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A new multivariate approximation scheme to scattered data on arbitrary bounded domains
in R

d is developed. The approximant is selected from a space spanned (essentially) by cor-
responding translates of the ‘shifted’ thin-plate spline (‘essentially,’ since the space is aug-
mented by certain functions in order to eliminate boundary effects). This scheme applies to
noisy data as well as to noiseless data, but its main advantage seems to be in the former case.
We suggest an algorithm for the new approximation scheme with a detailed description (in
a MATLAB-like program). Some numerical examples are presented along with comparisons
with thin-plate spline interpolation and Wahba’s thin-plate smoothing spline approximation.
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1. Introduction

Given a set of scattered points � in � ⊂ R
d and values f |� (possibly contami-

nated) of some function f , our objective is to construct a function s :� → R
d such that,

in some sense, s approximates f :

s ≈ f on �.

This problem is usually referred to scattered data approximation and has many important
applications. There are cases where the domain � is a rectangle and the points � are
uniformly gridded. There are, however, many other practical instances where � is of
irregular shape and/or where the points � are irregularly distributed on �. A large
number of ideas have been proposed for the solution of this problem. In order for an
approximation scheme to scattered data to be useful in practice, there are some important
issues to be addressed:
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(A) Approximation power. It is basic to require that the approximant s approximates
f better as the point set � becomes dense in �. In most cases, the approximation
power is quantified by the asymptotic rate at which the error decays. The problem is
how we can get the largest possible asymptotic rate when the function f is smooth.

(B) Boundary effects. Approximation near the boundary is a difficult problem. Be-
cause the data are usually given only inside the domain, the boundary effect is very
serious, and eventually, one must lose some order of accuracy. Hence some special
techniques are necessary for the approximation near the boundary.

(C) Numerical stability. An approximation scheme should be local in the sense that
the contribution to the approximant’s value at a point x by the data value at ξ ∈ �

decreases (fast!) as the distance between x and ξ increases. At the same time, many
of the approximation methods are using (for good reasons) basis functions that are
neither compactly supported, nor decay at ∞. Hence, in order to circumvent this
initial instability, a ‘localization process’ is necessary. The localness of the scheme
also ensures that ‘boundary effects’ do not spill over into the interior of the domain.

(D) Noise. Noisy data arise in many scientific applications according to the model

yξ = f (ξ)+ εξ , ξ ∈ �,

where, for example, εξ ’s are independent noise with mean 0 and with (known or un-
known) variance σ 2. In this case, the approximation scheme should have smooth-
ing effects.

One of the well-known approaches for the scattered data approximation is the use
of piecewise-polynomials. In this case � has to be partitioned into suitable regions,
different polynomials are employed on the different regions separately, and usually the
pieces have to be joined in a smooth way. In the multivariate case, however, this problem
is computationally expensive. For example, the evaluation of an approximant at a given
point requires one to identify the polynomial piece relevant to the point.

Other techniques are based on forming suitable linear combinations of certain ra-
dially symmetric basis functions. In particular, one may employ the translates along �

of one such fixed function φ. This approximation method has the general form

s(x) :=
∑
ξ∈�

cξφ(x − ξ), x ∈ �. (1.1)

The set of scattered points � in � by which a radial basis function φ is shifted is
referred to as a set of ‘centers.’ The use of a radially symmetric basis function φ

is particularly useful because this facilitates the evaluation of the approximant, while
still leaving enough flexibility in the choice of φ. The common choices of φ include:
φ(x) = |x|λ log |x|, d, λ even, (thin-plate spline), φ(x) = (|x|2 + c2)λ/2, λ, d odd,
(multiquadric), and φ(x) = exp(−c|x|2), c > 0 (Gaussian). One must choose the basis
function φ very carefully so that approximation schemes of the form (1.1) are effective
(i.e., error decay) in some sense. In view of the discussion so far, one might wonder
why compactly supported functions are not in this list (e.g., box splines). The answer



J. Yoon / Approximation using ‘shifted’ thin-plate splines 331

is that, in general, because such basis functions do not respect the geometrical aspect of
points, it can not yield a good approximation scheme. We refer the reader to [17] for
more details.

Some basis functions φ : R
d → R that are well known (e.g., multiquadric, thin-

plate spline) are not suitable to be used directly for the purposes of approximation since
they increase polynomially fast around ∞. However, a suitable bell-shaped

ψ(x) =
∑
α∈Zd

µ(α)φ(x − α) (1.2)

can be found by applying a difference operator to φ appropriately. There are several
reviews about the state-of-the-art in the investigation of radial basis function methods.
The reader is referred to the surveys [6,15] for the description of these works.

The initial approach to scattered data using radial basis functions has been focused
on interpolation at the scattered points � ⊂ R

d . The general conditions on φ that ensure
the existence and the uniqueness of a solution of the interpolation problem have been
given by Micchelli [12]. The reader is also referred to the work of Madych and Nelson
[13,14]: there, the approach of reproducing kernel Hilbert spaces is used. That approach
is suitable when we approximate functions that lie in the underlying Hilbert space (see
also [14,18]). More recently, Johnson [10] established an asymptotic upper bound on
the approximation order on the unit ball � in R

d for the basis function φ of the form
φ = | · |λ/2 for d, λ odd, and φ = | · |λ/2 log | · | for d, λ even.

Interpolation by translates of suitable radial basis functions is certainly an impor-
tant approach towards solving the scattered data problem. However, it carries its own
disadvantages. For example, for a large class of basis functions (including multiquadric
and Gaussian), the existing theory guarantees the interpolant to approximate well only
for a very small class of approximands (see [14]). The approximands need to be ex-
tremely smooth for an efficient error analysis. Another disadvantage of the interpolation
method is that, with the increase in the number of centers, one needs to solve a large
linear system which is very ill-conditioned. Most importantly, when the given data are
contaminated, the interpolation method should not be used. All in all, there is an over-
whelming need for approximation methods other than interpolation. Hence, our main
concern in this study is to provide an approximation scheme on bounded domains that
addresses all the issues (A)–(D) discussed in the beginning of this section.

Approximations of the type (1.1) that are not interpolatory are also discussed in-
tensively in the literature. However, most of the results there deal with the case when the
center set � is infinite and uniform, i.e., a scale hZ

d of the integer lattice Z
d . There has

been much less investigation into the study of approximation for the general case of �
in R

d . Buhmann et al. [5] were among the first to construct a non-interpolatory approx-
imation scheme for infinitely many scattered centers and to analyze its approximation
power. Dyn and Ron [8] showed that the scheme in [5] can be understood as ‘an approx-
imation to a uniform mesh approximation scheme’. In both papers, quasi-interpolations
from radial basis function space with infinitely many centers � were studied and both
papers showed that the approximation orders obtained in the scattered case are identical
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to those that had been known on uniform grids. In particular, Dyn and Ron provide a
general tool that allows us to convert any known approximation scheme on uniform grids
to non-uniform grid, while preserving (to the extent that this is possible) the approxima-
tion orders known in the former case. The approach of [8] can be described as follows.
Suppose that an approximation scheme of the form

f �→
∑
α∈Zd

λα(f )φ(· − α)

is given. Then, we replace each φ(· − α) by a suitable combination∑
ξ∈�

C(α, ξ)φ(· − ξ), (1.3)

with � a set of scattered centers we wish to use. This result, however, requires us to
select the density of the uniform grid that is associated with the given scattered set �.

