
Research Reports on Mathematical and Computing Sciences
Series B : Operations Research

Department of Mathematical and Computing Sciences
Tokyo Institute of Technology

2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan

Sparsity in Sums of Squares of Polynomials

Masakazu Kojima†, Sunyoung Kim‡ and Hayato Waki?

Research Report B-391, June 2003. Revised July 2004

Abstract.

Representation of a given nonnegative multivariate polynomial in terms of a sum of squares
of polynomials has become an essential subject in recent developments of sums of squares
optimization and SDP (semidefinite programming) relaxation of polynomial optimization
problems. We discuss effective methods to obtain a simpler representation of a “sparse”
polynomial as a sum of squares of sparse polynomials by eliminating redundancy.

Key words.

Sums of Squares of Polynomial, Polynomial Optimization Problem, Semidefinite Program,
Sparsity

† Department of Mathematical and Computing Sciences, Tokyo Institute of Technol-
ogy, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. kojima@is.titech.ac.jp

‡ Department of Mathematics, Ewha Women’s University, 11-1 Dahyun-dong,
Sudaemoon-gu, Seoul 120-750 Korea. A considerable part of this work was con-
ducted while this author was visiting Tokyo Institute of Technology. Research
supported by Kosef R004-000-2001-00200. skim@ewha.ac.kr.

? Department of Mathematical and Computing Sciences, Tokyo Institute of
Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. Hay-
ato.Waki@is.titech.ac.jp

1 Introduction

Determining global nonnegativity of a (multivariate) polynomial has been an important
issue in many applications. If a polynomial can be represented as a sum of squares (of
polynomials), global nonnegativity of the polynomial is guaranteed. Representing a poly-
nomial as a sum of squares has gained a lot of attention in recent developments of sum of
squares optimization [10, 11] and SDP (semidefinite programming) relaxation of polynomial
optimization problems [5, 6, 7, 8].

When we aim to represent a nonnegative polynomial in terms of a sum of squares of
polynomials, we need to address two issues of whether such representation is possible and
how it can be computed. The first issue is studied by many researchers starting from Hilbert.
See [15]. The second computational issue has been dealt with from various viewpoints as
in [3, 13, 16]. The focus of this paper is on increasing computational efficiency to represent
sparse polynomials as a sum of squares. It has been known [3, 13] that the problem of
representing a nonnegative polynomial as a sum of squares can be converted to an LMI (lin-
ear matrix inequality) [2], whose size determines the computational efficiency. We present
effective methods to obtain a simpler representation of a sparse polynomial as a sum of
squares of sparse polynomials by eliminating redundancy and, therefore, reducing the size
of the resulting LMI.

We consider a polynomial

f(x) =
∑
α∈F

cαx
α (1)

in the variable vector x ∈ Rn with a support F ⊂ Zn+ and real coefficients cα 6= 0 (α ∈ F).
Here, for every variable vector x = (x1, x2, . . . , xn)T ∈ Rn and every α = (α1, α2, . . . , αn)T ∈
Z
n
+, we use the notation xα for the term xα1

1 x
α2
2 · · ·xαnn . We write any polynomial in a

variable vector x ∈ Rn as
∑
α∈A dαx

α for some nonempty finite subset A of Zn+ and some
dα ∈ R (α ∈ A). We call A the support of the polynomial. In general, we allow some dα to
be zero.

Assume that f(x) is a nonnegative polynomial; f(x) ≥ 0 for every x ∈ Rn. Then, the
degree of the polynomial f(x), i.e., the highest degree of monomials xα (α ∈ F) of the
polynomial f(x), must be a nonnegative even integer. Furthermore the following fact is
known (Lemma in Section 3 of [14]). Let F e denote the set of integer vectors α ∈ F with
coordinates αk (k = 1, 2, . . . , n) of even nonnegative integers; F e = F ∩

(
2Zn+

)
, where µA

denotes the set {µa : a ∈ A} for every A ⊂ Rn and every µ ≥ 0. Then F is contained in
co(F e), the convex hull of F e.

Now assume that f(x) can be represented as a sum of squares of polynomials g1(x), g2(x),
. . . , gr(x) such that

f(x) =
r∑
i=1

gi(x)2, (2)

where both r and polynomials g1(x), g2(x), . . . , gr(x) are unknowns to be found. It is
necessary to estimate and decide supports of unknown polynomial gi(x) (i = 1, 2, . . . , r)
prior to computing them. Let Gi denote an unknown support of the polynomial gi(x)

1

(i = 1, 2, . . . , r). Then each polynomial gi(x) is represented as

gi(x) =
∑
α∈Gi

viαx
α

with some nonzero or zero coefficients viα (α ∈ Gi) (i = 1, 2, . . . , r).
Since f(x) is a nonnegative polynomial, we can apply the above fact, F ⊂ co(F e) to the

polynomial f(x). The following relation is also known (Theorem 1 of [14]):{
α ∈ Zn+ : α ∈ Gi and viα 6= 0 for some i ∈ {1, 2, . . . , r}

}
⊂ 1

2
co(F e).

Hence we can confine effective supports of unknown polynomials g1(x), g2(x), . . . , gr(x) to
subsets of

G0 =

(
1

2
co(F e)

)
∩ Zn+. (3)

Without loss of generality, we may further assume that all polynomials g1(x), g2(x), . . . , gr(x)
share a common support G ⊂ G0; take the union of supports Gi (i = 1, 2, . . . , r) of all poly-
nomials for G and define the coefficient of the monomial xα of gi(x) to be zero if α ∈ G is
not contained in the original support Gi of gi(x). Then each polynomial gi(x) is represented
as

gi(x) =
∑
α∈G

viαx
α (4)

with some nonzero or zero coefficients viα (α ∈ G) (i = 1, 2, . . . , r).
Reducing the size of G helps us achieve computational efficiency. After a common support

G is determined correctly, the problem of computing unknown polynomials g1(x), g2(x), . . . ,
gr(x) can be converted to an LMI (linear matrix inequality) [10, 11]. The size of a symmetric
matrix variable of the resulting LMI is s × s, where s denotes the cardinality of G or the
number of integer vectors of G. When we apply interior-point methods to the resulting LMI,
the numerical efficiency of solving an LMI depends heavily on its size. Although it is safe
to take the maximal possible support G0 for unknown polynomials g1(x), g2(x), . . . , gr(x),
a smaller support G ⊂ G0 provides practical computational efficiency. We present this
conversion in detail in Section 2.2.

