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Abstract

This paper presents a new method for the analysis of convergence and smooth-
ness of univariate non-uniform subdivision schemes. The analysis involves ideas
from the theory of asymptotically equivalent subdivision schemes and non-uniform
Laurent polynomial representation together with a new perturbation result. Appli-
cation of the new method is presented for the analysis of interpolatory subdivision
schemes based upon extended Chebyshev systems and for a class of smoothly vary-
ing schemes.
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1 Introduction

The analysis of univariate linear uniform stationary subdivision schemes is now well es-

tablished via the Laurent polynomial tool, see e.g. [5], or the equivalent Joint-Spectral-

Radius (JSR) analysis, see e.g. [3, 11]. In this presentation we suggest a new method

for the analysis of univariate linear non-uniform subdivision schemes based on a combi-

nation of three analysis tools: Asymptotic equivalence of subdivision schemes, Laurent

polynomial representation of non-uniform linear schemes and a new result on the con-

vergence of perturbed linear subdivision schemes.
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The schemes analyzed by the new method are defined on uniform grids, by masks

which change with the location and the refinement level. As shown in [15], such schemes

may still be analyzed using difference schemes, provided the difference schemes exist.

The main message of the present work is the possibility of relaxing the necessity of

the existence of difference schemes. Instead, certain asymptotic conditions on the

subdivision masks are imposed. We demonstrate the application of the new method

first to the analysis of 2n-point interpolatory schemes based upon local interpolation by

an extended Chebyshev system. A different approach to the analysis of such schemes is

presented in [16], based on specific properties of extended Chebyshev systems. A second

application of the new method is to the analysis of a class of non-uniform schemes with

masks which vary smoothly along the real line, and which tend to a uniform stationary

mask as the level of refinement grows.

Previous analysis of non-uniform subdivision schemes on diadic grids is presented

in [1], [10], [13], [14] and [15]. [1] presents necessary and sufficient conditions for the

convergence of subdivision schemes induced by a sequence of two-slanted bi-infinite

matrices. In [10], sufficient conditions for the convergence of a non-uniform corner

cutting and the differentiability of the limit curve are presented. The construction

of stationary non-uniform subdivision schemes that have a prescribed approximation

power is presented in [13]. The paper [14] investigates the smoothness of quasi-uniform

bivariate subdivision. In [15], a Laurent polynomial representation is suggested for

the analysis of non-uniform subdivision schemes, and the basic operations required for

smoothness analysis are presented. The paper [2] analyzes a 4-point scheme defined on

a non-uniform grid.

2 Preliminaries on uniform and non-uniform schemes

A uniform binary stationary subdivision scheme is defined by a fixed mask of coefficients

p = {pi} via the recursive relation

fkj =
∑

i∈Z

pj−2if
k−1
i , k ≥ 1, j ∈ Z. (1)

Here fkj is the value, at refinement level k, attached to the diadic point j2−k. A

general non-uniform binary subdivision scheme may apply a different mask for any

newly defined value. We denote by pj,k the mask of coefficients defining the new value

fkj at j2−k, and the scheme is

fkj =
∑

i∈Z

pj,kj−2if
k−1
i , k ≥ 1, j ∈ Z. (2)

Hence, a non-uniform binary subdivision is defined by the set of masks {pj,k}k∈Z+,j∈Z.

In this paper, we assume that all the masks have the same finite support. Note that
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only odd (even) indices of the mask are used to define a new value at fkj for an odd

(even) j. Denoting fk = {fki : i ∈ Z}, another way of representing (2) is

fk = Skf
k−1, (3)

where Sk is an operator (infinite matrix). It is further assumed that Sk is a bounded

operator, that is,

Sk : ℓ∞(Z) → ℓ∞(Z), (4)

and that f0 ∈ ℓ∞(Z).

Definition 2.1. We say that a subdivision scheme is Cm if the sequence of piecewise

linear interpolants {fk(·)}∞k=0,

fk(t) =
∑

j

fkj B1(2
k · −j), (5)

converges uniformly to a Cm function, denoted by f∞, where B1 is the standard hat

function on [−1, 1].

Note that the uniform convergence of {fk(·)}∞k=0 implies that the limit is a C0

function.