In [20], a new approximation scheme on R
d was developed on the general idea

of [8]. This scheme is intrinsically ‘scattered’, i.e., employs directly the scattered shifts
of the basis function φ. This study chooses the basis function to be the ‘shifted’ thin-
plate splines

φc(x) :=
{(|x|2 + c2

)λ/2
, λ ∈ Z

d+, λ, d odd,(|x|2 + c2
)λ/2

log
(|x|2 + c2

)1/2
, λ ∈ Z

d+, λ, d even.
(1.4)

The properties of these basis functions are quite well understood, both theoretically and
practically. One of the reasons for choosing this particular function φc is the desire to
use the parameter c as a ‘tension’ parameter. Note that we stress this tension parameter
by using the notation φc. In particular, letting ω be a parameter depending on h, i.e.,

ω := ω(h),

the parameter c is selected to satisfy the relation

ρ := c

ω
(1.5)

for the purpose of constructing a numerically stable scheme. Then this scheme pro-
vides spectral approximation orders (i.e., approximation order that depends only on the
smoothness of the function f we approximate).

Our study in this paper treats approximation on the arbitrary bounded domain in R
d

by using the same function φc, whereas the paper [20] treats the case over R
d . Through-

out this paper, we assume that the parameter c satisfies the relation (1.5).
A typical form of approximation scheme considered in [20] can be written as

Rf :=
∫

Rd

Kc,ω(·, t)(�f )(ωt) dt, (1.6)



J. Yoon / Approximation using ‘shifted’ thin-plate splines 333

where � is a bounded operator of the form �f = mc,ω ∗ f with mc,ω∗ a mollifier, and
the kernel Kc,ω(·, ·) depends on tension parameters c (that appear in φc) and ω. Here and
in the sequel, for the sake of simplicity, we use the notation

K(·, ·) := Kc,ω(·, ·).
The fundamental properties of K(·, ·) are as follows:

(a) for a fixed t ∈ R
d , K(·, t) ∈ S�(φc),

(b) for a fixed x ∈ R
d , K(x, ·) ∈ L1(R

d).

The natural way to pass from this approximant to one which is suitable for arbitrary
bounded domain � is to truncate as follows:

Lf :=
∫
�/ω

K(·, t)(�f )(ωt) dt. (1.7)

In practical points of view, we make two observations on this form. First, in most cases,
the function f is unknown, but the (only known) data are f |� or the possibly contami-
nated values (yξ )ξ∈�. Hence, by using the given data, we need to find a function, say F ,
which can replace the underlying function f . Second, such truncation is known to be
too naive to approximate near the boundary. Thus, in order to eliminate the boundary
effects, we select our approximant from a space spanned ‘essentially’ by the correspond-
ing translates φc(· − ξ), ξ ∈ �, of the basis function φc. Specifically, we augment the
set of shifts φc(· − ξ) by adding to � some more centers around � and then look for the
approximant from the extended space. For convenience, we use the same notation � to
indicate the extended center set.

Letting � ⊂ �δ ⊂ �2δ, our approximation scheme on the domain � is of the form

L : f �→
∫
�δ/ω

K(·, t)�(χ�2δF )(ωt) dt, (1.8)

where F is a replacement of f (if the data are known only at �). The advantages of this
scheme are as follows:

(i) The scheme has a ‘smoothing’ effect when the given data are contaminated. In fact,
our scheme L consists of two smoothing steps (see section 4). Hence, the major
advantage of the scheme L seems to be in noisy data approximation.

(ii) The potential numerical instability in the scheme is overcome by deriving a com-
putationally stable ‘local’ algorithm for the computation and evaluation of the ap-
proximant.

(iii) The scheme is adjusted to deal properly with bounded domains. This is done by
adding a ‘predictor step’ to the algorithm. It seems that this scheme has another
issue of numerical integration but there is a discretization which converges to the
above scheme fast(!) enough as the mesh size of the discretization tends to zero.
We will discuss this point later.
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By imposing some conditions on the kernel K(·, ·), for every sufficiently smooth
function f , we obtain the error estimate of the form

‖f − Lf ‖L∞(�) = O
(
hk

)
, as h → 0,

with h defined as

h := sup
x∈�

inf
ξ∈� |x − ξ |, (1.9)

and where k depends on the conditions satisfied by K(·, ·) and the smoothness of f .
The initial numerical tests reveal that the algorithm gives results comparable to, or better
than, the state-of-art method for both noiseless data and noisy data.

The structure of this paper is as follows. Section 2 is devoted to the constructions
of the kernel K(·, ·) and a function F by using the given data f |� or noisy data (yξ )ξ∈�.
Section 3 provides the specific form of our scheme L and observes its approximation
behavior on the bounded domain �. In particular, to avoid the boundary effect, an
extrapolation method will be adopted. We derive an error estimate that is expressed in
terms of h and L∞-Sobolev semi-norm of f . Indeed, it depends on the conditions of
the localized kernel K and smoothness of f . Section 4 explores the smoothing effect
of the scheme L. We will see how the scheme L works in case the given data set is
contaminated. A numerical example is provided with smoothing steps by L. Finally, in
section 5, we provide an algorithm for the computation of Lf . The crucial part of this
algorithm is a method for constructing a suitable coefficient sequence (C(t, ξ))ξ∈� for
the pseudo-shift φc(·, t) in (1.3). Specifically, ‘Gauss elimination by degree’, which was
introduced by de Boor and Ron [4], is applied to a linear system generated by some basis
of a polynomial space. We give a detailed description (in a MATLAB-like program). In
addition, some numerical examples are provided in section 6.

Throughout this paper we use the following notations. For x = (x1, . . . , xd) in R
d ,

|x| := (x2
1 + x2

2 + · · · + x2
d )

1/2 stands for its Euclidean norm and, for α ∈ Z
d+ := {β ∈

Z
d : β � 0}, we set |α|1 := ∑d

k=1 αk. Let (k denote the space of all polynomials of
degree < k in d variables. For the given function φc and a finite set � ⊂ �, we define

S�(φc) := span
{
φc(· − ξ): ξ ∈ �

}
.

The Fourier transform of f ∈ L1(R
d) is defined as

f̂ (θ) :=
∫

Rd

f (t)e−iθ ·t dt.

Also, for a function f ∈ L1(R
d), we use the notation f ∨ for the inverse Fourier trans-

form.
In particular, we are interested in approximating smooth functions in the space

Wk
∞

(
R
d
)
, k ∈ Z+,
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of all functions whose derivatives of orders �k are bounded. By | · |k,∞, we shall denote
the homogeneous kth order L∞-Sobolev semi-norm, i.e.,

|f |k,∞ =
∑
|α|1=k

∥∥Dαf
∥∥∞.

2. Preliminary

We note from (1.4) that since the basis function φc grows at a certain polynomial
degree away from zero, a ‘localization process’ is necessary to circumvent the initial
instabilities. Usually, localization is done by applying a difference operator to φc, which
constructs a bell-shaped function

ψc =
∑
α∈N

µ(α)φc(· − α),

where N is a finite subset of Z
d (generally a milder condition is imposed on µ) and the

localized function ψc is assumed to satisfy the conditions

sup
x

(
1 + |x|)d+qψc(x) < ∞, ψ̂c(0) �= 0 and ψ̂c ∈ Cd+q(

R
d
)

(2.1)

for a positive integer q > 0. Then, for reasons of numerical stability, we need to employ
the scaled localization

ψρ(·/ω − t) = ψc/ω(·/ω − t) =
∑
α∈N

µ(α)
φc(· − (t + α)ω)

ωλ
, (2.2)

for every t ∈ R
d .

The kernel K(·, t) is considered as a counterpart of ψρ(·/ω−t) in the space Sφc(�).
The construction of K(·, t) is done as follows. We first approximate each shift φc(· − t)

by

φc(·, t) :=
∑
ξ∈�

C(t, ξ)φc(· − ξ) ∈ S�(φc), (2.3)

which is referred as a ‘pseudo-shift’ of φc. Next, by replacing each shift φc(·− t) in (2.2)
by pseudo-shift φc(·, t), we define K(·, t) by

K(·, t) :=
∑
α∈N

µ(α)
φc(·, (t + α)ω)

ωλ
. (2.4)

It is obvious from the above discussion that K(·, t) ∈ S�(φc) for each t ∈ R
d . Note also

that K depends on the locations of the centers �.
We now introduce the notion of ‘admissible coefficients’ (C(·, ξ ))ξ∈�.