We call a polynomial f(x) sparse if the number of elements in the support F is much
less than the number of the maximal support

{
α ∈ Zn+ : eTα ≤ 2ρ

}
over polynomials of

degree 2ρ in the variable vector x ∈ Rn. Sparse polynomials can provide a small and sparse
support G for unknown polynomials g1(x), g2(x), . . . , gr(x) compared with the maximal
support

{
α ∈ Zn+ : eTα ≤ ρ

}
over polynomials of degree r in the variable vector x ∈ Rn.

In a numerical method to construct G, the set G0 given in (3) serves as an initial big guess of
a legitimate support for unknown polynomials g1(x), g2(x), . . . , gr(x) for which the identity
(2) holds. The next step is to eliminate unnecessary integer vectors from G0 in a continued
manner to finally arrive at a small G. We present numerical methods to reduce the size of
G as much as possible.

It is common to have a polynomial with the coefficients cα(w) (α ∈ F) of f(x) as linear
functions of a parameter vector w ∈ Rm: f(x,w) =

∑
α∈F cα(w)xα, in many applica-

tions arising from sum of squares optimization problems [10, 11] and SDP (semidefinite

2

programming) relaxation of polynomial optimization problems [5, 6, 7, 8]. It is an extension
of (1) where the coefficients cα(w) (α ∈ F) of the polynomial f(x) are constant. The goal
is to generate a small subset G of Zn+ such that for each fixed w ∈ Rm f(x,w) is sum of
squares of a finite number of polynomials g1(x,w), g2(x,w), . . . , gr(x,w) having a support
G. Because the proposed methods to generate an effective small support G for unknown
polynomials g1(x,w), g2(x,w), . . . , gr(x,w) do not depend on the coefficients of f(x,w)
but only on the support F of f(x,w), they can be applied to handle polynomials with
parameterized coefficients mentioned above.

Throughout the paper, we consider a simple unconstrained polynomial optimization
problem as an illustrative example,

minimize f0(x) ≡ −4x3
1x

4
2 + 2x4

1x
3
2 + 5x6

1x
8
2 − 2x7

1x
7
2 + 2x8

1x
6
2.

We can rewrite this problem as

maximize ζ subject to f0(x)− ζ ≥ 0.

Replacing the inequality constraint f0(x)− ζ ≥ 0 by the condition that f0(x)− ζ is a sum
of squares polynomials, we obtain a sum of squares optimization problem [10, 11]

maximize ζ subject to f0(x)− ζ is a sum of squares of polynomials.

Let f(x, ζ) = f0(x) − ζ. Then, for each ζ ∈ R such that f(x, ζ) = f0(x) − ζ is a sum of
squares of polynomials, we want to represent f(x, ζ) =

∑r
i=1 g

i(x, ζ)2 for some polynomials
g1(x, ζ), g2(x, ζ), . . . , gr(x, ζ). In this case, we see

F =

{(
0
0

)
,

(
3
4

)
,

(
4
3

)
,

(
6
8

)
,

(
7
7

)
,

(
8
6

)}
,

2ρ = 14 (the degree of the polynomial f(x, ζ))

F e =

{(
0
0

)
,

(
6
8

)
,

(
8
6

)}
,

G0 =

{(
0
0

)
,

(
1
1

)
,

(
2
2

)
,

(
3
3

)
,

(
3
4

)
,

(
4
3

)}

(5)

By applying our method, which we will present in Section 4, we can eliminate 3 unnecessary
integer vectors from the initial guess G0 to generate

G =

{(
0
0

)
,

(
3
4

)
,

(
4
3

)}
.

Since we can represent f(x, ζ) as

f(x, ζ) =
(√
−1− ζ

)2

+
(
1− 2x3

1x
4
2 + x4

1x
3
2

)2
+
(
x3

1x
4
2 + x4

1x
3
2

)2

for every ζ ≤ −1, we know G computed is the minimal legitimate support for unknown
polynomials g1(x, ζ), g2(x, ζ), . . . , gr(x, ζ) for which the identity f(x, ζ) =

∑r
i=1 g

i(x, ζ)2

holds in this case.

3

This paper is organized as follows: In Section 2, we discuss how polynomials represented
in a sum of squares can be converted to an LMI. In Section 3, we examine theoretical
properties of supports to express a nonnegative polynomial as a sum of squares. These
theoretical properties on supports lead to algorithms to compute the smallest support in a
certain class of common effective supports of unknown polynomial g1(x), g2(x), . . . , gr(x).
We present numerical methods in Section 4 for the smallest support. In Section 5, we present
some basic properties on the smallest support. It is followed by numerical experiments in
Section 6. Section 7 is devoted to concluding remarks.

2 Preliminaries

2.1 Notation and symbols

Suppose that A is a nonempty finite subset of Zn+. Let |A| denote the cardinality of A
and RA the |A|-dimensional Euclidean space whose coordinates are indexed by α ∈ A.
Although the order of the coordinates is not relevant in the succeeding discussions, we may
assume that the coordinates are arranged according to the lexicographical order. Each

element of RA is denoted as v = (vα : α ∈ A). We use the symbol SA+ for the set of

|A| × |A| symmetric matrices with coordinates α ∈ A; each V ∈ SA+ has elements Vαβ
(α ∈ A, β ∈ A) such that Vαβ = Vβα and that wTV w =

∑
α∈A

∑
β∈A Vαβwαwβ ≥ 0 for

every w = (wα : α ∈ A). For every x ∈ Rn, let u(x,A) = (xα : α ∈ A), a column vector
consisting of elements xα (α ∈ A).

Using the notation and symbols introduced above, we can rewrite (1) as f(x) = cTu(x,F),

where c = (cα : α ∈ F) ∈ RF , and (4) as

gi(x) = (vi)Tu(x,G), (6)

where vi = (viα : α ∈ G) ∈ RG (i = 1, 2, . . . , r).
For every pair of nonempty subsets A and B of Zn+, we use the notation A+B for their

Minkovski sum:
A+ B = {a+ b : a ∈ A, b ∈ B} .

2.2 Reduction of sums of squares of polynomials to linear matrix
inequalities

The lemma below is well-known ([3, 10, 13]). We provide a proof for the reader to see how
we reduce the computation of unknown polynomials g1(x), g2(x), . . . , gr(x) satisfying the
identity (2) without knowing r.