Definition 2.2. A subdivision scheme (3) is termed stable if there exists M > 0 such

that for all k, n ∈ Z+,

‖Sk+n · · · Sk+1Sk‖∞ < M. (6)

Definition 2.3. A stationary uniform subdivision scheme defined by a mask p is de-

noted by Sp, and for a converging scheme, we use the notation

S∞
p f

0 = f∞. (7)

The basic limit function of Sp is φp = S∞
p {δ0,i}.

Another notion of stability used in this paper is concerned with the stability of the

basis spanned by the integer shifts of the basic limit function:

Definition 2.4. The basic limit function φp of a stationary uniform subdivision scheme

defined by a mask p is termed L∞-stable if for any bounded sequence {ai}i∈Z,

C1 sup
i∈Z

|ai| ≤ ‖
∑

i∈Z

aiφp(x− i)‖∞ ≤ C2 sup
i∈Z

|ai|. (8)

As shown in [5], it is convenient to present the analysis of uniform subdivision

schemes in terms of the Laurent polynomials’ representation. A stationary scheme

with mask coefficients p = {pi} defines a Laurent polynomial

p(z) =
∑

i∈Z

piz
i,
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and it is convergent if and only if p(z)/(1+ z) is a Laurent polynomial, and the scheme

it defines is contractive. Furthermore, a scheme is Cm (produces Cm limit functions) if

2mp(z)/(1+z)m+1 is a Laurent polynomial, and if the scheme defined by it is convergent.

This condition is also necessary for the scheme to be Cm if its basic limit function is

L∞-stable (see e.g. [8, p.114]). The above observations follow from the basic Laurent

series relation

Fk(z) = p(z)Fk−1(z
2), (9)

where

Fk(z) =
∑

j∈Z

fkj z
j (10)

with {fkj } the values generated at level k by the subdivision scheme. Furthermore, the

Laurent series representation of the m-th order divided differences of the values at level

k can be represented as

Dm
k (z) = 2km(1− z)mFk(z) = 2km(1− z)mp(z)Fk−1(z

2). (11)

Therefore, the relations (9) and (11), and the fact that p(z)/(1 + z)m is a Laurent

polynomial imply the existence of a ‘divided difference scheme’

Dm
k (z) = 2mp(z)/(1 + z)mDm

k−1(z
2) . (12)

The convergence of the m-th order divided difference scheme implies that the original

scheme is Cm.

3 Three analysis tools

This work analyzes non-uniform schemes which converge asymptotically to uniform

schemes. It suggests some conditions on the asymptotic behavior that are sufficient for

deducing smoothness results from the smoothness of the limit uniform scheme. The

rudimental tools for the new analysis are described below. They include a new basic

result on perturbation in subdivision schemes, asymptotic equivalence analysis, and a

Laurent series analysis for the non-uniform case.

3.1 Small perturbations in subdivision schemes

The following perturbation result holds for general non-uniform linear stable subdivi-

sion schemes.

Proposition 3.1. Let {Sk}k≥0 be a linear and stable (C0) subdivision scheme. Let

{ǫk}k≥0 be a sequence of real sequences, ǫk = {ǫkj }j∈Z, satisfying

∞
∑

k=0

‖ǫk‖∞ <∞.
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Then the perturbed subdivision scheme

fk = Sk−1f
k−1 + ǫk, k = 1, 2, ... , (13)

converges to a C0 limit for any initial data f0 ∈ ℓ∞(Z).

Proof. Denoting by S[k,∞)gk the limit function of the scheme {Sj}j≥k starting at level

k with initial values gk and using the linearity of the scheme in (13), we have

lim
k→∞

∑

j

fkj B1(2
k · −j) = S[0,∞)f0 +

∞
∑

k=1

S[k,∞)ǫk. (14)

By the assumptions of the proposition, all the functions in the infinite sum in the right

hand side of (14) are continuous, and the sum is uniformly convergent. Therefore, the

scheme (13) defines a continuous limit function.

For later use, we introduce the notation

ak = ō(1) , as k → ∞ , (15)

to denote an absolute summable real sequence {ak}. More generally, we compare a

sequence {ak} with a positive sequence {bk}, and denote

ak = ō(bk) , as k → ∞ , (16)

if

ak/bk = ō(1) , as k → ∞. (17)

Proposition 3.1 states that summable perturbations of the values do not affect the

convergence of a stable scheme.

