̀
j=1

λjzj + xn+1 ≤ 0,

xTuju
T
j x− zj ≤ 0 (j = 1, 2, . . . , n),

n∑
j=1

zj ≤ ρmax ≡ max{‖x‖2 : 0 ≤ xj ≤ 1 (j = 1, 2, . . . , n)} = n,

xj(xj − 1) ≤ 0 (j = 1, 2, . . . , n).


Here λj and uj (j = 1, 2, . . . , n) are eigenvalues and the corresponding eigenvectors of Q
satisfying (15) and (16). The optimal solution (x∗, x∗n+1, z

∗) ∈ R2n+1 of the problem is given

14



n SDP SOCP LP
rel.err. CPU it. rel.err. CPU it. rel.err. CPU it.

min. 0.067 1.40 10 0.273 0.4 14 0.809 0.2 4
40 aver. 0.541 1.62 11 1.555 0.4 17 9.564 0.25 4.8

max. 1.042 12.4 67 3.138 0.7 19 21.667 0.4 6
min. 0.005 4.20 10 0.151 0.4 15 0.819 0.4 4

60 aver. 0.470 6.03 15.1 1.543 0.6 16.5 10.478 0.45 4.2
max. 0.844 20.3 51 4.000 2.0 22 31.125 0.6 6
min. 0.082 9.10 9 0.482 0.4 14 2.652 0.7 4

80 aver. 0.537 15.2 16.7 2.071 0.7 15.6 6.632 0.7 4.2
max. 1.445 54.3 61 5.957 3.4 19 14.000 1.1 6

Table 3: 0-1 integer QOPs

by
x∗ = 0, x∗n+1 = nλn, z∗j = 0 (j = 1, 2, . . . , n− 1), z∗n = ρmax = n.

We can see that the lower bound nλn obtained coincides with the trivial lower bound

min{xTQx : ‖x‖2 ≤ n}

of the 0-1 integer QOP with q = 0.

5.3 Box and linear inequality constraint QOPs

The test problem in this section is the linear inequality constraint QOP from the literature
[3]:

minimize xTQx+ qTx
subject to Ax ≤ b,

}
where Q ∈ Sn, q ∈ Rn, A ∈ Rml×n, and b ∈ Rml . While we generate a test problem by the
code provided by [3], the optimal value opt and the optimal vector xop of the problem are
obtained. We add the box constraint

lbj ≤ xj ≤ ubj (j = 1, 2, ...n),

where we use xopj −|x
op
j | and xopj +|xopj | for lbj and ubj (j = 1, 2, . . . , n), respectively to ensure

a feasible region large enough to include the optimal solution of the original problem. We
rewrite the problem with a quadratic constraint obtained from the box constraint as

minimize xn+1

subject to xTQx+ qTx− xn+1 ≤ 0,
−xTQx− qTx+ xn+1 ≤ 0,
Ax ≤ b
(ubj − xj)(lbj − xj) ≤ 0 (j = 1, 2, ...n+ 1)
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n ml SDP SOCP LP
rel.err. CPU it. rel.err. CPU it. rel.err. CPU it.

min. 1.24 3.8 58 2.99 0.4 11 3.29 0.2 7
20 30 aver. 1.53 4.4 66 2.99 0.52 12.8 4.51 0.2 7.5

max. 1.70 4.9 69 3.01 0.7 16 8.82 0.2 9
min. 1.01 6.1 45 1.35 0.6 14 8.85 0.3 8

30 45 aver. 1.13 8.4 57.5 2.81 0.7 17.5 10.56 0.34 9.5
max. 1.66 9.2 66 3.00 1.5 32 11.20 0.4 11
min. 1.01 11.9 24 1.01 0.7 13 9.91 0.5 10

40 60 aver. 1.06 13.9 45.6 2.80 0.8 17 10.65 0.6 10.9
max. 1.38 19.7 63 3.00 1.1 24 10.75 0.6 11
min. 0.99 26.1 52 2.90 0.8 14 4.216 0.6 7

50 75 aver. 1.97 29.5 58.8 2.94 0.89 15.5 6.707 0.75 9.3
max. 2.73 35.2 74 3.00 1.1 20 10.94 1.1 13

Table 4: Box and linear inequality constrained QOPs

Ten test problems of the same size are generated for each n and ml. Table 4 shows
the minimum, average and maximum relative error, computational time, and number of
iterations from solving the ten problems. As shown in Table 4, SOCP is as fast as LP, yet
very effective in obtaining lower bounds.

5.4 Box and quadratic inequality constraint QOPs

The box constraint of −1 ≤ xj ≤ 1 (j = 1, 2, . . . , n) is added to have a bounded feasible
region for the QOP (1). In this case, C0 is the region represented by the box constraint.
The vector c in the objective function is chosen to be (1, 1, . . . , 1)T ∈ Rn. Random numbers
from a uniform distribution on the interval (−1.0, 0.0) are assigned to the real number γp
and each component of the vector qp (p = 1, 2, . . . ,m). We provide the number of positive
and negative eigenvalues of Qp prior to generating Qp, which represent the convex and
concave parts of Qp, respectively, and then produce Qp accordingly. More precisely, we
first generate a diagonal matrix Dp = diag[1, λ2, . . . , λn] with a predetermined number
of negative/positive diagonal entries, where each λi denotes a random number uniformly
distributed either in the interval ∈ (0.0, 1.0) if λi > 0 or in the interval ∈ (−1.0, 0.0) if
λi < 0 (i = 2, . . . , n). And, the lower triangular matrix Lp and a matrix E are created as

Lp =


1 0 0 · · · 0
l21 l22 0 · · · 0
l31 l32 l33 0 0
...