Lemma 2.1. A polynomial f(x) of the form (1) is a sum of squares of a finite number of

polynomials with a common support G if and only if there exists a V ∈ SG+ such that

f(x) = u(x,G)TV u(x,G) =
∑
α∈G

∑
β∈G

Vαβx
α+β. (7)

4

Proof: Suppose that f(x) is a sum of squares of a finite number of polynomials

g1(x), g2(x), . . . , gr(x) in (2) represented as (6) for some vi = (viα : α ∈ G) ∈ RG
(i = 1, 2, . . . , r). Substituting gi(x) of the form (6) into (2), we see that

f(x) =
r∑
i=1

gi(x)2

=
r∑
i=1

(
(vi)Tu(x,G)

)2

= u(x,G)T

(
r∑
i=1

vi(vi)T

)
u(x,G)

= u(x,G)TV u(x,G),

where V =
∑r

i=1 v
i(vi)T ∈ SG+ . Thus, we have shown that if f(x) is a sum of squares

of finite number of polynomials with a common support G, then there exists a V ∈
SG+ satisfying (7). The converse is true since each V ∈ SG+ ca be factorized as V =∑r

i=1 v
i(vi)T for some vi = (viα : α ∈ G) ∈ RG (i = 1, 2, . . . , r) and some positive integer

r.

Now, we convert the problem of finding V ∈ SG+ satisfying (7) to an LMI (linear matrix
inequality) [2]. Substituting f(x) =

∑
γ∈F cγx

γ into (7), we see that∑
γ∈F

cγx
γ =

∑
α∈G

∑
β∈G

Vαβx
α+β =

∑
(α,β)∈C

Vαβx
α+β +

∑
(α,β)∈C,α6=β

Vαβx
α+β.

Here C = {(α,β) : α ∈ G,β ∈ G,α �` β}, and α �` β denotes that α is lexicographically
smaller than or equal to β. By comparing the coefficients of the monomials xγ (γ ∈ G+G),

we see that V ∈ SG+ satisfies this identity for every x ∈ Rn if and only if it satisfies a linear
system of equations

cγ =
∑

(α,β)∈C,γ=α+β

Vαβ +
∑

(α,β)∈C,γ=α+β,α6=β

Vαβ for every γ ∈ F ,

0 =
∑

(α,β)∈C,γ=α+β

Vαβ +
∑

(α,β)∈C,γ=α+β,α6=β

Vαβ

for every γ ∈ (G + G) \F .

(8)

Let σ and τ denote the cardinalities of the sets G and G+G, respectively. It is convenient to

introduce σ(σ+1)/2 constant matrices Eαβ ∈ SG with 1 in (α,β)th and (β,α)th positions

and 0 elsewhere for α �` β. Then, the positive semidefinite condition V ∈ SG+ can be
rewritten as

V =
∑

(α,β)∈C
VαβEαβ ∈ SG+ . (9)

Thus (8) and (9) forms an LMI (linear matrix inequality) in the variables Vαβ (α,β) ∈ C.
We mention here that there are many software packages [17, 18, 19], based on interior-point
methods for semidefinite programs, to solve LMIs.

5

3 Representation of a nonnegative polynomial as a

sum of squares

Throughout this section, we assume that a polynomial f(x) given in (1) with a support
F ⊂ Zn+ and real coefficients cα 6= 0 (α ∈ F) is a sum of squares of a finite number of
unknown polynomials gi(x) (i = 1, 2, . . . , r) given in (4) with a common support G ⊂ Zn+
and coefficients viα (α ∈ G, i = 1, 2, . . . , r), i.e., the identity (2) holds.

Lemma 3.1. Assume that

∅ 6= H ⊂ G, ∅ 6= B ⊂ G, G = H ∪ B,
(B + B) ∩ F = ∅ and (B + B) ∩ (G +H) = ∅.

}
(10)

Then,

viα = 0 for every α ∈ B (i = 1, 2, . . . , r) and f(x) =
r∑
i=1

∑
α∈H

viαx
α

2

.

(Note that the condition (10) implies B ∩H = ∅.)

Proof: First we observe that

f(x) =
∑
α∈F

cαx
α

=
r∑
i=1

 ∑
α∈B∪H

viαx
α

2

=
r∑
i=1

∑
α∈B

viαx
α +

∑
α∈H

viαx
α

2

=
r∑
i=1

∑
α∈B

viαx
α

2

+ 2
∑
α∈B

∑
β∈H

viαv
i
βx
α+β +

∑
β∈H

viβx
β

2 .

Letting

ϕ1(x) =
r∑
i=1

∑
α∈B

viαx
α

2

and

ϕ2(x) = 2
r∑
i=1

∑
α∈B

∑
β∈H

viαv
i
βx
α+β +

r∑
i=1

∑
β∈H

viβx
β

2

,

we thus obtain the identity f(x) = ϕ1(x) + ϕ2(x). Note that the supports of the polyno-
mials f(x), ϕ1(x) and ϕ2(x) are F , B + B and G +H for which the relation (10) holds.

Hence the identify above implies that ϕ1(x) =
∑r

i=1

(∑
α∈B v

i
αx
α)2

= 0. Therefore, the
desired result follows.

By restricting B to a singleton in G , we have the following corollary.

6

Corollary 3.2. ((2) of Proposition 3.7 of [3]). Assume that

α̂ ∈ G, G\{α̂} 6= ∅, 2α̂ 6∈ F e and 2α̂ 6∈ (G + G\{α̂}) . (11)

Then,

viα̂ = 0 (i = 1, 2, . . . , r) and f(x) =
r∑
i=1

 ∑
α∈G\{α̂}

viαx
α

2

.

As mentioned in the Introduction, we know that the support F of f(x) is contained
in co(F e), the convex hull of the set F e of integer vectors α ∈ F with coordinates αk
(k = 1, 2, . . . , n) of even nonnegative integers, and we can take G0 defined by (3) for an
effective common support of unknown polynomials gi(x) (i = 1, 2, . . . , r). Let G = G0. By
applying Lemma 3.1, we can recursively define a family Γ of common supports of unknown
polynomials g1(x), g2(x), . . . , gr(x) for which (2) holds as the following steps:

(i) G0 ∈ Γ.

(ii) if G ∈ Γ and there exist B and H satisfying (10), then H ∈ Γ.