3.2 Asymptotic equivalence for non-uniform schemes

Similarly to [7], a non-uniform scheme with the masks {pj,k} is said to be asymptotically

equivalent to a scheme with the masks {p̃j,k}, denoted by {pj,k} ∼ {p̃j,k}, if

∞
∑

k=0

sup
j∈Z

{‖pj,k − p̃j,k‖} <∞, (18)

where the norm is any norm on the coefficients of the masks. The results in [7] and [8]

refer to uniform non-stationary schemes, i.e., the masks depend only upon the level k.

However, the results are easily adaptable to the general non-uniform case:

Proposition 3.2. If {pj,k} ∼ {p̃j,k} and the scheme defined by {p̃j,k} is stable and C0,

then so is the scheme defined by {pj,k}.
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In this paper, we assume that the scheme with the masks {pj,k} is asymptotically

equivalent to a convergent stationary scheme with the mask p. Therefore, by Propo-

sition 3.2, and since any convergent stationary scheme is stable [7], it immediately

follows that the scheme defined by {pj,k} is also a C0 stable scheme. However, the

conditions in [7] for higher order smoothness in terms of the masks are quite restrictive

and smoothness analysis via “smoothing factors” is developed there. Since we failed

to extend this analysis to non-uniform schemes, we suggest in this paper a different

method.

3.3 Laurent series formalism for non-uniform schemes

Following [15], we can adapt the Laurent series formalism to the case non-uniform

subdivision schemes. Introducing the notation

[G(z)]j = [
∑

ℓ∈Z

gℓz
ℓ]j = gj , j ∈ Z, (19)

and recalling the definition of Fk(z) in (10), we present a general linear non-uniform

binary subdivision scheme (2) by

Fk(z) =
∑

j∈Z

[pj,k(z)Fk−1(z
2)]jz

j , (20)

where the Laurent polynomials pj,k(z), as in the uniform case, are defined by the

corresponding masks,

pj,k(z) =
∑

i∈Z

pj,ki zi.

The Laurent polynomial pj,k(z) defines the subdivision rule for computing the value

fkj , which is the value at level k, attached to the parameter value j2−k.

As in the uniform case, we denote by Dm
k (z) the Laurent series of the m-th order

divided differences at subdivision level k, that is,

Dm
k (z) = 2km(1− z)mFk(z) =

∑

δk,mj zj ,

where δk,mj is the m-th divided differences of the values at level k,

δk,mj = 2mk

m
∑

i=0

(−1)i
(

m

i

)

fkj−i. (21)

By (19) and (20), the corresponding Laurent series analogue of (11) in the non-uniform
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case is
Dm

k (z) =
∑

j∈Z

2km[(1− z)mFk(z)]jz
j

=
∑

j∈Z

2km
[

m
∑

i=0

(−1)i
(

m

i

)

zipj−i,k(z)Fk−1(z
2)
]

j
zj

=
∑

j∈Z

2km[dj,km (z)Fk−1(z
2)]jz

j ,

(22)

where

dj,km (z) ≡
m
∑

i=0

(−1)i
(

m

i

)

zipj−i,k(z). (23)

We would have liked to proceed further to a relation analogous to (12) with Dm
k−1(z)

in the right hand side of (22), but this is not possible in the non-uniform case. Instead,

we formulate below conditions on the masks {pj,k} that lead to a perturbed form of

(12), which facilitates the smoothness analysis.

4 The new analysis method

Our new method applies to a subclass of non-uniform subdivision schemes with poly-

nomials dj,km (z) in (23) satisfying certain asymptotic conditions.

Definition 4.1. (Property A) Consider a non-uniform binary scheme S defined by

masks {pj,k}. We say that the scheme S satisfies Property A of order m if

dr

dzr
dj,km (±1) = ō(2−k(m−r)), as k → ∞. 0 ≤ r < m. (24)

The main theorem below uses Property A to prove smoothness of non-uniform

schemes. Later on, we present and analyze two families of non-uniform schemes which

satisfy Property A.

Theorem 4.2. Consider a non-uniform binary scheme S defined by masks {pj,k},

satisfying

{pj,k} ∼ p, (25)

where p is the mask of a stationary binary scheme Sp. Further assume that S satisfies

Property A of orders 1 ≤ ℓ ≤ m. If Sp is a Cm scheme with a stable basic limit

function, then also S is a Cm scheme.

