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A new family of interpolatory stationary subdivision schemes is introduced by using radial
basis function interpolation. This work extends earlier studies on interpolatory stationary sub-
division schemes in two aspects. First, it provides a wider class of interpolatory schemes; each
2L-point interpolatory scheme has the freedom of choosing a degree (say, m) of polynomial
reproducing. Depending on the combination (2L, m), the proposed scheme suggests different
subdivision rules. Second, the scheme turns out to be a 2L-point interpolatory scheme with a
tension parameter. The conditions for convergence and smoothness are also studied.
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1. Introduction

Subdivision is an efficient method for constructing curves and surfaces in Com-
puter Aided Geometric Design and Computer Graphics. By this method, at each recur-
sion step, new discrete values on a final grid can be computed by weighted sums of the
already existing discrete values. In the limit of the recursive process, data are defined on
a dense set of points. Considering these data as function values, under certain conditions,
a limit continuous function can then be defined by this process.
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Starting with a given set of control points at level 0 with the topology of a regular
grid P 0 = {p0

n: n ∈ Z}, the stationary uniform binary subdivision scheme is a process
that recursively defines a sequence of nets of control points P k = {pk

n: n ∈ Z}k∈Z+ by a
rule of the form

pk+1
j =

∑

n∈Z

aj−2np
k
n, k ∈ Z+, (1.1)

which is denoted formally by P k = SkP 0. A point of P k is defined by a finite linear
combination of points in P k−1, with two different rules, or masks, in the curve case
(univariate), and four masks in the surface case (bivariate). In general, for each level k,
only a finite number of coefficients an are nonzero so that changes in a control point only
effect a limited number of patches. Also, this property clearly facilitates the practical
implementation of (1.1). A general discussion of stationary subdivision schemes can be
found in the works of Cavaretta et al. [3] and Dyn [6].

Since the present topic is considering schemes where each component of the sur-
face is a scalar function generated by the same subdivision scheme, the analysis of a
binary subdivision scheme can be reduced to the scalar case to initial sets of control
points. Therefore, starting with values f 0 = {f 0

n ∈ R: n ∈ Z}, this study considers
scalar sets of control points f k = {f k

n ∈ R: n ∈ Z} generated by the relation

f k+1
j =

∑

n∈Z

aj−2nf
k
n , k ∈ Z+.

What follows provides the definition of the convergence of a binary subdivision scheme.

Definition 1.1. A binary subdivision scheme S is termed (uniformly) convergent if for
every initial data f 0 = {f 0

n ∈ R: n ∈ Z} there exists a continuous function f on R such
that

lim
k→∞

sup
n∈Z

∣∣f k
n − f

(
2−kn

)∣∣ = 0, (1.2)

and f is not identically zero for some initial data f 0.

Let the function f denoted by S∞f and called a limit function of S or a function
generated by S. Also introduced is the notion of the basic limit function of a scheme S,

ϕ(x) = S∞{δ0,n}.
Then, any limit function of the subdivision process can be expressed as

S∞f 0(x) =
∑

n∈Z

f 0
n ϕ(x − n).

The subdivision scheme S is called Cγ if its basic limit function, and hence all functions
generated by it, is Cγ .
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A binary subdivision scheme is called interpolatory if a2n = δ0,n, n ∈ Z, since then
P k ⊂ P k+1 and therefore P 0 ⊂ P k for any k ∈ Z+. An example of an interpolatory
subdivision scheme is the four-point scheme by Dyn et al. [7]:

f k+1
2j+1 =

(
1

2
+ ω

)(
f k

j + f k
j+1

) − ω
(
f k

j−1 + f k
j+2

)
. (1.3)

It is known that this 4-point scheme generates continuous limit functions for |ω| < 1
2 ,

and C1 limit functions for 0 < ω < 0.154. With the special choice ω = 1
16 , this 4-

point scheme is exact for cubic polynomials, and it has been generalized to the 6-point
scheme (see Dyn’s survey paper [6]) and symmetric 2L-point schemes by Deslauriers
and Dubuc in [4] using polynomial interpolation.