We know that 1
2
F e ⊂ G0 and that any α̂ ∈ 1

2
F e can not satisfy (11). Hence

1

2
F e ⊂ G and #F e ≤ #G for every G ∈ Γ. (12)

We show that the family Γ is closed under intersection: if G ∈ Γ and G ′ ∈ Γ then
G ∩ G ′ ∈ Γ. This property of Γ guarantees the existence of the smallest support G∗ in
Γ, which is unique in the sense that G∗ ⊂ G for every G ∈ Γ. We use G∗ in practical
computation of unknown polynomials g1(x), g2(x), . . . , gr(x). Numerical methods for G∗
are described in Section 4.

In order to prove that the family Γ is closed under intersection, we need the following
lemma.

Lemma 3.3. Let F , B, H and G be finite subsets of Zn+ satisfying (10) of Lemma 3.1.
Assume that B contains at least two integer vectors. Then, there exists an α̂ ∈ B satisfying
(11).

Proof: Let α̂ be a vertex of the convex hull of B. Since α̂ ∈ B ⊂ G, the first relation
α̂ ∈ G and the second relation G\{α̂} 6= ∅ in (11) are apparent. The relation 2α̂ 6∈ F e
in (11) follows from the relation (B + B) ∩ F = ∅ in (10). To show the relation 2α̂ 6∈
(G + G\{α̂}) in (11), it suffices to show

2α̂ = α+ β, α ∈ G, β ∈ G implies α = β = α̂. (13)

This is because (13) indicates that there exist no α ∈ G and β ∈ G\{α̂} such that
2α̂ = α+ β. We assume that

α̂+ α̂ = α+ β, α ∈ G and β ∈ G, (14)

and derive α = β = α̂. Since G = B ∪ H and B ∩ H = ∅, it suffices to consider the
following three cases

7

(a) α ∈ B and β ∈ H.

(b) α ∈ H and β ∈ H.

(c) α ∈ B and β ∈ B.

Cases (a) and (b) can not occur because either of them contradicts the last relation of
(10). In case (c), (14) implies that α = β = α̂ since α̂ is a vertex of the convex hull of
B. Hence, we have shown (11).

Suppose that both (10) and (11) hold. Let G1 = G\{α̂}, B1 = B\{α̂} and H1 = H.
Then,

∅ 6= H1 ⊂ G1, ∅ 6= B1 ⊂ G1 and H1 ∪ B1 = G1,
(B1 + B1) ∩ F = ∅ and (B1 + B1) ∩ (G1 +H1) = ∅.

}
We can apply Lemma 3.3 again to the quadruple F , B1, H1 and G1 whenever B1 and H1 are
nonempty. Thus Lemma 3.3 not only shows a close relation of Corollary 3.2 with Lemma 3.1,
but also ensures that we can replace the condition (ii) by a simpler condition

(ii)’ if G ∈ Γ and there exists an α̂ ∈ G satisfying (11), then G\{α̂} ∈ Γ.

in the definition of the family Γ above. The latter fact plays an essential role in the proof
of the theorem below and also in a numerical method given in Section 4 for computing the
smallest set G∗ in the family Γ.

Now, we are ready to show the main theorem of this section.

Theorem 3.4. The family Γ is closed under intersection: if two G and G ′ lie in the family
Γ, then so does their intersection G ∩ G ′.

Proof: Suppose that G, G ′ ∈ Γ. We want to show that G ∩ G ′ ∈ Γ. If G ′ ⊂ G then
G ′ ∩ G = G ′ ∈ Γ. So we assume that G ′ 6⊂ G. In view of Lemma 3.3 and the discussion
above, we can construct G from G0 by eliminating an integer vector of Gp−1 ∈ Γ to generate
Gp ∈ Γ (p = 1, 2, . . . , q) successively such that

Gq = G, Gp−1\{αp−1} = Gp for some αp−1 ∈ Gp−1 (p = 1, 2, . . . , q),
2αp−1 6∈ F and 2αp−1 6∈

(
Gp + Gp−1

) }
(15)

Let Hp = G ′ ∩ Gp (p = 1, 2, . . . , q). Then

Hp = G ′ ∩ Gp = G ′ ∩
(
Gp−1\{αp−1}

)
= Hp−1\{αp−1} (p = 1, 2, . . . , q).

Hence we see that

Hp−1 =

{
Hp if αp−1 6∈ Hp−1,
Hp ∪ {αp−1} if αp−1 ∈ Hp−1 (16)

Since G = Gq, it suffices to show Hp ∈ Γ (p = 0, 1, 2, . . . , q) by induction. When p = 0,
H0 = G ′; hence H0 ∈ Γ. We assume that Hj ∈ Γ (j = 0, 1, . . . , p − 1) for some p ≤ q
and then show that Hp ∈ Γ. If Hp−1 = Hp then Hp ∈ Γ since Hp−1 ∈ Γ by induction.
Suppose that Hp−1 6= Hp. By (16), we see that Hp ∪ {αp−1} = Hp−1. On the other hand,
we see from the relations on the last line of (15), Hp−1 ⊂ Gp−1 and Hp ⊂ Gp that

2αp−1 6∈ F and 2αp−1 6∈
(
Hp +Hp−1

)
8

Therefore, we conclude by the definition of Γ that Hp ∈ Γ.

In the example (5), if we define subsets G1, G2 and G3 of G0 recursively by

α0 =

(
3
3

)
, G1 = G0\{α0},

α1 =

(
2
2

)
, G2 = G1\{α1},

α2 =

(
1
1

)
, G3 = G2\{α2}.

Then, Gp ∈ Γ (p = 0, 1, 2, 3) and G∗ = G3 is the smallest set in Γ.

4 Numerical methods for computing the smallest set

G∗ in Γ

Computation of the smallest set G∗ in the class Γ is achieved by solving a combinatorial
counting problem. The problem can be divided into two phases. The first phase generates
the initial set G0 given by (3), and the second phase eliminates redundant integer vectors
from G0 to obtain the smallest set G∗ in Γ.

4.1 Phase 1

The aim of the first phase is to compute the initial set G0. One way for G0 is as follows:

(i) Generate a very fast rough outer approximation A of G0; G0 ⊂ E = {α1,α2, . . . ,αm} ⊂
Z
n
+.

(ii) Describe the polytope 1
2
co(F e) in terms of its facet inequalities

aTj α ≤ bj (j = 1, 2, . . . , `).

(iii) Check whether each α in the outer approximation E of G0 satisfies the system of
linear inequalities above; α lies in G0 if and only if it satisfies the facet inequalities.