Proof. By Proposition 3.2, it follows that S is convergent and C0. In order to prove

higher smoothness, we examine the convergence of divided differences, using the Lau-

rent polynomials’ representation introduced in Section 3.3. Recalling (22), we have

Dm
k (z) =

∑

j∈Z

2km[dj,km (z)Fk−1(z
2)]jz

j . (26)
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By Property A at z = 1,

dj,km (1) = ō(2−km), as k → ∞. (27)

Hence, using the first order Taylor expansion of dj,k(z) around z = 1, we obtain

dj,km (z) = (1− z)ej,k(z) + ō(2−km). (28)

From now on, the notation ō(bk) also stands for a sequence of Laurent polynomials

whose coefficients are ō(bk) as k → ∞. Next, by Property A at z = −1, it follows that

ej,k(−1) = ō(2−km). (29)

Then the Taylor expansions of ej,k(z) around z = −1 yields the equation

dj,km (z) = (1− z2)cj,k1 (z) + ō(2−km). (30)

By (24), it turns out that the Laurent polynomial cj,k1 (z) has Property A of order

m− 1. Hence, we can repeat the above process and get

dj,km (z) = (1− z2)2cj,k2 (z) + (1− z2)ō(2−k(m−1)) + ō(2−km).

After m steps of the process, we finally have the equation

dj,km (z) = (1− z2)mcj,km (z) +
m−1
∑

r=0

(1− z2)rō(2−k(m−r)). (31)

For later use, we denote the last term in (31) as

Rj,k
m (z) :=

m−1
∑

r=0

(1− z2)rō(2−k(m−r)). (32)

On the other hand, since
∑m

i=0(−1)i
(

m
i

)

zi = (1− z)m, it follows from (23) and (25)

that

dj,km (z) = p(z)(1− z)m + ō(1).

This, together with (31), yields

cj,km (z) =
p(z)

(1 + z)m
+ ō(1). (33)

Plugging (31) in (26) and using (33), we obtain that

Dm
k (z) =

∑

j∈Z

[2km
(

(1− z2)mcj,km (z) +Rj,k
m (z)

)

Fk−1(z
2)]jz

j

=
∑

j∈Z

[

(

2km
( p(z)

(1 + z)m
+ ō(1)

)

(1− z2)m + 2kmRj,k
m (z)

)

Fk−1(z
2)
]

j
zj .

(34)
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Now, we are in a position to represent the relation between the m-th divided differences

at level k in (22) and the m-th divided differences at level k − 1, that is,

Dm
k−1(z) =

∑

j∈Z

2(k−1)m[(1− z)mFk−1(z)]jz
j .

Specifically, we have

Dm
k (z) =

∑

j∈Z

[( 2mp(z)

(1 + z)m
+ ō(1)

)

Dm
k−1(z

2)
]

j
zj + 2km

∑

j∈Z

[Rj,k
m (z)Fk−1(z

2)]jz
j . (35)

We claim that the last term on the right hand side of (35) contributes ō(1) perturba-

tions, under the assumption that the scheme is Cm−1. Indeed, by (32), a typical term

in 2kmRj,k
m (z)Fk−1(z

2) is

ō(2kr)(1− z2)rFk−1(z
2) , 0 ≤ r ≤ m− 1. (36)

The values represented by (1 − z2)rFk−1(z
2) are the rth order divided differences of

fk−1, and these are o(2−kr) as k → ∞. Therefore, each term of the form (36) is ō(1).

Recalling that p is the generating Laurent polynomial of a Cm scheme with a stable

limit function, we know that 2mp(z)/(1+ z)m represents the converging scheme for the

mth order divided differences. Hence, the scheme defined by 2mp(z)/(1+ z)m + ō(1) is

convergent as being asymptotically equivalent to a converging scheme, and it is even

a stable scheme by Proposition 3.2. Thus, the relation (35) represents a perturbed

scheme which satisfies the conditions of Proposition 3.1. We conclude that the m-th

order divided differences {δk,mj } defined in (21) converge to a continuous limit, hence

{fkj } converge to a Cm limit under the assumption that the limit is Cm−1. Using

induction, starting with m = 1, we obtain the claim of the theorem.