In this paper, we are interested in developing a new family of stationary subdi-
vision schemes obtained by using radial basis function interpolation, which is one of
the most well-established methods for data representation problems. Specifically, the
insertion rule is obtained by taking the value at the inserted point of radial basis interpo-
lation to the data at 2L symmetric points to the inserted one. This work extends earlier
studies on interpolatory subdivision schemes in two aspects. First, it provides a wider
class of interpolatory scheme; each 2L-point interpolatory scheme has the freedom of
choosing a degree (say, m) of polynomial reproducing. Hence, depending on the com-
bination (2L, m), the scheme suggests different subdivision rules. Second, the scheme
proposed here turns out to be a 2L-point interpolatory scheme with a tension parameter.
Thus, each aforementioned interpolatory rule can be a special case of the proposed in-
terpolatory scheme. Then, the fundamental questions of interest for the new subdivision
scheme are as follows: Does the scheme converge? What is its smoothness? What is
its approximation order? Note that for interpolatory subdivision schemes, convergence
implies uniform convergence, since the values {f k

n } are on the limit function.
The general setting and basic theory of radial basis function interpolation will be

discussed in section 2. Among the many radial basis functions, the major concern here
is with the basis functions

φλ(x) = (
x2 + λ2

)β/2
, λ > 0, β ∈ 2N − 1,

which is the so-called multiquadrics. One of the reasons for choosing this particular
function is the desire to use the parameter λ as a ‘tension’ parameter.

The paper is organized as follows: section 2 introduces the general theories related
to radial basis function interpolation, then constructs a new class of interpolatory sub-
division schemes using radial basis function interpolation. In section 3, we study the
convergence and smoothness of the new subdivision scheme, and then find its approxi-
mation order.

Throughout this paper, for any positive integer n, 	n stands for the subspace C(R)

consisting of all algebraic polynomials of degrees less than n. All matrices and vectors
are written in bold character, for example, g.
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2. Interpolatory subdivision scheme using radial basis function

2.1. Radial basis function interpolation

Radial basis function interpolation is a very popular and convenient tool for data
representation problems. This section introduces the general setting and basic theory of
radial basis function interpolation. Suppose that a continuous function f : R → R is
known only at a set of discrete points X := {x1, . . . , xN } in 
 ⊂ R. The radial basis
function interpolation to f on X starts with choosing a basis function φ, and then it
defines an interpolant by

Sf,X(x) :=
N∑

n=1

αnφ(x − xn) +
m∑

i=1

βipi(x), (2.1)

where p1, . . . , pm is a basis for 	m and the coefficients αn are chosen so that

N∑

n=1

αnpi(xn) = 0, i = 1, . . . , m.

For a wide choice of functions φ and polynomials in 	m, including the case m = 1,
the coefficients of Sf,X are required to satisfy the (N + m) × (N + m) system of linear
equations, which can be written in a matrix form as

(
A P
PT 0

)(
a
b

)
=

(
f
0

)
, (2.2)

where A and P are the N×N and N×m matrices that have the elements Aij = φ(xi−xj )

and Pij = pj(xi), respectively. Further, a ∈ R
N and b ∈ R

m are the vectors of the
coefficients of Sf,X, and the components of f are the data f (xj ) with j = 1, . . . , N . In
a fundamental paper by Micchelli [11], the existence and uniqueness of the solution of
the linear system (2.2) is ensured when the basis function φ is a conditionally positive
definite function:

Definition 2.1. Let φ : R → R be a continuous function. We say that φ is conditionally
positive definite of order n ∈ N := {1, 2, . . .} if for every finite set of pairwise distinct
points X = {x1, . . . , xN } ⊂ R and for every α = (α1, . . . , αN) ∈ R

N \ 0 satisfying

N∑

j=1

αjp(xj ) = 0, p ∈ 	n,

the quadric form

N∑

i=1

N∑

j=1

αiαjφ(xi − xj )

is positive definite.
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In particular, the radial basis function interpolant Sf,X in (2.1) has a Lagrange-type
representation:

Sf,X(x) :=
N∑

n=1

un(x)f (xn), un(x�) = δ�,n, (2.3)

where un are the Lagrange functions from the space span{φ(·−x1), . . . , φ(·−xN)}+	m.
They satisfy not only the above properties but also reproduce polynomials up to a degree
less than m, i.e.,