SOSTOOLS [11] employs this method with MATLAB’s function convhulln to obtain the
facet inequality description of the polytope 1

2
co(F e) as given in (ii). The software cdd+ [4]

can also be used for (ii). The method described above, however, may not be efficient for the
cases that the dimension n and/or the number of elements in F e becomes larger because
computing all facet inequalities of the polytope 1

2
co(F e) requires much work. This can be

observed by the numerical results showing that the number of facets is much larger than
the number of integer points in a polytope in Section 6. We also should mention that the
goal of phase 1 is not the facet inequalities but to obtain G0.

Barvinok [1] presented a numerical method to find the integer points in a rational poly-
tope described as a set of linear inequalities with integer coefficients or the convex hull of
a finite set of integer points. However, the software LattE [9] implementing his numerical

9

method accepts only a polytope represented by linear inequalities as input. Therefore, an-
other way to compute G0 is that we first implement the step (ii), which can be done with
the software cdd+ by [4]. Then, use the software LattE to enumerate the integer points in
G0.

Instead of computing all facet inequalities that may require a great deal of computational
time, we develop a simple enumeration method to generate G0. Let us define the lower and
upper bounds of each coordinate of the integer points in the polytope as follows.

`0 = (`0
1, `

0
2, . . . , `

0
n)T , `0

k = min

{
αk : α ∈ 1

2
co(F e)

}
(k = 1, 2, . . . , n),

u0 = (u0
1, u

0
2, . . . , u

0
n)T , u0

k = max

{
αk : α ∈ 1

2
co(F e)

}
(k = 1, 2, . . . , n),

E0 =
{
α ∈ Zn+ : `0 ≤ α ≤ u0

}
.

We observe that G0 = 1
2
co(F e) ∩ Zn+ ⊂ E0. The set E0 defined above serves as an initial

outer approximation of G0. The size of E0 can be reduced using the fact that the lower and
upper bounds of a higher dimensional coordinate (e.g. k ≤ n) of integer vectors depend on
lower dimensional coordinates (e.g. 1 to k− 1) whose values are set to appropriate integers.
If the first coordinate of the all integer vectors is fixed as an integer value between the
lower and upper bounds `0

1 and u0
1, new lower and upper bounds of all the other coordinates

can be computed. Then, use a different value between `0
1 and u0

1 to fix the value of the
first coordinate of the integer vectors and compute the lower and upper bounds of the
other coordinates. We continue this process until all the values in `0

1 and u0
1 are consumed.

Obviously, the size of the resulting set by these lower and upper bounds is a smaller than
E0. This process can be applied to fix the second to (n− 1)th coordinates with some value
and obtain lower and upper bounds of the coordinates that are not fixed. If all the possible
integer values in the first to (n− 1)th coordinates are fixed to compute the lower and upper
bounds of the nth coordinate, the integer vectors with the nth coordinate between the lower
and upper bounds yield G0.

4.2 Phase 2

Now we focus our attention on how to generate G∗ from G0. Let p = 0. We construct a
digraph (directed graph) having the nodes corresponding to all the integer vectors of F e
and Gp. We denote the nodes by {ν(γ,F e) : γ ∈ F e} ∪ {ν(α,Gp) : α ∈ Gp}. Note that
an α ∈ Zn+ may lie in both Gp and F e, but two nodes ν(α,Gp) and ν(α,F e) need to be
distinguished. We attach two types of (direct) edges to some pairs of the nodes as follows:

(a) a node ν(α,Gp) and a node ν(γ,F e) have an edge (ν(α̂,Gp), ν(γ,F e)) if and only if
2α̂ = γ.

(b) distinct two nodes ν(α̂,Gp) and ν(α,Gp) have an edge (ν(α̂,Gp), ν(α,Gp)) if and only
if 2α̂ = α+ β for some β ∈ Gp.

Then we can recognize each α̂ ∈ Gp satisfying 2α̂ 6∈ F e and 2α̂ 6∈ Gp + (Gp\{α̂}) as a node
ν(α̂,Gp) with no outgoing edges.

10

If there does not exist such a node then G∗ = Gp is the smallest set in Γ. Otherwise let
ν(αp,Gp) be such a node ν(α̂,Gp) and Gp+1 = Gp\{α̂}. Then eliminate the node ν(αp,Gp)
and all edges connected to the node ν(αp,Gp). Then the resulting graph has the nodes
corresponding to all the integer vectors of F e and Gp+1 and two types of edges characterized
as (a) and (b) above with p = p + 1. Therefore, replacing p by p + 1, we can continue this
procedure until we obtain the digraph that does not have any node with no outgoing edges
or the smallest set G∗ = Gp in Γ.

5 Some properties on G0 and G∗

We present some basic properties of G0 and G∗. These properties give an idea of the types
of test problems to be generated for numerical experiments. We begin with a monotonicity
property. Let F1 and F2 be the supports of two different polynomials in x ∈ Rn to
be represented with sums of squares. Suppose that F1 ⊂ F2. Then F e1 ⊂ F e2, G0

1 ⊂
G0

2 and G∗1 ⊂ G∗2. The first two inclusion relations follow directly from the definition. The
last one follows from the facts

• G0
1 ⊂ G0

2,

• if α̂ ∈ G ′1 ⊂ G ′2, G ′1\{α̂} 6= ∅, and if the triplet α̂, F e = F e2 and G = G ′2 satisfy (11),
then so do the triplet α̂, F e = F e1 and G = G ′1.

Next we focus on the fact that for given an F ⊂ Zn+, the family Γ is completely deter-
mined by F e ⊂ 2Zn+; any integer vector in F\F e is irrelevant for constructing the family Γ.
(Recall that the family Γ is characterized by (i) and (ii)’ in Section 3.) Hence, if F e1 = F e2
in the discussion above, we know that G∗1 = G∗2. It is sufficient to consider F e ⊂ 2Zn+ as an
input instead of F ⊂ Zn+ for the proposed method to calculate G0 and G∗. On the other
hand, if F ⊂ 2Zn+, then F e = F and the polynomial

∑
α∈F x

α forms a sum of squares.
This means that any F ⊂ 2Zn+ can be a candidate for the supports of polynomials to be
represented as a sum of squares. Therefore, “a randomly generated finite subset F of 2Zn+”
gives a fair sample for numerical experiments on computing G0 and G∗.

Now, we mention a special case where it is not possible to eliminate any integer vector
of G0 for the construction of G∗.

Proposition 5.1. Let ρ be a positive integer, and let F ⊂ 2Zn+ be such that{
0, 2ρe1, 2ρe2, . . . , 2ρen

}
⊂ F ⊂ co

({
0, 2ρe1, 2ρe2, . . . , 2ρen

})
.