Definition 2.1. The coefficients (C(·, ξ ))ξ∈� are termed admissible for (n on � if they
satisfy the following three conditions:
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(a) There exists c1 > 0 such that, for any t ∈ �, C(t, ξ) = 0 whenever |t − ξ | > c1h,
with h the density of � as in (1.9).

(b) The set {(C(t, ξ))ξ∈� : t ∈ �} is bounded in 01(�).

(c) For every t ∈ �,
∑

ξ∈� C(t, ξ)δξ = δt on (n, i.e.,∑
ξ∈�

C(t, ξ)p(ξ) = p(t), ∀p ∈ (n. (2.5)

Remark. In the above definition, the centers

�t :=
{
ξ ∈ �: C(t, ξ) �= 0

}
, t ∈ �,

are assumed to be some ‘close neighbors’ of t . Of course, the set �t is required to have
the nondegeneracy property for (n

(p|� = 0, p ∈ (n) implies p ≡ 0. (2.6)

This implies that #Xt should be no smaller than dim(n(R
d) where #S denotes the num-

ber of elements in S.

Remark. It is shown (see [8,20]) that if (C(t, ξ))ξ∈� is admissible for (n with n > λ+d,
the difference φc(· − t)− φc(·, t) satisfies the relation∣∣φc(x − t)− φc(x, t)

∣∣ � c1
(
1 + |x − t|)−m1

, m1 > d,

with c1 independent of x and t . It is immediate from this relation that∣∣∣∣ψρ

(
x

ω
− t

)
−K(x, t)

∣∣∣∣ � c2

(
1 +

∣∣∣∣ xω − t

∣∣∣∣)−m2

, m2 > d, (2.7)

where c2 is independent of x, t and ω but depends on ρ.

On the other hand, assume that f is known only at a set � with the form

yξ = f (ξ)+ εξ ,

where all the εξ ’s are zero or εξ ’s, for example, are independent noise with mean 0 and
with variance σ 2. Then we approximate other function values by

F(t) :=
∑
ξ∈�

Cf (t, ξ)yξ , (2.8)

where Cf (t, ξ) is admissible coefficients for (n with some n > 0. We use the no-
tation Cf instead of C since they may be implemented by (computationally) different
algorithms.
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3. Approximation on bounded domains

In this section, we provide the specific form of the scheme L and then look for
an approximation power of L on � under the assumption that the given data are noise-
less, i.e., are of the form (�, f |�). In particular, approximation near the boundary is a
difficult problem. Since there is no information available outside the domain, deterio-
ration in fidelity of the approximation near the boundary is unavoidable. For example,
an asymptotic upper bound on the approximation order of thin-plate interpolation on the
unit ball in R

2 is O(h5/2) while O(h4) is available inside the domain (see [10]). Some
special care is necessary in order to eliminate boundary effects. To make this specific,
we approach this problem by adding additional new centers to � around � and use an
extended set of shifts φc(· − ξ) to find approximants. For this, we define a superset of �
by

�δ :=
{
y = x + z: x ∈ � and |z| � δ

} = �+ Bδ.

We think of δ as either being fixed, or decreasing to 0 as the density of � increases.
With F and K in (2.8) and (2.4) respectively, our approximation scheme L is de-

fined by

L : f �→
∫
�δ/ω

K(·, t)�(χ�2δF )(ωt) dt,

where χ� is the characteristic function of �, and � is an operator on L∞(Rd) defined
by

� : g �→
(

σω

ψ̂ρ(ω·)
)∨

∗ g (3.1)

with σω : x �→ σ (ωx), and σ : R
d → [0, 1] a nonnegative C∞-cutoff function such that

support σ lies in the ball Bη := {x ∈ R
d : |x| < η} ⊂ [−2π, 2π ]d with σ = 1 on Bη/2

and ‖ σ ‖= 1.

Remark. Invoking the definition of K(·, t) in (2.4), the approximant Lf has the explicit
form

Lf (x) =
∑
ξ∈�

φc(x − ξ)
∑
α∈N

µ(α)cξ,α(f )

with

cξ,α(f ) :=
∫
�δ

C((ω(t + α), ξ)�(χ�2δF )(ωt)) dt

ωλ
.

It ensures that the approximant Lf belongs to S�(φc).
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Remark. From (3.1), we observe that

�(χ�2δF ) =
∫
�2δ

(
σ

ψ̂ρ

)∨( · − s

ω

)
F(s) ds. (3.2)

Here, we find that σ/ψ̂ρ ∈ C2λ+2d−1(Rd) (see [7]) and (σ/ψ̂ρ)
∨ decays at some poly-

nomial rate. Thus, we realize that the localization property of L is due to the decaying
properties of the kernel K and (σ/ψ̂ρ)

∨ in the sense that the contribution to the approx-
imant’s value at a point x by the data value at ξ ∈ � decreases as the distance between
x and ξ increases.

Now, for any x ∈ �, the error analysis is based on the estimate

∣∣f (x)− Lf (x)
∣∣ �

∣∣∣∣σ∨
ω ∗ f (x)−

∫
�δ/ω

ψρ

(
x

ω
− t

)
�f (ωt) dt

∣∣∣∣ (3.3)

+
∣∣∣∣∫

�δ/ω

(
ψρ

(
x

ω
− t

)
−K(x, t)

)
�f (ωt) dt

∣∣∣∣
+

∣∣∣∣∫
�δ/ω

K(x, t)�(χ�′
2δ
f )(ωt) dt

∣∣∣∣
+

∣∣∣∣∫
�δ/ω

K(x, t)�
(
χ�2δ (f − F)

)
(ωt) dt

∣∣∣∣ + ∣∣f (x)− σ∨
ω ∗ f (x)∣∣,

where �′ indicates the complement set of � in R
d .

The next lemma treats the first term in (3.3).

Lemma 3.1. Let ψc satisfy the conditions in (2.1) and � be as in (3.1). Assume that
c = ρω for some ρ > 0. Then, for every f ∈ L∞(Rd),∥∥∥∥σ∨

ω ∗ f −
∫
�δ/ω

ψρ(·/ω − t)�f (ωt) dt

∥∥∥∥
L∞(�)

= O
(
ωq

)
,

where q is as in (2.1).

Proof. Using the representation

σ∨
ω ∗ f =

∫
Rd

ψρ(·/ω − t)�f (ωt) dt,

we have the expression

σ∨
ω ∗ f −

∫
�δ/ω

ψρ(·/ω − t)�f (ωt) dt =
∫
�′
δ/ω

ψρ(·/ω − t)�f (ωt) dt. (3.4)
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By estimating∣∣�(f )(t)∣∣ = ∣∣∣∣∫
Rd

(
σ

ψ̂ρ

)∨
(s)f (t − ωs) dθ

∣∣∣∣ � ‖f ‖L∞(�)

∥∥∥∥(
σ

ψ̂ρ

)∨∥∥∥∥
L1(R

d)

,

we can bound (3.4) by a constant multiple of∫
�′
δ/ω

∣∣ψρ(·/ω − t)
∣∣ dt.

Moreover, we find from the expression (2.1) that ψρ � c(1 + | · |)−d−q, where q is in
(2.1) and c depends on ρ. Since |x − t| > δ for x ∈ � and t ∈ �′

δ , a direct calculation
yields ∫

�′
δ/ω

∣∣∣∣ψρ

(
x

ω
− t

)∣∣∣∣ dt � cωq

∫
B ′
δ

1

(ω + |t|)d+q dt = O
(
ωq

)
,

which completes our proof. �

A bound of the third term in (3.3) is obtained in next lemma.