N∑

j=1

uj (x)p(xj ) = p(x), p ∈ 	m. (2.4)

Introducing vectors

R(x) := (
φ(x − x1), . . . , φ(x − xN)

)T
,

S(x) := (
p1(x), . . . , pm(x)

)T
,

(2.5)

the vector u(x) := (u1(x), . . . , uN(x))T can be obtained by solving the linear system
(

A P
PT 0

)(
u(x)

v(x)

)
=

(
R
S

)
. (2.6)

A reader interested in knowing more about the state-of-the-art in the area of radial
basis function method may find it useful to consult the surveys of Buhmann [2], Dyn [5],
and Powell [12]. Another important source is the works of Wu and Schaback [13] and
particularly Madych and Nelson [9, 10], who developed a theory of interpolation based
on reproducing kernel Hilbert spaces. In addition, approximation orders on Sobolev
space by using smooth radial basis functions (e.g., multiquadric) have been studied by
Yoon [14, 15].

2.2. Subdivision scheme using radial basis function interpolation

An interesting class of this study is the family of univariate interpolatory subdi-
vision schemes. Interpolatory subdivision schemes are refinement rules based on sym-
metric 2L-points and defined by interpolating the values at the 2L-points via a linear
combination of suitable 2L functions. The subdivision schemes considered in this paper
are stationary uniform in the sense that they are independent of the positions and levels
of refinement. The general form of a 2L-point interpolatory subdivision scheme is as
follows:

f k+1
2j = f k

j ,

f k+1
2j+1 =

L∑

n=−L+1

a1−2nf
k
j+n, j ∈ Z, k ∈ Z+.

(2.7)

This condition guarantees that the point set f k = {f k
n : n ∈ Z} belongs to the limit

function.
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Now, we present a stationary 2L-point interpolatory subdivision scheme using ra-
dial basis function interpolation. Its construction is based on the Lagrange-type repre-
sentation in (2.3): considering f̄ k as the underlying function of the set {f k

n }n∈Z, i.e.,
f̄ k(n2−k) = f k

n , on the stage k, the value at a point of the finer level k + 1 is deter-
mined by evaluating the value of the radial basis function interpolation (see (2.1)) at the
insertion point. More specifically, denoting

Xk,j = {
(j + �)2−k: � = −L + 1, . . . , L

}

and invoking the Lagrange-type representation of the radial basis function interpolation
in (2.3), the values f k+1

2j+1 are defined by

f k+1
2j+1 = Sf̄ k,Xk,j

(
2−k

(
j + 2−1

)) =
j+L∑

n=j−L+1

u
[k]
j,n

(
2−k

(
j + 2−1

))
f k

n ,

where u
[k]
j,n indicates the Lagrange function on Xk,j . This means that the mask set of the

proposed subdivision scheme is defined by

a2(j−n)+1 := u
[k]
j,n

(
2−k

(
j + 2−1

))
, j ∈ Z. (2.8)

Here, the mask set {an} looks like it depends on the position j and level k. Yet, it will
be seen that it is independent of j and k under certain suitable conditions of the ba-
sis function. Further, among many radial basis functions, aiming at the construction of
an interpolatory subdivision scheme, the major concern of this study is with the multi-
quadrics

φλ(x) := (
x2 + λ2

)β/2
, λ > 0, β ∈ 2N − 1,

whose properties are quite well understood, both theoretically as well as practically. One
of the reasons for choosing this particular function is the desire to use the parameter λ as
a ‘tension’ parameter. In particular, for the purpose of making a stationary subdivision
scheme, the tension parameter λ is dilated depending on the level k. That is, for each
level k, φλk

(x) := (x2 + λ2
k)

β/2 is employed with

λk = 2−kλ.

The following theorem proves that the mask set {an} is independent of the location j and
level k, which means the binary subdivision scheme (henceforth, called Sa) associated
with this rule is said to be stationary and uniform.