...
. . . 0

ln1 ln2 · · · · · · lnn

 , E =


−1 −1 · · · −1 −1

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1

 ,
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where lij is a random number uniformly distributed in the interval (−1.0, 1.0). Finally we
generate each Qp ∈ Sn such that

Qp = 2nELpDpL
T
pE

T .

By the construction, x = 0 always gives an interior feasible solution of the QOP (1)
since γp < 0 (p = 1, 2, . . . ,m), and the objective function cTx of the QOP (1) takes its
minimal value over the box constraint C0 = {x ∈ Rn : 0 ≤ xj ≤ 1 (j = 1, 2, . . . , n)}
at x = (−1,−1, . . . ,−1)T ∈ Rn. But this point is cut off by each quadratic inequality
constraint generated. In fact, we observe that if x = (−1,−1, . . . ,−1)T ∈ Rn then

xTQpx+ qTpx+ γp ≥ xT
(
2nELpDpL

T
pE

T
)
x− n− 1

= 2n− n− 1 = n− 1 > 0.

Therefore C0 3 (−1,−1, . . . ,−1)T 6∈ F and the optimal value of the QOP (1) is greater
than min{cTx : x ∈ C0} = −n. This does not guarantee, however, that the point

(−1,−1, . . . ,−1)T ∈ Rn is cut off by its convex relaxations FSDP, FSOCP and FLP.

The numerical results for various n, m, and #λ on each relaxation are shown in Table
5. We have chosen n ≥ 50, m ≤ n and #λ = 2, n/2, n− 2 to observe the effects on different
numbers of variables and constraints, and increasing/decreasing convexity in Qp (1) for
large n. Various combinations of n and m with small number of negative eigenvalues #λ,
namely 2, clearly indicate that SOCP is from 3.5 (n=100, m=100) up to 12 times (n = 50,
m = 10) faster than SDP, while resulting effective lower bounds near SDP except for the
case n = 100, m = 100, and #λ = 2. Decreasing convexity in Qp, which is caused by
introducing more negative eigenvalues, places the performance of SOCP in the middle of
SDP and LP in terms of CPU time and abilities in obtaining lower bounds.

In Section 3.3, we have introduced the techniques on reducing the number of variables.
Instead of dealing with n2 variables in X, we have implemented the SOCP relaxation (27)
for the reduced number of variables. The efficiency of this approach can be measured
with reducing the number of constraints m for a given n, since the number of variables
is dependent on the size of m and the number of negative eigenvalues in Qp. In Table
5, the tests on the three problems with n = 50, varying m from 10, 25 to 50, and 50
negative eigenvalues show that as we decrease the size of m, the differences in CPU time
between SDP and SOCP become large. We observe similar results for the problems with
n = 100, m = 20, 50, and 100. This confirms the observation in Section 3.3 that QOPs
with a smaller number of inequality constraints m are better suited to the approach (27).

6 Concluding discussions

In most of the test problems that we listed in the previous section, the SOCP relaxation
attained much better lower bounds than the lift-and-project LP relaxation without spending
much additional CPU time. Although a lower bound computed by the SOCP relaxation
is not as good as a bound by the SDP relaxation in theory, they are often close to each
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n m #λ SDP SOCP LP
obj.val. CPU it. obj.val. CPU it. obj.val. CPU it.

50 10 2 -0.392 15.5 59 -0.609 1.2 13 -50.0 0.6 2
50 10 25 -0.452 13.3 54 -46.205 5.5 18 -50.0 0.5 2
50 10 48 -0.069 11.5 45 -6.898 5.2 18 -29.618 3.0 18
50 25 2 -0.115 29.1 72 -0.178 2.6 14 -50.0 1.0 2
50 25 25 -0.259 31.2 73 -38.077 12.0 36 -50.0 0.9 2
50 25 48 -0.065 17.9 43 -3.931 13.0 22 -27.021 8.5 26
50 50 2 -0.162 48.0 62 -0.266 6.5 16 -50.0 2.2 2
50 50 25 -0.150 49.5 64 -37.809 34.7 41 -50.0 2.0 2
50 50 48 -0.063 34.5 44 -2.301 27.5 21 -21.784 24.6 34

100 20 2 -0.347 192.2 75 -1.455 12.3 13 -100.0 4.6 2
100 20 50 -0.074 129.2 50 -10.079 42.5 24 -53.754 35.6 26
100 20 98 -0.094 141.6 55 -8.563 71.0 23 -61.683 33.3 26
100 50 2 -0.162 426.7 78 -0.815 41.3 14 -100.0 11.7 2
100 50 50 -0.062 286.2 52 -4.909 165.6 27 -32.852 86.3 24
100 50 98 -0.090 290.7 56 -4.995 274.5 29 -51.294 133.7 38
100 100 2 -1.27e-06 1227.2 112 -46.1102 355.3 47 -100.0 26.2 2
100 100 50 -1.22e-06 1132.4 109 -99.9748 910.3 81 -100.0 30.5 2
100 100 98 -8.63e-02 589.4 55 -85.6803 502.0 25 -100.0 63.0 7

Table 5: General QOPs

other and savings in CPU time grows as the size of the QOP increases, as we have observed
through the numerical experiments.

All the three convex relaxations provide merely a lower bound of the optimal objective
value of a QOP, which is not tight in general. One way of tightening of the lower bound
computed is to subdivide the QOP into smaller subproblems, and then apply the convex
relaxations to each subproblem. This technique is commonly used in the branch-and-bound
method. Another way of tightening the lower bound is to apply them repeatedly in the
framework of successive convex relaxation methods [12, 20, etc.]. In both methods, it is
critical to have better lower bounds with less computational costs. Therefore the SOCP
relaxation proposed in this article can serve as a reasonable candidate to be incorporated
into those methods.
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