Lemma 3.2. Let K be as above. Assume that ψc satisfies the conditions in (2.1), and
let the operator � be as in (3.1). Assume that the relation c = ρω holds for some ρ > 0.
Then, for every f ∈ L∞(Rd), we have∥∥∥∥∫

�δ/ω

K(·, t)�(χ�′
2δ
f )(ωt) dt

∥∥∥∥
L∞(�)

= o
(
ωq

)
,

with q in (2.1).

Proof. From (2.1) and (2.7), it is clear that∥∥∥∥∫
�δ/ω

K(·, t)�(χ�′
2δ
f )(ωt) dt

∥∥∥∥
L∞(�)

� c
∥∥�(χ�′

2δ
f )

∥∥
L∞(�δ)

.

For every t ∈ �δ , it is immediate from (3.1) that

�(χ�′
2δ
f )(t)=ω−d

∫
t−�′

2δ

f (t − s)

(
σ

ψ̂ρ

)∨(
s/ω

)
ds

�ωq

∫
t−�′

2δ

f (t − s)
g(s/ω)

|s|q+d ds � ωq‖f ‖L∞(Rd)

∫
B ′
δ

g(s/ω)

|s|q+d ds, (3.5)

with

g = | · |q+d
(
σ

ψ̂ρ

)∨
.

Since σ ψ̂−1
ρ ∈ Cd+q(Rd) (see (2.1)), the Riemann–Lebesgue lemma shows that

|g(s/ω)| → 0 for any s ∈ B ′
δ as ω → 0. Hence, the last integral in expression (3.5)

tends to 0. �
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A bound of the fourth term in (3.3) is provided in next lemma.

Lemma 3.3. Let ψc and � be defined as above, and let the relation c = ρω hold for
some ρ > 0. Assume that the coefficient sequence (Cf (·, ξ ))ξ∈� for F in (2.8) is admis-
sible for (k on �. Then, for every f ∈ Wk∞(Rd), we have the relation∥∥∥∥∫

�δ/ω

K(· − t)�
(
χ�2δ (f − F)

)
(ωt) dt

∥∥∥∥
L∞(�)

� O
(
ωmin(k,q)

)
.

Proof. Due to the fact that K(x, ·) ∈ L1(R
d) for any x ∈ R

d , it is obvious that∥∥∥∥∫
�δ/ω

K(·, t)�(
χ�2δ (f − F)

)
(ωt) dt

∥∥∥∥
L∞(�)

� c
∥∥�(

χ�2δ (f − F)
)∥∥

L∞(�δ)
.

Since
∑

ξ∈� Cf (·, ξ ) = 1 by definition, it is clear that

(f − F)(s) =
∑
ξ∈�

Cf (s, ξ)
(
f (s)− f (ξ)

)
, s ∈ �.

Letting Tsf be the Taylor polynomial of degree k of f about t ∈ �, the function {f (s)−
Tsf (y): y ∈ R

d} is also a polynomial in (k. Then we have∑
ξ∈�

C(s, ξ)
(
f (s)− Tsf (ξ)

) = 0

by the definition of admissible coefficients (Cf (s, ξ))ξ∈�. It induces the expression∣∣(f − F)(s)
∣∣ � |f |k,∞

∑
|α|1=k

∑
ξ∈�

Cf (s, ξ)(s − ξ)α.

If s ∈ �, it is clear that |(f − F)(s)| � chk with c > 0 independent of s. Next, let
s ∈ �

′ ∩ �2δ. Then, since the set �s is to be some ‘close neighbors’ of s, without loss
of generality, we can assume that for any s ∈ �2δ,

|s − ξ | � ck|s − t|, ξ ∈ Xs, s ∈ �2δ. (3.6)

Then, we deduce that ∣∣(f − F)(s)
∣∣ � ck|s − t|k.

Now, with this bound in hand, we return to the estimate

�
(
χ�2δ (f − F)

)
(t)=

∫
�2δ

(
σω

ψ̂ρ(ω)

)∨
(t − s)(f − F)(s) ds

�ωmin(k,d+q)
∫
�2δ/ω

(
σ

ψ̂ρ

)∨(
t

ω
− s

)∣∣∣∣ tω − s

∣∣∣∣min(k,d+q)
ds

=O
(
ωmin(k,q)

)
,

where the last inequality is true by condition (2.1). �
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Finding the approximation power of the second term in (3.3) was a focal point in
the study [20] in the case � = R

d . By using the same idea as in [20], we can prove the
exactly same approximation property on bounded domains. Specifically, we prove that:

Lemma 3.4. Let ψc, K, and � be as above, and let the coefficients (C(t, ξ))ξ∈� for
φc(·, t) in (2.3) be admissible for (n with n > λ+ d on �δ . Assume that f ∈ Wk∞(Rd)

and c = ρω for some ρ > 0. Then, we estimate that if k < λ+ d and ω(h) = h,∥∥∥∥∫
�δ/ω

(
ψρ(·/ω − t)−K(·, t))�f (ωt) dt∥∥∥∥

L∞(�)

= o
(
hk

)
.

Furthermore, if k � λ+ d and ω = hr with 0 < r � 1, we have∥∥∥∥∫
�δ/ω

(
ψρ(·/ω − t)−K(·, t))�f (ωt) dt∥∥∥∥

L∞(�)

= O
(
h(1−r)n+r(λ+d)

)
.

We have observed in [20] that the last term in (3.3) is of the magnitude∥∥f − σ∨
ω ∗ f ∥∥

L∞(�)
= o

(
ωk

)
for every function f ∈ Wk∞(Rd). Now, we summarize all the results in this section as
follows.

Theorem 3.5. Let φc, K and L be as above, and assume that ψc satisfies condition (2.1).
Assume that c = ρω for some ρ > 0 and assume further that:

(a) The function F is defined as in (2.8), and the coefficients (Cf (·, ξ ))ξ∈� for F are
admissible for (k on �2δ.

(b) The coefficients (C(t, ξ))ξ∈�, t ∈ �, for φc(·, t) are admissible for (n with n >

λ+ d on �δ .

If k < λ+ d and ω(h) = h, then, for every f ∈ Wk∞(Rd),

‖f − Lf ‖L∞(�) = O
(
hk

)
.

Furthermore, if k � λ+ d and ω(h) = hr with 0 < r � 1, for f as above,

‖f − Lf ‖L∞(�) � O
(
hrk

) +O
(
hrq

) +O
(
h(1−r)n+r(λ+d)

)
,

where q(> λ+ d) is in (2.1).

Remark. The approximation power of L depends on the decaying property of ψρ and
the smoothness of f . It is well known from the literature (see [7,15]) that a possible
value of q is λ+ 2d.
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Corollary 3.6. Under the same conditions and notations of theorem 3.5, assume that if
k > λ+ d, the number n (> λ+ d) is chosen to be (1 − r)n+ r(λ+ d) > r min(k, q)
for the given r ∈ (0, 1). Then, for every f ∈ Wk∞(Rd), we have

‖f − Lf ‖L∞(�) = O
(
hr min(k,q)).

4. Smoothing noisy data

In many scientific phenomena and technologies, the data can be contaminated.
Hence, in this section, we will observe the smoothing effects of the scheme L. For this,
we assume that the data (yξ )ξ∈� arise according to the model

yξ = f (ξ)+ εξ ,

where the ξ ’s belong to � ⊂ R
d and, for example, εξ ’s are independent normally dis-

tributed random variables with mean 0 and (known or unknown) variance σ 2. Here the
underlying function f : R

d → R is assumed to be a smooth function. Our smoothing
procedure with L can be interpreted as following three steps:

Step 1. Construct a function F = ∑
ξ∈� Cf (·, ξ )yξ .