Theorem 2.2. Let φλ(x) = (x2 + λ2)β/2. Suppose that the mask set {an} is given by
the Lagrange type representation of φλ-interpolation as in (2.8). Assume that for each
level k, the basis function φλk

is employed with λk = 2−kλ. Then, the subdivision
scheme Sa associated with the mask set {an} is stationary, that is, the mask set is inde-
pendent of the positions and levels.
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Proof. Let j ∈ Z. Then, since each element x� ∈ Xj has the form x� := 2−k(j + �)

with � = −L + 1, . . . , L, we can write

φλk
(xi − x�) = φλk

(
2−k(i − �)

) = 2−βkφλ(i − �),

where the second equality is immediate by the fact λk = 2−kλ. Therefore, invoking (2.6)
and choosing pn(x) = 2−kβ(2kx − j)n−1, n = 1, . . . , m, as a basis 	m, the vector of the
mask set u := {a2(j−n)+1: n = −L + 1, . . . , L} (see (2.8)) can be obtained by solving
the following linear system

(
A P

P
T

0

)(
u
v

)
=

(
R
S

)
, (2.9)

where the matrices A, P, R, and S have elements of the form

A(i, �) := φλ(i − �), P(�, n) := �n−1,

R(�) := φλ(2
−1 − �), S(�) := 2−�+1.

It is clear from the system (2.9) that u is independent of the position j and level k.
Hence, the proposed scheme Sa is stationary uniform. �

Due to the above theorem, recalling (2.8), the definition of the masks a1−2n can be
induced as follows:

a1−2n := un

(
2−1

)
, n = −L + 1, . . . , L, (2.10)

where un(x) is the Lagrange function on X0 = {−L + 1, . . . , L}, that is,

un(x) ∈ span
{
φλ(x − �): � ∈ X0

} + 	m. (2.11)

It is also of interest to point out that besides the polynomial reproducing property of
a1−2n in (2.4), the mask set {an} reproduces the functions φλ(· − �) with � ∈ X0 in the
sense that

∑

n∈Z

a1−2nφλ(n − �) = φλ

(
2−1 − �

)
.

Table 1 provides the general form of the mask set {a1−2n}, n = −L + 1, . . . , L, of
2L-point interpolatory subdivision scheme Sa for the case m > 2(L − 2). For a chosen
basis function φλ(x) = (x2 + λ2)β/2, the parameter w in table 1 is given in terms of λ,
i.e., w = w(λ). But, since the explicit forms of w(λ) are too long to provide here (see
the appendix for an example), the relations between w(λ) and λ are described via graphs
in figure 1 for λ ∈ [0, 30]. It is observed from figure 1 that for all λ ∈ [0, 30], each w(λ)

belongs to the range in the above table 1. Also as L increases, the ranges of w in table 1
become narrower. It is also interesting to point out that for each pair m = 2n − 1, 2n

with 1 � n � L, the same mask set is obtained. It would seem that this is because of
the symmetric properties of the mask set. Further, when m > 2(L − 1), this scheme is
identical to Deslauriers and Dubuc’s 2L-point interpolatory scheme. The 4- and 6-point
rules in [6] are special cases of the proposed scheme with m = 1, 3 and 2L = 4, 6,
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Table 1
General forms of the mask sets {a1−2n} with n = −L + 1, . . . , L of 2L-point interpolatory subdivision
scheme Sa using φλ. This is for the case that m > 2(L − 2). Here, m will be used as the smoothing factor
(see (3.3)). By computing ‖((1/2)SL)10‖∞ < 1 with MAPLE 8, digits = 30, the above ranges of w are

obtained.

2L Mask Range of w Smoothness

4

[
−w,

1

2
+ w,

1

2
+ w, −w

]
0 < w < 0.183 C1

6

[
w,−3w − 1

16
, 2w + 9

16
, 2w + 9

16
, −3w − 1

16
, w

]
0 < w < 0.042 C2

8

[
−w, 5w + 3

256
, −9w − 25

256
, 5w + 75

128
, 0.0016 < w < 0.0084 C3

5w + 75

128
, −9w − 25

256
, 5w + 3

256
, −w

]

10

[
w,−7w − 5

2048
, 20w + 49

2048
, −28w − 245

2048
, 0.0005 < w < 0.0016 C4

14w + 1225

2048
, 14w + 1225

2048
,

−28w − 245

2048
, 20w + 49

2048
, −7w − 5

2048
, w

]

respectively. Note that for these 4- and 6-point schemes, table 1 provides wider ranges
of 0 < w < 0.183 and 0 < w < 0.042 than the known results of 0 < w < 0.154 and
0 < w < 0.02 in [6], respectively. Finally, it should be remarked that β in φλ has no
effect on either the smoothness of Sa or the general form of a1−2n. Usually, β and m are
chosen to be β � m.