In the following sections, we discuss two examples of families of non-uniform schemes

which satisfy Property A.

5 Interpolatory schemes defined by extended Chebyshev

systems

In this section, we consider the family of interpolatory schemes defined by extended

Chebyshev systems, and show how the new method presented above can be used for an-

alyzing the smoothness of such schemes. The 2n-point interpolatory subdivision scheme

of Dubuc Deslauriers [4] is constructed by demanding that the scheme reproduces poly-

nomials up to degree 2n− 1. Here we discuss the 2n-point interpolatory scheme repro-

ducing an extended Chebyshev system (ECS), Φ2n = {φm}2nm=1 ⊂ C2n(IR). The scheme

is in fact defined by replacing the polynomial basis by an ECS Φ2n. A special case of

such schemes has been studied in [9], where the ECS is a set of exponential polynomials

9



and the corresponding subdivision schemes are uniform but non-stationary. In general,

unlike the polynomial basis, an ECS is not shift or scale invariant. Accordingly, to

define the subdivision rule at each new point s = j2−k with j odd at subdivision level

k, one has to solve a system of linear equations for the mask coefficients {wj,k
i }:

n−1
∑

i=−n

wj,k
i φm(s+ (2i+ 1)2−k) = φm(s), 1 ≤ m ≤ 2n. (37)

For 1 ≤ m ≤ 2n, let ψm ∈ span({φℓ}
2n
ℓ=1) be the function interpolating the function

(·−s)m−1 and its derivatives up to order 2n−1 at s. Since Φ2n is an ECS, the functions

{ψm}2nm=1 exist, and

|ψm(x)− (x− s)m−1| ≤ C|x− s|2n, 1 ≤ m ≤ 2n, (38)

where the constant C > 0 depends on the derivatives of order 2n of {φℓ}
2n
ℓ=1. Replacing

φm by ψm in the system (37) and using (38), we obtain an equivalent system for the

mask coefficients {wj,k
i }:

n−1
∑

i=−n

wj,k
i [(2i+ 1)m2−mk +O(2−2nk)] = δm,0 +O(2−2nk), 0 ≤ m ≤ 2n− 1. (39)

Multiplying the mth equation in (39) by 2mk with 0 ≤ m ≤ 2n− 1, we get

n−1
∑

i=−n

wj,k
i [(2i+ 1)m +O(2(−2n+m)k)] = δm,0 +O(2(−2n+m)k). (40)

Recalling the system defining the mask coefficients of the 2n-point interpolatory sub-

division scheme of Dubuc-Deslauriers, that is,

n−1
∑

i=−n

w̃i(2i+ 1)m = δm,0, 0 ≤ m ≤ 2n− 1, (41)

we observe that the system (40) can be viewed as a perturbation of (41). Recall also

that the weights {wj,k
i } define the subdivision rule at a new point s = j2−k, for j odd,

at refinement level k. For the Dubuc-Deslauriers scheme those weights are independent

upon j and k, i.e., the subdivision is uniform and stationary, and a related Laurent

polynomial is defined as

p̃(z) = 1 +
n−1
∑

i=−n

w̃iz
2i+1. (42)

The Laurent polynomials {pj,k(z)} for the case of a 2n-point ECS interpolating

subdivision scheme are

pj,k(z) = 1 +
n−1
∑

i=−n

wj,k
i z2i+1, (43)

10



where {wj,k
i } are obtained by solving (37) with s = j2−k. Unlike [15], we do not

assume here that the scheme reproduces the constant function, but, as we show below,

the scheme {pj,k} is asymptotically equivalent to the convergent stationary scheme Sp̃
with p̃ defined in (42). Therefore, by [7], it immediately follows that the scheme defined

by {pj,k(z)} is also a C0 scheme. However, the tools in [7] for the analysis higher order

smoothness are not applicable for the ECS schemes, and we need the analysis developed

in this work to prove higher smoothness results.