Step 2. Take the convolution �(χ�2δF ) = (σω/ψ̂ρ(ω·))∨ ∗ (χ�2δF ).

Step 3. Find the final approximant Lf = ∫
�δ/ω

K(·, t)�(χ�2δ F )(ωt) dt.

In the following example, we illustrate these three steps.

Example 4.1. The given data are of the form

yξ = f (ξ)+ εξ , ξ ∈ [−1, 1]2
with εξ independent random variables normally distributed with mean 0 and variance
σ = 0.05. The underlying function is

f (x, y) = [
B2

(
1.5(x − 0.5)

) − B2
(
1.5(x + 0.5)

)]
exp

(−y2
)

with B2 a tensor-product of quadratic splines. In this example, the sets � and (εξ )ξ∈�
come from a random number generator in MATLAB. Figures 1(B)–(D) shows the sur-
faces obtained in each of the steps described above. Figure 1(A) displays the surface of
the underlying function f , and figure 1(B) the surface F obtained by interpolating the
noisy data. Figure 1(C) presents the surface after smoothing the noise. We finally obtain
the surface displayed in figure 1(D).

Remark. As we see in the form of Lf , we have the parameters c and ω which are being
adjusted according to the density of centers and noise (εξ )ξ∈�. As c, ω → 0, the func-
tion �(χ�2δF ) tends to the local interpolant F , which makes the approximant lose some
smoothness. Also, as c is getting bigger, the approximant becomes smoother, hence it
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Figure 1. Procedures of noisy data approximation by the scheme L. Figure (A) shows the surface of the
underlying function f and (B) is the function F (step 1). Figure (C) indicates �(χ�2δ F ) (step 2) and (D)

is the final approximant Lf (step 3).

may lose some ‘details’. In fact, a good choice for the parameters c and ω can be inter-
preted as a balanced compromise between smoothness and fidelity of the approximant
to the data.

5. Algorithm

5.1. On the coefficients of pseudo-shift φ(·, t)
In this section we provide an algorithm for the construction of the admissible co-

efficients (C(t, ξ))ξ∈� for the pseudo-shift

φc(·, t) =
∑
ξ∈�

C(t, ξ)φc(· − ξ).
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The same algorithm is also applied to find the coefficients (Cf (t, ξ))ξ∈� for the function
F in (2.8). To each t ∈ �, we associate a subset

�t :=
{
ξ ∈ �: C(t, ξ) �= 0

}
.

The admissible coefficients (C(t, ξ))ξ∈�t
for φc(·, t) are required to satisfy the linear

system ∑
ξ∈�t

C(t, ξ)p(ξ) = p(t) (5.1)

for p ∈ (n with n greater than λ + d, the order of singularity of φ̂c at the origin. The
choice of polynomial space (n requires that

#�t > dim(n

(
R
d
) = (

n+ d

d

)
=: nd.

Letting q1, . . . , qnd be a basis of a polynomial space (n, this condition (5.1) holds
if and only if the coefficient matrix

c̄ := (
C(t, ξ)

)
ξ∈�t

solves the linear system

Ec̄ = b̄ (5.2)

with

E = (
qj (ξ): j = 1, . . . , nd, ξ ∈ �t

)
and

b̄T := (
qj (t): j = 1, . . . , nd

)
.

Here, in order to find the coefficient matrix (C(t, ξ))ξ∈�t
for φc(·, t), we suggest using a

minimization problem

minimize
∑
ξ∈�t

η(t, ξ)A2(t, ξ ) (5.3)

subject to Ec̄ = b̄

with a penalty function η(t, ·). In the univariate case, we can make this problem com-
putationally simple by choosing some good basis functions of (n (e.g., Hermite or La-
grange polynomials), which makes the matrix E banded or triangular. However, in the
multivariate case, since we do not know of a basis for (n that results in a matrix E with
simple structure, we confront numerical difficulties caused by the conditioning of the
matrix E. Eventually, the system (5.2) becomes ill-conditioned with the increase in the
number of constraints. The well-known standard method to solve this problem is via
Gauss elimination. However, Gauss elimination has to deal with another numerical dif-
ficulty in providing a solution to the linear system in (5.3) when all the pivots available
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for the current step in the current column are all zero. In this case, we need to inter-
change some centers and to recompute a part of the elimination. So the actual location
and configuration of �t need to be taken into account.

De Boor and Ron proposed a particular elimination method, the so-called Gauss
elimination by degree, which is more efficient for this problem (cf. [4]). It was origi-
nally designed for the construction of multivariate polynomial interpolation. Actually, it
applies Gauss elimination degree-by-degree (not monomial-by-monomial) with partial
pivoting to the Vandermonde matrix

V := (
ξ k

)
by treating all the entries of a given degree as one entry. Hence, this method can be
applied to the matrix ET with E in (5.2) to obtain the factorization ET = LU with LT

in row echelon form and U a block upper triangular non-singular matrix, and it induces
the linear system LTc̄ = b̄′ with b̄′ = (UT)−1b̄ from (5.2). In the following, we give the
algorithm in detail.

5.2. Factorization

Assume that #�t = m(> nd) for all t ∈ � and let

�t =: {ξ1, ξ2, . . . , ξm}.
Choosing a set of functions {(t − ·)α}|α|1�n as a basis of (n, we denote the matrix ET as

ET =: (
(t − ξp)

α: p = 1, . . . , m, 0 � |α|1 � n
)
,

and correspondingly, the matrix b̄ in (5.3) is changed to

b̄ := [1 0 . . . 0︸ ︷︷ ︸
(nd−1) terms

]T.

The strategy of Gauss elimination by degree begins by treating all the entries of a given
degree as one entry: the (p, q)-entry of ET is to be

ET(p, q) = (
ξαp : |α|1 = q

)
.

Here and in the sequel, we shall use the notation E in lieu of E in order to emphasize the
alternative point of view. Thus, the rows and columns of ET are indexed by ξp ∈ �t and
k = 0, . . . , n, respectively.

Now since the entries in ET are considered not as scalars but as vectors, we make
all the entries in the pivot column below the pivot row orthogonal to the pivot entry. In
order to eliminate entries in column k of ET, a scalar product is defined as

(a, b)k :=
∑
|α|1=k

a(α)b(α)ω(α)
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with ω a weight function. Furthermore, since each entry in column k consists of

C(k + d − 1; k) := (k + d − 1)!
k! (d − 1)! (5.4)

monomials, after Gauss elimination by degree in column k, we want to have C(k + d −
1; k) nonzero orthogonal entries in the kth column below row

k◦ :=
∑
j<k

C(j + d − 1; j)+ 1,

the first working position of elimination in the kth column. Hence, the ultimate goal is
to factorize ET as follows:

ET = LU

with LT in row echelon form and U a block upper triangular nonsingular matrix.
The algorithm is summarized as follows: Let W be the ‘working array’ which is

initially equal to ET. At each column, say kth, we first put our working position at k◦th
row and go through below the row. At each step (let us assume that we start at kj th row in
column k), we look for the current row kj or below the row such that, in order to alleviate
the devastating interaction of rounding error, we find a largest nontrivial entry (relative
to the size of the corresponding entry or row of ET) and, if it is not on the pivot position,
interchange its row with row kj of W to bring it into the pivot position W(ξkj , k). Then
we subtract the appropriate multiple of the pivot row W(ξkj , :) from all subsequent rows
in order to make W(ξki , k) orthogonal to W(ξkj , k) for all ki > kj . Then we proceed
with elimination by Gram–Schmidt process. Specifically, if we assume that orthogonal
entries w′

1, . . . , w
′
j−1 are already available in the column k, we can compute

w′
j := wj −

∑
i<j

w′
i

〈wj,w
′
i〉

〈w′
i , w

′
i〉

(5.5)

for a next orthogonal entry, and thereby ensure that〈
w′
i , w

′
j

〉 = 0, i < j,

while w′
j �= 0. It may, of course, happen that all the pivots available for the current step

in the current column k are zero before we obtain C(k + d − 1; k) nonzero orthogonal
entries. Then we have to replace some of the centers in �t by other centers in � \ �t ,
and perform the calculation (5.5) again on the corresponding row until we obtain C(k+
d − 1; k) orthogonal entries in the column k.