Remark. From a practical point of view, the tension parameter λ > 0 in (3.4) is sup-
posed to be a rather small number. Indeed, if λ is large, the linear system becomes
numerically highly unstable (see [1]). However, one interesting question arising with
our scheme Sa using φλ-interpolation is whether the scheme Sa converges as λ tends
to ∞. Our observation is that as λ tends to ∞, the mask set {an} asymptotically ap-
proaches the mask set of Deslauriers and Dubuc’s scheme. For instance, the 4-point
scheme Sa with β = 1 and m = 1 has the tension parameter w(λ) in the mask set
a(λ) = {a1−2n} = {−w(λ), 1

2 + w(λ), 1
2 + w(λ), −w(λ)}, as in table 1. From fig-

ure 1, it is seen that as λ → ∞, w(λ) converges to 16−1. That is, a(λ) converges to
the mask set of Deslauriers and Dubuc’s 4-point scheme (see also (1.3)). Similarly, for
the 6-, 8- and 10-point schemes, it can be seen from figure 1 that as λ → ∞, w(λ)

converges to 3/256, 5/2048 and 35/65536, respectively, which constitute the mask sets
of Deslauriers–Dubuc’s interpolatory schemes. Actually, these convergence properties
may be proved in the sense of the asymptotical equivalent relation between (nonstation-
ary) subdivision schemes, yet this is not the concern of the current paper. A detailed
analysis on nonstationary schemes is presented in the manuscript [8].
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Figure 1. Graphs of the tension parameters w(λ) in the mask sets {a1−2n} in table 1. For the basis function
φλ(x) = (x2 + λ)β/2 and smoothing factor m, we used (β, m) = (1, 1), (3, 3), (5, 5) and (7, 7). The
reference lines indicate ω = 1/16, 3/256, 5/2048, 35/65536 which constitute the mask sets of 2L-point

Deslauriers and Dubuc’s scheme for 2L = 4, 6, 8 and 10, respectively.

Now, with the mask set {an} at hand, the fundamental questions related to this
scheme are as follows: Does the scheme converge? What is its smoothness? What is the
approximation order of Sa? The following sections discuss these questions. Note that
for interpolatory subdivision schemes, convergence implies uniform convergence, since
the values fn := {f k

n : n ∈ Z} are on the limit function.

3. Smoothness analysis

The goal of this section is to show the convergence and smoothness of the interpo-
latory binary subdivision scheme Sa constructed in section 2.2. A necessary condition
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for the uniform convergence of an interpolatory subdivision scheme associated with the
mask set {an: n ∈ Z} is

∑

n∈Z

a1−2n = 1.

Here, one should note that a2n = δ0,n. In fact, invoking the definition a1−2n = un(2−1)

with the Lagrange function un (see (2.9)), this condition is an immediate consequence
of the polynomial reproducing property of un in the sense of (2.4).

To simplify the presentation of a subdivision scheme and its analysis, it is conve-
nient to assign to each rule, defined by a set of masks an, the Laurent polynomial

a(z) :=
∑

n∈Z

anz
n. (3.1)

The fact that only a finite number of coefficients an are nonzero implies that the Laurent
polynomial a(z) has a finite degree. Further, the Laurent polynomial corresponding to
the iterated scheme (Sa)

�, � > 0, is given by

a[�](z) =
�−1∏

j=0

a
(
z2j ) =

∑

n∈Z

a[�]
n zn,

where the scheme corresponding to {a[�]
n } is a 2� different rule mapping f k to f k+�, that

is,

f k+�

n+2�α
=

∑

β∈Z

a
[�]
n+2�β

f k
α−β, n = 0, 1, . . . , 2� − 1. (3.2)

With the above setting, the main tool for the analysis of convergence of a stationary
subdivision scheme is given as follows:

Theorem 3.1 [6]. Let S1 be a subdivision scheme with the property

df k = S1df
k−1,

where f k = Skf 0 and (df k)α = 2k(f k
α − f k

α−1). Then a stationary subdivision scheme
S is a uniformly convergent if and only if the scheme 1

2S1 converges uniformly to the
zero function for all initial data f 0.