To show that {pj,k} ∼ p̃, we view the system (40) as a perturbation of (41), and

apply the following perturbation result:

Lemma 5.1. Let A be a non-singular matrix and let Ax(0) = b. Consider the solution

x(h) of a perturbed system (A+ hB)x(h) = b+ hc, as h→ 0. Then, for a small enough

h,

x(h) = x(0) + hy(h), as h→ 0, ‖y(h)‖ ≤M. (44)

Proof. For a small enough h, we may represent the inverse of A+ hB as

(A+ hB)−1 = A−1(I + hBA−1)−1

= A−1
∞
∑

ℓ=1

(hBA−1)ℓ−1

= A−1 + hA−1BA−1
∞
∑

ℓ=1

(hBA−1)ℓ.

We see that the above infinite sums converge for a sufficiently small h. Therefore, the

proof follows by applying the inverse to b+ hc.

We now use all the above observations to find the asymptotic behavior of the Lau-

rent polynomials pj,k(z) of the interpolatory schemes reproducing the ECS Φ2n. Using

Lemma 5.1 and viewing the system (40) as a perturbation of the system (41) with

h = 2−k, we obtain the following result.

Proposition 5.2. Let {pj,k(z)} be the Laurent polynomials of the interpolatory scheme

reproducing an ECS Φ2n. Then,

pj,k(z) = p̃(z) + 2−ksj,k(z), (45)

where the coefficients of the polynomials {sj,k(z)} are uniformly bounded.

A direct consequence of Proposition 5.2 is that {pj,k} ∼ p̃, from which we conclude

that the ECS interpolating scheme is C0.

The Laurent polynomial p̃(z) has a root of multiplicity 2n at z = −1. This property

is necessary for applying the Laurent polynomial tool to analyze the smoothness of the
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ECS scheme. In order to apply Theorem 4.2 for our non-uniform schemes, we need to

study the behavior of pj,k(z) near z = ±1. Property (45) directly implies that

pj,k(−1) = O(2−k), as k → ∞.

However, using the system (40), we observe a more delicate behavior of the Laurent

polynomial pj,k(z) near z = ±1.

Proposition 5.3. Let {pj,k(z)} be the Laurent polynomials of the interpolatory scheme

reproducing an ECS Φ2n. Then, as k → ∞, we have

dm

dzm
pj,k(−1) = O(2(−2n+m)k), 0 ≤ m ≤ 2n− 1, (46)

and
dm

dzm
pj,k(1) = 2δm,0 +O(2(−2n+m)k), 0 ≤ m ≤ 2n− 1. (47)

Proof. By Proposition 5.2, the coefficients {wj,k
i } are uniformly bounded. Hence, by

(40), we have

n−1
∑

i=−n

wj,k
i (2i+ 1)m = δm,0 +O(2(−2n+m)k), 0 ≤ m ≤ 2n− 1. (48)

Applying the differential operator L = z d
dz

to (43) m times with m > 0, we have

Lmpj,k(z) =
n−1
∑

i=−n

wj,k
i (2i+ 1)mz2i+1. (49)

Thus it follows, in view of (48), that

|Lmpj,k(±1)| = |
n−1
∑

i=−n

wj,k
i (2i+ 1)m| = O(2(−2n+m)k), 0 < m ≤ 2n− 1. (50)

The results (46) and (47) for m 6= 0 follow by recursive use of (50), and (47) for m = 0

follows from (48).

Using the above Proposition 5.3, we are now ready to use Theorem 4.2 to prove the

smoothness of interpolatory schemes based on ECSs.

Theorem 5.4. Let Φ2n = {φi}
2n
i=1 ⊂ C2n(IR) be an ECS for n ≥ 2, and define the

mask of an interpolatory subdivision scheme by (37). Then, the limit functions of the

subdivision are converging to a Cm limit, where m is the highest smoothness of the

corresponding 2n-Dubuc-Deslauriers scheme.
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Proof. We have already established that the scheme is convergent, being asymptotically

equivalent to the 2n-Dubuc-Deslauriers scheme. It follows from (46) and (47) that

the scheme satisfies Property A of order m < 2n. Since the highest smoothness of

the corresponding 2n-Dubuc-Deslauriers scheme is smaller than n [4], we can conclude

from Theorem 4.2 that the 2n-point scheme based upon the ECS is Cm, where m is the

highest (integer) smoothness of the corresponding 2n-Dubuc-Deslauriers scheme.

Remark 5.1. Conditions (46) and (47) imply Property A for any m < 2n. Relations

(46) can hold for any scheme, but relations (47) are limited to the case where the non-

uniform scheme is asymptotically equivalent to a stationary interpolatory scheme which

reproduces polynomials of degree less than 2n.