On the other hand, Gauss elimination is usually performed to a square matrix,
and it factors this matrix into a lower triangular matrix and an upper triangular matrix.
However, since our matrix ET is an m× nd rectangle matrix with m > nd , each step of
elimination by degree is equivalent to factoring ET into an m×m matrix and an m× nd
matrix. For example, the first step can be expressed as following

ET = L̃1W
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with a matrix W of working array and a lower triangular matrix L̃1 which is associated
with the process of making the entries in row 2 through row m orthogonal to the first
row. Continuing this process, the final output of elimination by degree is a factorization
of ET in the form

ET = L̃W (5.6)

with L̃ an m×m unit lower triangular matrix. Since ET is an m×nd matrix with m > nd ,
the elimination is performed with nd th columns, and hence the matrix L̃ can be written
in the form

L̃ = [L L0], (5.7)

where the matrix L consists of the first nd columns of L̃ which are associated with
elimination procedures of matrix ET. However, L0 takes the last m− nd columns of L̃,
and it is not associated with any elimination progress, which means L0(i, j) = 0 for
i �= j with j > nd , and L0(i, j) = 1 for i = j . Furthermore, the final output W is a
row echelon matrix in the following sense. If we make ordering k1, . . . , knd of columns
according to the degree of each entry and ξ1, . . . , ξm of the rows, the last m − nd rows
of matrix W are completely zero, and the leading entry (the first nonzero entry) in the
nonzero row W(ξj , :) is the entry W(ξj , kj ) for all j � nd . Hence, the matrix W is of
the form [

U

0̄

]
,

where U is an nd×nd block upper triangular square matrix, and 0̄ is an (m−nd)×nd zero
matrix. In the actual calculation, the two matrices L0 and 0̄ can be ignored. Therefore,
the factorization in (5.6) is replaced by

ET = LU.

We note that the matrix U does not have to be an upper triangular since k1, . . . , knd need
not to be strictly increasing. But each entry in the diagonal entries is orthogonal to each
other, hence U is invertible. With this factorization, we return to the original system (5.2)

b̄ = Ec̄ = UT LTc̄.

By substituting (
UT

)−1
b̄ =: b̄′, (5.8)

the linear system (5.2) can be replaced by

LTc̄ = b̄′. (5.9)

With the matrices L and b̄′ at hand, we find the coefficient matrix c̄ = (C(t, ξ))ξ∈�t

by minimizing the quadratic form ∑
ξ∈�t

η(t, ξ)C2(t, ξ )



348 J. Yoon / Approximation using ‘shifted’ thin-plate splines

subject to the constraints

LTc̄ = b̄′.

Theorem 5.1. For t ∈ �, let η be a weight function and D = 2 Diag(η(t, ξi): i =
1, . . . , m). Let c̄ = (C(t, ξ))ξ∈�t

be as above, and let L and b̄′ be the matrices defined
as above. Then

c̄ = D−1L
(
LTD−1L

)−1
b̄′.

Proof. The method of Lagrange multipliers induces the following linear system

Dc̄ + L�̄ = 0 and LTc̄ = b̄′ (5.10)

with �̄T := [λ1 . . . λnd ] the matrix of Lagrange multipliers. Then it can be easily
verified that the matrix for the linear system (5.10),(

D L

LT 0

)
,

is nonsingular. Therefore, c̄ = D−1L(LTD−1L)−1b̄′ and �̄ = (LTD−1L)−1b̄′ solve
(5.10). �

We shall be mostly interested in an optimality condition for the minimization prob-
lem. Here we suggest some examples.

Example 5.1. We adopt a penalty function of the form

η(t, ξ) = η+
(|t − ξ |),

where η+ is an increasing function on R
d+, and η+(0) = 0. As a good choice of η+, the

following function is suggested:

η+
(|t − ξ |) = [

exp

( |t − ξ |2
h

)
− 1

]
|t − ξ |2k

with k ∈ Z+ and h the density of �. Then it is evident that η+(|t−ξ |) gives high penalty
to the coefficient C(t, ξ) as ξ moves far away from t .

Example 5.2. The coefficients (C(t, ξ))ξ∈�t
in the above example do not depend on

the basis function φc. In this example, we look for the coefficient matrix (C(t, ξ))ξ∈�t

minimizing the error φc(· − t) − φc(·, t) in some sense. In order to minimize an upper
bound of the error φc(· − t)− φc(·, t), we consider the relation∣∣φc(· − t)− φc(·, t)

∣∣2 � const
∑
ξ∈�t

C2(t, ξ )
[
φc(· − t)− φc(· − ξ)

]2
.
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Thus, we choose the penalty function

η(t, ξ) = ∥∥φc(· − t)− φc(· − ξ)
∥∥2
L∞(�)

for our optimization problem in (5.3).

5.3. Algorithm details

Assume that d = 2. We give here a MATLAB-like pseudo-program to construct
coefficients (C(t, ξ))ξ∈� for the pseudo-shift φc(t, ξ). This algorithm selects a set �t

which has the nondegeneracy property for (n (see (2.6)) and then finds admissible co-
efficients (C(t, ξ))ξ∈�t

for (n. In this ‘program’, we use the following conventions.
The set of scattered centers � is considered as m × 2 matrix. The matrices ET

and W are denoted by ET and W, respectively. In particular, since C(k+d−1; k) = k+1
with d = 2 (see (5.4)), we note that W(j,k) is a vector with (k + 1) entries, indexed by
{α ∈ Z

d : |α|1 = k}, and (k + 1) orthogonal entries will be obtained in column k. All
matrices mentioned in the ‘program’ other than ET and W are proper MATLAB matrices,
i.e., have scalar entries. Correspondingly, for two vectors a and b (such as W(i,k),
W(j,k)) indexed by {α ∈ Z

d : |α|1 = k}, <a,b> denotes a scalar product.
We borrow from MATLAB the notations:

(i) ones(m,n) for the matrix of size m× n with all entries equal to 1;

(ii) eys(m,m) for the identity matrix of order m;

(iii) a:b for the vector with entries a,a+ 1, . . . ,a+ m, with m the natural number for
which a+ m � b < a+ m+ 1;

(iv) A*B for the matrix product of the matrices A and B;

(v) standard logical constructs like (for j = 1 : n, . . . ,end), and (if. . . , . . . ,
end);

(vi) the construct (while 1,. . ., if . . ., break, end,. . . , end), which is a
loop exited only through the break;

(vii) the construct [p,i] = max(a) to provide p = a(i) = maxja(j);

(viii) the command function [a,b] = ft-name(x) defines a new function
called ft-name. The variables within the body of a function are all by default
local;

(ix) the relational operator a==b means that a is equal to b while a=b is used for
the assignment statement. Furthermore, we use an occasional word to describe an
action whose details seem clear.