Then, G∗ = G0 =
{
α ∈ Zn+ : eTα ≤ ρ

}
. Here ek ∈ Rn denotes the kth unit coordinate

vector with 1 in the kth component and 0 elsewhere.

Proof: First we observe that{
0, 2ρe1, 2ρe2, . . . , 2ρen

}
⊂ F e ⊂ co

({
0, 2ρe1, 2ρe2, . . . , 2ρen

})
,

G0 =

(
1

2
co (F e)

)
∩ Zn+

=
(
co
({

0, ρe1, ρe2, . . . , ρen
}))
∩ Zn+

=
{
α ∈ Zn+ : eTα ≤ ρ

}
,

11

where e denotes the n-dimensional column vector of ones. To prove G∗ = G0, it suffices to
show that any α̂ ∈ G0 does not satisfy the relations 2α̂ 6∈ F e and 2α̂ 6∈

(
G0 + G0\{α̂}

)
simultaneously in (11), or equivalently, that any α̂ ∈ G0 satisfies 2α̂ ∈ F e or

2α̂ ∈
(
G0 + G0\{α̂}

)
. (17)

Suppose that α̂ ∈ G0. We obviously see that every vertex α̂ of G0satisfies 2α̂ ∈ F e.
So we assume that α̂ ∈ G0 is not a vertex of G0. Then ρ ≥ 2, and we have two cases:
0 < eT α̂ < ρ and eT α̂ = ρ. In the former case, there is a j such that 0 < α̂j < ρ. Hence
we see that

2α̂ =
(
α̂− ej

)
+
(
α̂+ ej

)
,
(
α̂− ej

)
∈ G0\{α̂} and

(
α̂+ ej

)
∈ G0\{α̂}.

Thus (17) holds. In the later case, there are two different indices j and k such that
0 < α̂j < ρ and 0 < α̂k < ρ. Hence we see that

2α̂ =
(
α̂− ej + ek

)
+
(
α̂+ ej − ek

)
,(

α̂− ej + ek
)
∈ G0\{α̂} and

(
α̂+ ej − ek

)
∈ G0\{α̂},

which imply (17).

We obtain the following Corollary from the proposition above and the monotonicity
argument at the beginning of this section.

Corollary 5.2. Let ρ be a positive integer and J be a nonempty subset of {1, 2, . . . , n}.
Assume that F ⊂ 2Zn+ satisfies {0, 2ρej (j ∈ J)} ⊂ co (F) . Then co ({0, ρej (j ∈ J)}) ∩
Z
n
+ ⊂ G∗.

Proof: It follows from the assumption that {0, 2ρje
j (j ∈ J)} ⊂ F for some positive

integer ρj ≥ ρ (j ∈ J). Hence

co
({

0, ρej (j ∈ J)
})
∩ Zn+ ⊂ co

({
0, ρje

j (j ∈ J)
})
∩ Zn+ ⊂ G0.

Applying the same argument as in the proof of Proposition 5.1 to every

α̂ ∈ co
({

0, ρej (j ∈ J)
})
∩ Zn+,

we obtain co ({0, ρej (j ∈ J)}) ∩ Zn+ ⊂ G∗.
We mention a difference between the smallest support G∗ in Γ and a support of a minimal

representation over all possible representation of sums of square of a polynomial. Given a
polynomial f(x) with a support F , it is true that G0 includes any support of a polynomial
that can be used for some sum of squares representation of f(x), and we can eliminate an
α ∈ G0 only if any sum of squares representation of f(x) never uses α. In general, G∗ does
not necessarily provide a minimal representation over all sums of square representations of
f(x), but it still covers any support of a polynomial that can appear in some sum of squares
representation of f(x). To illustrate this, let us consider a simple example

f(x) = 2 + 2x4
1 + 2x4

2 for every x = (x1, x2)T .

12

We may regard G] =

{(
0
0

)
,

(
2
0

)
,

(
0
2

)}
as the support for a minimal sum of

squares representation of f(x). We may expect that G∗ = G]. But this is not true. In fact,
we see by Proposition 5.1 that

G0 = G∗ =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)
,

(
2
0

)
,

(
0
2

)}
.

We also see that f(x) is represented as another sum of squares

f(x) = (x2
1 − 1)2 + 2x2

1 + (x2
2 − 1)2 + 2x2

2 + (x2
1 − x2

2)2 + 2(x1x2)2.

That is, f(x) can be represented as a sum of squares of polynomials whose supports use all
integer vectors of G∗.

6 Preliminary numerical experiments

Phases 1 and 2 described in Section 4 were implemented with a MATLAB program. The
main focus of the numerical experiments in this section is to observe how the number of
integer vectors changes from G0 to G∗ with some randomly generated test problems. We are
also interested in how effectively the procedure by phase 1 and 2 reduces the sizes of G0 and
G∗ as the number of integer vectors in F e ⊂ 2Zn+ increases. The numerical results reported
here, however, should be regarded as preliminary for the following reasons:

• The current algorithms for phases 1 and 2 are primitive, and the MATLAB program
can handle only small size F ’s. For the largest case wtih 15 dimension and 61 elements
shown in Table 3, more than 5, 000 cpu seconds were consumed to compute G0 and G∗.

• The tested problems consist of a small number of artificially generated examples, and
they are not samples from practical problems.

We used a MATLAB function convhulln to compute the number of the facets of 1
2
co(F e). It

should be noted that the number of facets does not affect the implementation of the method
because the method does not need any information on the facets. The number of facets is
included for illustration and comparison to the method described as (i), (ii) and (iii) in the
beginning of Section 4.1.

As mentioned in the previous section, we may regard a randomly generated finite subset
F of 2Zn+ as a reasonable sample for numerical experiments on computing G0 and G∗. We
fixed the dimension n = 10, and generated Hpq ⊂ 2Z10

+ (p = 1, 2, 3, 4, q = 1, 2, 3, 4, 5) such
that #Hpq = 10 and each integer vector of Hpq was chosen randomly from 2{α ∈ Z10

+ : α ≤
4e}.