6 Smoothly varying non-uniform schemes

In this section, we apply the new analysis method of Section 4 to a family of smoothly

varying subdivision schemes.

Definition 6.1. (Smoothly varying masks) A non-uniform set of masks {pj,k} is

termed smoothly varying of order m if the coefficients of the masks satisfy

pj,ki = ϕi(2
−kj), (51)

where ϕi ∈ Cm(R).

A special class of mth order smoothly varying schemes is the class of schemes

with smoothly varying ‘smoothing factors’. A factor of the form (1 + z(1 + c2−k)) is

a smoothing factor. In [7], it is shown that multiplying the Laurent polynomial at

refinement level k of a uniform non-stationary scheme by such a factor increases by one

the smoothness class of the scheme. This is proved via a corresponding convolution

argument. In the case of non-uniform schemes, we cannot use the convolution tool.

However, we are able to show a similar result for smoothly varying non-uniform schemes

satisfying the following Property B.

Definition 6.2. (Property B) A non-uniform binary scheme S defined by masks

{pj,k} has Property B of order m if

pj,k(z) =
m+1
∏

ℓ=1

(

1 + z(1 + 2−kgℓ(2
−kj))

)(

q(z) + 2−kqj,k(z)
)

, (52)

where gi ∈ Cm(R) and {qj,k} is smoothly varying of order m.

Remark 6.1. It is clear that {pj,k} is smoothly varying of order m, and that {pj,k} ∼ p

where p(z) = (1 + z)m+1q(z).
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An important class of schemes with Property B are smoothly varying perturbations

of spline subdivision schemes. Indeed, the Lane-Riesenfeld algorithm [12], with non-

symmetric repeated binary averages using smoothly varying weights tending to 1
2 at a

rate 2−k, is of the form (52), or more specifically

pj,k(z) = (1 + z)
m
∏

ℓ=1

(

1 + z(1 + 2−kgℓ(2
−kj))

)

/
(

2 + 2−kgℓ(2
−kj)

)

. (53)

Such schemes occur in some geometrical variants of the Lane-Riesenfeld algorithm [6].

First, we show that Property B implies Property A.

Proposition 6.3. A scheme which satisfies Property B of order m satisfies Property

A of order m.

Proof. For this proof, we need to show the relation in (24). At z = −1, we have by

(52) that each pj,k(z) satisfies

dr

dzr
pj,k(−1) = ō(2−k(m−r)), 0 ≤ r ≤ m,

as k → ∞. Hence, the equation (24) holds at z = −1. Also, to prove that (24) holds

at z = 1, we start with r = 0. By (23), (51) and (52), we obtain that

dj,km (1) =
m
∑

i=0

(−1)i
(

m

i

)

pj−i,k(1)

= ∆m
(

p(1) + 2−kh(2−k(j − ·))
)

,

where h ∈ Cm(R) is a function independent of j and k, and ∆m is the mth order

backward difference operator. Now, ∆m
(

h(2−k(j − ·))
)

= O(2−km) since h ∈ Cm(R).

Therefore, it follows that

dj,km (1) = O(2−(m+1)k), as k → ∞.

For higher values of r, using the form (23), the evaluation of dr

dzr
dj,km (1) involves terms

of the form 2−k∆m
(

(·)ℓh
(s)
ℓ (2−k(j − ·))

)

with hℓ ∈ Cm(R) and ℓ+ s ≤ r. Since

∆m
(

(·)ℓh
(s)
ℓ (2−k(j − ·))

)

= O(2−k(m−ℓ−s)), as k → ∞,

we obtain
dr

dzr
dj,km (1) = ō(2−k(m−r)), 0 ≤ r ≤ m.

It finishes the proof.

Remark 6.2. The above proposition also holds if the last factor in (52) is replaced by
(

q(z) + ō(1)qj,k(z)
)

.
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Theorem 6.4. Let S be a non-uniform binary scheme defined by masks {pj,k}. If S

satisfies Property B of order m, and if

{pj,k} ∼ p, (54)

where p is the mask of a stationary binary scheme Sp which is a Cm scheme with a

stable basic limit function, then, S is a Cm scheme.

Proof. The proof follows immediately from Proposition 6.3 and Theorem 4.2.
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