% INPUT: �t, m, n, tol, penalty function η

% OUTPUT: c̄ = D−1* L*(LT* D−1*L)−1*b by theorem 5.1
Select �t (from �) which are closest to t, m = #�t > n
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nbr_ob=0; k=0
ET(:,k) = ones(m,1); W(:,k) = ET(:.k)
L = eye(m,m)
for j=1:m

while 1
[p,i] = maxi>j−1<W(i,k),W(i,k)>/<ET(i,k),ET(i,k)>
if p > tol, nbr_ob = nbr_ob+1, break, end
if nbr_ob < k+1

replace ξj by ξ, one of the closest centers to t
from � \ �t, i.e., ET(j,:)=ET(ξ,:)
[Lj,Wj] = RE - COMP(j,k,ET(j,:),W);
L(j,1:j-1)=Lj; W(j,k)=Wj;

end
k = k+1; nbr_ob=0;
construct ET(:,k) from ET(:,k-1) and �t

W(:,k) = L−1 *ET(:,k)
end
if i > j, interchange i and j, end
for i=j+1:n

L(i,j) = <W(i,k),W(j,k)>/<W(j,k),W(j,k)>
W(i,k) = W(i,k)-L(i,j)*W(j,k)
end

end
end
L = L(:,1:n) ; W = W(1:n,:)
b = (WT)−1b; D = Diag(η(t, ξ ))ξ∈�t

c̄ = D−1*L*(LT*D−1*L)−1*b

function [Lj, W(j,q)] = RE - COMP(j,k,ET(j,:),W)
q=0
for i=1:j-1

if W(j,q)==0, q=q+1, end
Lj(i)=<ET(j,q),W(i,q)>/<W(i,q),W(i,q)>
W(j,q) = ET(j,q)-Lj(i)*W(i,q)

end

5.4. Formulations for the construction of Lf

We now describe some formulations for the approximant Lf under the assumption
that the data (ξ, yξ )ξ∈� are arising according to the model

yξ = f (ξ) or yξ = f (ξ)+ εξ ,
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where (εξ )ξ∈� is a type of noise (for example, independent normally distributed random
variables with mean 0 and variance σ 2). Practically, we focus on the case d = 2 and
λ = 2 with the issues of localization sequence, extrapolation and computation of �.

Prior to further discussion, we describe the generalized Fourier transform of φc:

φ̂c(θ) = C(λ, d)|θ |−λ−dK̃(d+λ)/2
(|cθ |), (5.11)

see [9], where C(λ, d) is a constant depending on λ and d, and K̃ν(|t|) := |t|νKν(|t|)
with Kν(|t|) the modified Bessel function of order ν, see [1]. Note that despite the
similarity in the notations, there is no direct connection between the above K̃ and the
kernel K.

(1) Localization. In section 2, the kernel K in the scheme L can be constructed by as-
sociating the localization ψc which is obtained by an application of a difference operator,
i.e.,

ψc :=
∑
α∈N

µ(α)φc(· − α),

where N is a finite subset of Z
d . There can be many choices of N . One example of

N for this linear combination is illustrated by stencils centered at the origin as shown
in figure 2. In fact, since the kernel K consists of the localization sequence (µ(α))α∈N
and the corresponding pseudo-shifts of φc (see (2.4)), we focus here on the method of
finding the sequence (µ(α))α∈N .

Letting

τ(θ) =
∑
α∈N

µ(α)e−αθ,

a sufficient condition for (2.1) is as follows:

Dβ
(
τ − φ̂−1

c

)
(0) = 0, |β|1 � 2λ+ 2d − 1. (5.12)

It is not surprising that the localization involves the behavior of φ̂c near the origin. The
Fourier transform φ̂c of φc is very smooth off the origin. This means that in order to
localize φc we only need to ensure that the Fourier transform ψ̂c of the localized func-
tion ψc is smooth at the origin. Note that we also need to insist that ψ̂c(0) �= 0. We refer
to the paper [7] for more details.

Now, it follows from (5.12) that the localization sequence (µ(α))α∈N satisfies∑
α∈N

µ(α)αβ = Dβφ̂−1
c (0), |β|1 � 2λ+ 2d − 1.

Let N := {αj ∈ Z
d : j = 1, . . . , #N}. The sequence µ̄ := (µ(αj ): j = 1, . . . , #N)T is

obtained by solving the linear system

M µ̄ = ḡ,
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Figure 2. Stencil for N (d = 2, λ = 2).

where

M = (
α
β

j : |β|1 � 2λ+ 2d − 1, j = 1, . . . , #N
)

and

ḡ = (
Dβφ̂−1

c (0): |β|1 � 2λ+ 2d − 1
)T
.

In particular, assuming N is as in figure 2 with λ = 2 and d = 2, the graph of function ψc

is symmetric about coordinate axes.

(2) Extrapolation. Given a data set (ξ, yξ )ξ∈� where yξ is a function value f (ξ) or a
noisy value f (ξ)+ εξ , we define an extrapolation F on a superset of � by

F =
∑
ξ∈�

Cf (·, ξ ) yξ .

In particular, we suggest finding the coefficients (Cf (t, ξ))ξ∈� for F by a minimizing
problem

minimize
∑
ξ∈�t

η(t, ξ)C2
f (t, ξ )

subject to LTc̄ = b̄′

with L and b̄′ in (5.8) and (5.9), respectively, and with c̄ := (Cf (t, ξ))ξ∈�t
. Since the

approximation should be local in the sense that its value at t depends on centers which are
close to t , we assign a high penalty to centers which are far from x. Having performed
some numerical experimentations with several alternatives for the function η, we found
out that a good choice is

η
(|t − ξ |) = [

exp

( |t − ξ |2
h2

)
− 1

]
|t − ξ |2k

with k ∈ Z+.
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(3) Computation of �. Choosing ρ = c/ω, the function �g with g ∈ L∞(Rd) can
be written in terms of (σ/ψ̂ρ)

∨ and g. Thus, we construct here some formulations to
compute the function (σ/ψ̂c)

∨. First, with the localization sequence (µ(α))α∈N , we find
from (5.11) that the Fourier transform of ψc is the function

ψ̂c(θ) = d

dβ
c̃(λ)

K̃(λ+d)/2(θ)

|θ |λ+d
∑
α∈N

µ(α) cos(α · θ),

where K̃ν is a modified Bessel function of order ν and

c̃(β) = 2β/2+1(2π)

G(−β/2)
.

In the case λ = 2 and d = 2, the constant ( dc̃
dβ
)(2) is computed as ( dc̃

dβ
)(2) = 4π by using

tools like MATHEMATICA.

Next, as an example, we present a C∞-cutoff function σ as the tensor prod-
uct of a one-variable C∞-cutoff function σ 1 whose support lies in the ball BM with
0 < M < 2π , so that σ = 1 on BM/2 and ‖σ‖ = 1. For t ∈ R, let

g(t) :=
C0 exp

(
− 1

1 − |t|2
)
, t ∈ [−1, 1],

0, t ∈ [−1, 1]′,
with

C0 :=
[∫

[−1,1]
exp

(
− 1

1 − |t|2
)
dt

]−1

.

We know that g ∈ C∞(Rd), ‖g‖1 = 1, and it has support in [−1, 1]. Then, for any
ε > 0,

gε := ε−1g(·/ε)
has support in [−ε, ε] and ‖gε‖1 = 1, and

σ 1 := χ[−M+ε,M−ε]gε

satisfies our requirements. Then the cutoff function σ on R
d is defined as

σ (x) = σ 1(x1) · · · σ 1(xd), x = (x1, . . . , xd).

In particular, if d = 2 and N is as in figure 2, the function (σ/ψ̂ρ)
∨ is simplified as(

σ

ψ̂ρ

)∨
(θ) = 1

π2

∫
[0,M]2

σ

ψ̂ρ

(s) cos(θ · s) ds.
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5.5. Discretization

We are now looking for a discretization of Lf which makes computation easy. For
this, we recall the formula of Rf (1.6) which deals with the case when the center set �
is infinite in R

d . Then, let us consider its discretization

Rf :=
∑
α∈Zd

K(·, α)�f (ωα).