For Corollary 5.2, we generated H0q ∈ 2Z10
+ (q = 1, 2, 3, 4, 5) such that each H0q consists

of 10 coordinate vectors 2ρje
j with a randomly generated number ρj in {1, 2, 3, 4} (j =

1, 2, . . . , 10).
Numerical results are presented for

Fpq = ({0}) ∪ (∪pk=1Hkq) (p = 2, 3, 4, q = 1, 2, 3, 4, 5)

13

in Table 1, and for

F̃pq = ({0}) ∪ (∪pk=0Hkq) (p = 0, 2, 3, q = 1, 2, 3, 4, 5).

in Table 2. In Tables 1 and 2, #F epq (#F̃pqe, #G0, #G̃
0
, #G∗, #G̃

∗
, respectively) denotes

the number of integer vectors in F epq (F̃
e

pq, G0, G̃
0
, G∗, G̃

∗
, respectively), and #facets the

number of the facets of the polytope 1
2
co
(
F epq
)

in Tables 1 and the polytope 1
2
co
(
F̃
e

pq

)
in

Table 2. We measured cpu time in seconds for each of the computations G0
pq (q = 1, 2, 3, 4, 5)

(G∗pq (q = 1, 2, 3, 4, 5), G̃
0

pq (q = 1, 2, 3, 4, 5) or G̃
∗
pq (q = 1, 2, 3, 4, 5)), then show the minimum

and maximum cpu time of the measured cpu times in Table 1 and Table 2, denoted by
min.cpu and max.cpu, respectively.

By construction, we notice that

0 ∈ F2q ⊂ F3q ⊂ F4q ⊂ 2{α ∈ Zn+ : α ≤ 4e} (q = 1, 2, 3, 4, 5),

H0q = F̃0q ⊂ F̃2q ⊂ F̃3q ⊂ 2{α ∈ Zn+ : α ≤ 4e} (q = 1, 2, 3, 4, 5),

F2q ⊂ F̃2q, F3q ⊂ F̃3q (q = 1, 2, 3, 4, 5).

Table 1 displays the results for three cases (a) F2q, (b) F3q and (c) F4q, where Fpq
consists of 0 ∈ Z10

+ , and 10p randomly generated integer vectors from 2{α ∈ Z10
+ : α ≤ 4e}.

In all cases, the proposed method is shown to work very effectively. We also observe that a
very large number of facets of 1

2
co
(
F epq
)

is attained, much larger than the number vertices
of Fpq, 1 + 10p (p = 2, 3, 4, q = 1, 2, 3, 4, 5).

When F involves 0 and 10 coordinate vectors 2µje
j with µj ∈ {1, 2, 3, 4} (j = 1, 2, . . . , 10),

as stated in Corollary 5.2, the effectiveness of the method for eliminating integer vectors

of G0 is expected to decrease. We confirm this in Table 2. In case (c), we have G̃
0

0q = G̃
∗
0q

(q = 1, 2, 3, 4, 5). For example, F̃03 is given by

F̃03 = H03 = 2
{
0, 4e1, 3e2, 4e3, 3e4, 3e5, 3e6, e7, e8, 4e9, 4e10

}
.

From Corollary 5.2, we know that G̃
∗
03 contains the set co ({0, 3ej (j = 1, 2, 3, 4, 5, 6, 9, 10)})∩

Z
10
+ , which consists of 165 integer vectors. As more randomly generated integer vectors from

2{α ∈ Z10
+ : α ≤ 4e} are added to F̃0q, the effectiveness of the proposed method increases

as shown in cases (e) and (f) of Table 2. If we compare (b) of Table 1 and (e) of Table 2, we

notice that both F3q and F̃2q consist of 31 integer vectors but the method favors the former

case; G∗3q is much smaller than G̃
∗
2q (q = 1, 2, 3, 4, 5). This difference could be seen because

F̃2q contained the coordinate vectors 2µje
j with µj ∈ 2{1, 2, 3, 4} (j = 1, 2, . . . , 10). We

also observe a similar difference between (c) of Table 1 and (f) of Table 2. If we compare
(a) of Table 1 with (e) of Table 2, and (b) of Table 1 with (f) of Table 2, then we notice that
adding coordinate vectors 2µje

j with µj ∈ 2{1, 2, 3, 4} (j = 1, 2, . . . , 10) makes G0 larger
but the method still works effectively to reduce G0 in cases (e) and (f). In cases (e) and (f)

of Table 2, the number of facets of 1
2
co
(
F̃
e

pq

)
becomes very large, when compared with the

number integer points of F̃pq, 10p+ 1 (p = 2, 3, q = 1, 2, 3, 4, 5).

14

(a) F2q, #F e2q = 21 (b) F3q, #F e3q = 31 (c) F4q, #F e4q = 41

q #G0
2q #G∗2q #facets #G0

3q #G∗3q #facets #G0
4q #G∗4q #facets

1 46 21 2916 156 31 20,950 526 42 55,876
2 37 22 2996 167 32 16,833 468 42 52,581
3 41 21 2850 151 31 18,880 544 42 57,954
4 38 22 3180 201 32 18,947 644 43 50,853
5 38 23 2831 135 35 19,741 354 45 59,543

min.cpu 53.5 0.28 159.0 11.9 349.3 218.6
max.cpu 71.9 0.53 227.7 39.1 625.3 1370.0

Table 1: 0 ∈ Fpq ⊂ 2{α ∈ Z10
+ : αi ≤ 4e}

.

(d) F̃0q, #F̃
e

0q = 11 (e) F̃2q, #F̃
e

2q = 31 (f) F̃3q, #F̃
e

3q = 41

q #G̃
0

0q #G̃
∗
0q #facets #G̃

0

2q #G̃
∗
2q #facets #G̃

0

3q #G̃
∗
3q #facets

1 63 63 11 182 83 18,257 424 94 59,876
2 96 96 11 254 116 20,000 627 215 50,191
3 202 202 11 437 237 18,212 802 259 53,435
4 158 158 11 372 204 18,310 883 216 56,728
5 73 73 11 164 105 15,240 381 127 51,339

min.cpu 14.3 0.57 134.3 19.1 359.6 211.4
max.cpu 47.5 12.69 324.8 224.3 1718.0 3234.4

Table 2: 0, ρje
j ∈ F̃pq ⊂ 2{α ∈ Z10

+ : α ≤ 4e} (j = 1, 2, . . . , 10)
.

To observe how #G0, #G∗ and #facets change as n increases to 11, 12, 13, 14 and 15
for case (f) of Table 2, we took F̂n consisting of 1 + 4n integer vectors

0 ∈ Rn, 2µie
j (j = 1, 2, . . . , n), 2αr (r = 1, 2, . . . , 3n)

where µj was chosen randomly from {1, 2, 3, 4} and αr randomly from 2{α ∈ Zn+ : α ≤ 4e}.
The numerical results are shown in Table 3. The proposed method works effectively in
this case, and that the number of facets of 1

2
co (F e) increases rapidly as n increases; for

n = 14, 15, it was not possible to obtain the number of facets using the MATLAB function
convhulln as a result of out of memory in MATLAB.