We realize from [21] that Rf is same as a function obtained by applying the conversion
tool in (1.3) to a nonstationary uniform scheme developed by de Boor and Ron [3].
Thus, by employing the results in [3] and by applying the same technique of analysis in
section 4 and [20], we find that the discretization

Lf :=
∑

α∈Zd∩�δ/ω

K(·, α)�(χ�2δF )(ωα)

preserves the same approximation orders obtained in section 4. The convolution operator
� also can be discretized in the same way. The reader is referred to the papers [3,8,20,21]
for description of these works. When the surfaces of the data are rather complicated
and the data are not dense enough, it may be better to use ω as ω = ω(η) with η =
minξ �=ξ ′∈� |ξ−ξ ′|. One may choose a compromised a parameter between ω(h) and ω(δ).

6. Numerical results

In this section, we illustrate the accuracy of approximation and smoothing effects
(when the data are contaminated) by using the scheme L with two specific examples.
Also, some comparisons are given with the thin-plate spline interpolation and Wahba’s
thin-plate smoothing spline approximation.

In example 6.1, with a given function f , we observe the approximation power of L
from the space S�(φc). We assume that a set � is given in a larger area containing
[−1, 1]2 so that, for the given function f , we see the approximation behavior of L on
[−1, 1]2 by using all the given scattered shifts φc(· − ξ) with ξ ∈ �. In this case,
since the scheme L is local, the boundary effects do not spill over into the interior of
the domain. Currently, one of the most well-known approximation methods to scattered
data is the thin-plate spline (TPS) interpolation. Therefore, a comparison is presented
between these two approximants.

Next, in example 6.2, we consider approximation of a function f known only at
finitely many centers in [−1, 1]2 with noise, i.e., the data (ξ, yξ )ξ∈� are of the form

yξ = f (ξ)+ εξ , ξ ∈ [−1, 1]2,
where εξ ’s are independent noise with mean 0 and variance σ 2. So, in order to eliminate
boundary effects, we augment the space S�(φc) by adding some extra centers around
[−1, 1]2. Among the other approaches for smoothing noisy data, Wahba’s thin-plate



J. Yoon / Approximation using ‘shifted’ thin-plate splines 355

smoothing spline (TPSS) technique is widely used. So we provide a comparison between
L and TPSS. In the following examples, all the scattered centers are generated by a
random number generator in MATLAB.

Example 6.1. As a first example, we approximate a C∞-function

f (x, y) = − exp
(−(

x2 + y2)) + [
sin(x) sin(y)

xy

]5

.

A set of 200 scattered centers are generated in [−3, 3] (see figure 3(A)), and we ob-
serve the accuracy of approximation by L over the square [−1, 1]2, the grayed area in
figure 3(A). In spite of 200 centers in [−3, 3], these points are very irregularly distrib-
uted. We find that there are big holes among the centers, especially on the right-hand
side of the grayed area. Figure 3(B) shows the original function. A comparison has been
made between L and TPS interpolation. Figures 3(C) and (D) show the approximants
by TPS interpolation and by L, respectively. The differences are obvious from the sur-
faces of approximants and the absolute maximal errors, 0.1682 by TPS interpolation and
0.0397 by L. In fact, the advantage of the method in this paper is due to the ‘shifted’
thin-plate spline which provides better convergence orders of error estimates for smooth
functions. However, the thin-plate spline interpolation provides a stationary approxima-
tion order which is determined by the order of singularity of the Fourier transform of
the basis function at the origin. Accordingly, we can not expect a higher rate of error
convergence (beyond a certain order) when we approximate smoother functions (e.g.,
C∞ functions). The stationary case was analyzed in great detail in the literature. Among
them, the readers are referred to the paper [3].

Here, in order to compute the TPS interpolation, a MATLAB code written by de
Boor was used. This software has been used already in some different sites. Also,
to construct the approximant Lf , the values of the parameters c and ω are initialized
as c = 1.2 and ω = 0.6. The coefficients (C(t, ξ))ξ∈� for φc(·, t) are chosen to be
admissible for (7 on �, i.e.,

∑
ξ∈� C(·, ξ )p(ξ) = p for p ∈ (7, and they are computed

with penalty function

η(t, ξ) = ∥∥φc(· − t)− φc(· − ξ)
∥∥2
L∞(�)

by theorem 5.1.

Example 6.2. This example is given to show a noisy data approximation on [−1, 1]2.
With given data (ξ, yξ )ξ∈� of the form

yξ = f (ξ)+ εξ ,

we construct an approximant to the underlying function

f (x, y) = [
1.4B4

(
1.2(x − 0.8)

) + B3
(
1.2(x + 0.8)

)]
exp

(−y2),
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Figure 3. Scattered points (A) and surfaces associated to example 6.1. The dark spot in (A) indicates the
area on which we want to approximate. The orginal function f is shown in (B). Figure (C) displays the

approximant by the thin-plate spline interpolation, and (D) shows Lf .

where Bk (k = 3, 4) indicates the kth order standard spline. Here, εξ ’s are independent
normally distributed random variables with mean 0 and variance σ = 0.05. Figure 4(A)
displays a set of 160 scattered centers �. The sets � and (εξ )ξ∈� also come from a
random number generator in MATLAB. As we discussed in section 5, the first step of
noisy data approximation is to generate an extrapolation F on a superset of [−1, 1]2 by
using (ξ, yξ )ξ∈�. The coefficients (Cf (t, ξ))ξ∈� for F are computed by theorem 5.1 with
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Figure 4. Noisy data approximation of example 6.2. Figure (A) displays the scattered points [−1, 1]2,
where the data arise. The underlying function f is shown in (B). Figure (C) displays the approximant by

TPSS, and (D) shows Lf .

a penalty function

η(t, ξ) =
[

exp

( |t − ξ |2
h2

)
− 1

]
|t − ξ |2.

Since the data are contaminated, we use a low degree of polynomial reproduction
n = 1 to construct the coefficients (Cf (t, ξ))ξ∈� for F , i.e.,

∑
ξ∈� C(·, ξ )p(ξ) = p

for p ∈ (1, regardless of the smoothness of the underlying function f . The coefficients
(C(t, ξ))ξ∈� for φc(·, t) are computed by the same way as in example 6.1 with n = 5,
which is the minimal degree of polynomial reproduction, (see section 4). In particular,
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because of the uncertainty of extrapolation outside [−1, 1]2, we technically adopt a high
tension ω = 0.1 and assign c = 0.5. Figure 4(B) gives the contour lines of original
function f . A comparison between L and Wahba’s thin-plate smoothing spline (TPSS)
is made in figures 4(C) and (D). They look similar at first glance, but we find that the
approximant by TPSS has wiggles and loses details at some spots. There are no big dif-
ferences between approximation errors, but Lf provides a slightly smaller error, 0.1136
by TPSS and 0.1010 by Lf . In order to compute the TPSS approximant, the software
GCVPACK (which is available from netlib) has been used.

Remark. A well-known drawback of radial basis function (e.g., TPS) interpolation is
that, with the increase of the number of centers, it requires the computation with a huge
matrix which is very ill-conditioned. However, the scheme L requires us to solve the
linear system ∑

ξ∈�t

c(t, ξ )p(ξ) = p(t), p ∈ (n,

which depends only on the degree of polynomials. Furthermore, in case that a huge set
of scattered centers is given, it is possible to do parallel computations by dividing the
domain into several pieces. Unfortunately, a direct method of selecting the parameters
c and ω has not yet been developed. However, though we have the issue of choosing
those tuning parameters, the visual appearances of approximants are not sensitive to the
choice of c and ω.
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