7 Concluding remarks

We have shown theoretical properties on supports for sum of squares representations of a
polynomial in Section 3 and used the properties to propose a numerical method to compute
the smallest support among the class Γ of supports for sums of square representations of
a given polynomial. Numerical experiments in Section 6 exhibit the effectiveness of the
proposed method.

15

(f)’ F̂n, #F̃
e

n = 1 + 4n

n #Ĝ
0

n (cpu time) #Ĝ
∗
n (cpu time) #facets

11 656 (1128.7) 130 (1656.6) 165,236
12 616 (1260.3) 160 (1358.8) 563,955
13 582 (1489.8) 163 (1174.2) 2,059,342
14 715 (2615.5) 167 (2433.0) -
15 668 (3321.2) 186 (2022.8) -

Table 3: 0, ρje
j ∈ F̂n ⊂ 2{α ∈ Zn+ : α ≤ 4e} (j = 1, 2, . . . , n)

.

The test problems used in Section 6 do not represent a wide range of polynomials arising
in applications. They are randomly generated polynomials. As mentioned in Section 4, we
have used a simple enumeration method for phase 1 in the numerical experiments. Moreover,
the MATLAB implementation of phases 1 and 2 is not efficient to solve large scale problems.
Developing more efficient codes and extensive numerical tests for various polynomials are
subjects of future study.

In this paper, we have assumed that a given polynomial f(x) with a support F ⊂ Zn+
has a sum of square representation and derived G∗ as the smallest support in the class
Γ of supports for sums of square representations of f(x). It should be noted that the
numerical procedure to obtain G∗ can be used to determine whether f(x) has a sum of
squares representation even when it is not known in advance.

Separability is one of the important issues related to sparse polynomials. A polynomial
f(x) is called separable if it can be written as f(x) =

∑m
k=1 fk(xk), where

xk ∈ Rnk (k = 1, 2, . . . ,m),
m∑
k=1

nk = n, x = (x1,x2, . . . ,xm).

In this case, if f(x) is a sum of squares of polynomials in the joint vector variable x =
(x1,x2, . . . ,xm), we can think of a conjecture that it can be represented as a sum of
squares of polynomials each of which is a polynomial in exactly one of the vector vari-
ables x1,x2, . . . ,xm. We have confirmed that this conjecture is true when f(x) attains
0 for some x as its minimum. With the conjecture, the problem of finding the smallest
support for a separable polynomial is divided into m subproblems with smaller sizes. Then,
the computational method discussed in Section 4 can be applied to each of m subprob-
lems. Therefore, separable polynomials can be handled efficiently in search for the smallest
support.

Acknowledgments: The authors would like to thank Prof. A. Barvinok for providing
information on numerical methods for enumerating integer vectors in a convex hull, Prof.
J.A. De Loera, Prof. K. Fukuda, and Dr. Pablo Parillo for helpful comments on their
software packages.

16

References

[1] A. Barvinok, J. E. Pommersheim, “An algorithmic theory of lattice points in poly-
hedra,” New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97), 91–147,
Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.

[2] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in
System and Control Theory, (SIAM, Philadelphia, 1994).

[3] M. D. Choi, T. Y. Lam, and B. Reznick, “Sums of squares of real polynomials”,
Proceedings of Symposia in Pure Mathematics, 58 2 (1995) 103-126.

[4] K. Fukuda, “cdd and cddplus homepage”,
http://www.cs.mcgill.ca/∼fukuda/soft/cdd home/cdd.html, Computer Science,
McGill University, 3480 University, Montreal , Quebec, Canada H3A 2A7.

[5] K. Gatermann and P. A. Parrilo, “Symmetry groups, semidefinite programs and sums
of squares”, Working paper, Konrad-Zuse-Zentrum fur Informationstechnik, Takustr.
7, D-14195, Berlin, Germany, 2003.

[6] M. Kojima, S. Kim and H. Waki, “A general framework for convex relaxation of
polynomial optimization problems over cones”, Journal of Operations Research Society
of Japan, 46 2 (2003) 125-144.

[7] J. B. Lasserre, “Global optimization with polynomials and the problems of moments”,
SIAM Journal on Optimization, 11 (2001) 796–817.

[8] J. B. Lasserre, “An Explicit Equivalent Positive Semidefinite Program for 0-1 Nonlinear
Programs”, 2002. To appear in SIAM Journal on Optimization.

[9] J. A. De Loera, R. Hemmecke, J. Tauzer and R. Yoshida, LattE,
http://www.math.ucdavis.edu/ latte, University of California at San Diago.

[10] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic problems”.
Mathematical Programming, 96 (2003) 293–320.

[11] S. Prajna, A. Papachristodoulou and P. A. Parrilo, “SOSTOOLS: Sum of Squares
Optimization Toolbox for MATLAB – User’s Guide”, Control and Dynamical Systems,
California Institute of Technology, Pasadena, CA 91125 USA, 2002.

[12] M. Putinar, “Positive polynomials on compact semi-algebraic sets”, Indiana University
Mathematics Journal, 42 (1993) 969–984.

[13] V. Powers and T. Wörmann, “An algorithm for sums of squares of real polynomials”,
Journal of Pure and Applied Algebra, 127 (1998) 99-104.

[14] B. Reznick, “Extremal psd forms with few terms”, Duke Mathematical Journal, 45
(1978) 363-374.

[15] B. Reznick, “Some concrete aspects of Hilbert’s 17th problem”, In Contemporary
Mathematics, 253 (2000) 251-272.

17

[16] N.Z. Shor, “ Class of global minimization bounds of polynomial functions”, Cybernetics,
23 (1987) 731-734.

[17] J. F. Strum, “SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones”, Optimization Methods and Software, 11 & 12 (1999) 625-653.

[18] M. J. Todd, K. C. Toh and R. H. Tütüncü, “SDPT3 – a MATLAB software package
for semidefinite programming, version 1.3,” Optimization Methods and Software, 11 &
12 (1999) 545-581.

[19] M. Yamashita, K. Fujisawa and M. Kojima, “Implementation and Evaluation of SDPA
6.0 (SemiDefinite Programming Algorithm 6.0)”, September 2002. To appear in Opti-
mization Methods and Software.

18