For the existence of the subdivision scheme S1, and for more details about the
above discussion, the readers are referred to the paper [6]. In the following theorem, a
sufficient condition for Sa to be in Cγ , γ � 1 is provided.

Theorem 3.2 (Smoothness of stationary subdivision scheme [6]). Consider a stationary
binary subdivision scheme Sa with the characteristic Laurent polynomial

a(z) = 1

2
(1 + z)a1(z).
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If Sa1 corresponding to the Laurent polynomial a1(z) is Cγ , the scheme Sa is a conver-
gent, and the basic limit function ϕ of Sa is in Cγ+1(R).

Checking if Sa is C1 is reduced to verifying that Sa1 is C0. It says that to assure
a certain smoothness of the scheme Sa , the Laurent polynomial should have the fac-
tor 2−�(1 + z)� with � ∈ N, which directly depends on the order of the polynomial
reproducing property of the mask set. Recalling the definition of radial basis function
interpolation in (2.1), we find that Sf,X reproduces polynomials up to degree m − 1, i.e.,
Sp,X(x) = p(x) for any p ∈ 	m. Then, the Laurent polynomial a(z) associated to the
scheme Sa by radial basis function interpolation has the form:

Proposition 3.3. Let Sa be a 2L-point interpolatory subdivision scheme using radial
basis function interpolation Sf,X as in (2.1). Assume that Sp,X(x) = p(x) for any p ∈
	m, and let {an} be the mask set Sa . Then the Laurent polynomial a(z) associated to Sa

is given by

a(z) = 2−m(1 + z)mq(z) (3.3)

with a suitable Laurent polynomial q(z).

Proof. It is sufficient to prove that a(�)(−1) = 0 with � < m. From (3.1), we find that
this is equivalent to showing that

∑

n∈Z

(−1)nn�an = 0.

For this proof, observe that
∑

n∈Z

(−1)nn�an =
∑

n∈Z

(2n)�a2n −
∑

n∈Z

(2n + 1)�a2n+1

= δ0,� −
∑

n∈Z

(1 − 2n)�a1−2n.

Applying the polynomial reproducing property of {a1−2n} (see (2.4)), it is easy to obtain
the identity

∑
n∈Z

(1 − 2n)�a1−2n = δ0,�. Hence, (3.3) is concluded. �

The norm of the subdivision scheme Sa is given by

‖Sa‖∞ = max

{∑

α∈Z

|a2α|,
∑

α∈Z

|a2α+1|
}
.

Moreover, invoking (3.2), the norm of the iterated scheme S�
a is given by

∥∥S�
a

∥∥∞ = max

{∑

α∈Z

∣∣a[�]
γ+2�α

∣∣: γ = 0, . . . , 2� − 1

}
.

Then, according to theorem 3.1, the proof of convergence (further smoothness) of the
subdivision scheme Sa can be done by the following two steps: first, derive the mask set
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of the scheme 1
2S1, and second, compute ‖( 1

2S1)
k‖∞ to show the existence of an M ∈ N

such that ‖( 1
2S1)

M‖∞ < 1. If Sa converges, such a number M exists. In fact, the Laurent
polynomial corresponding to S1 is denoted by

a1(z) := 2z

1 + z
a(z).

Based on establishing the uniform convergence of the scheme Sa , the next issue is prov-
ing the smoothness of Sa . Using theorem 3.2, we consider the scheme S2 associated to
the Laurent polynomial

a2(z) := 2z

1 + z
a1(z),

and compute ‖( 1
2S2)

k‖∞ to find an M ∈ N such that ‖( 1
2S2)

M‖∞ < 1. By continuing
this process, we can find the smoothness of the given scheme Sa .

The remainder of this section is devoted to proving the smoothness of the 2L-point
interpolatory scheme Sa by computing ‖( 1

2S�)
k‖∞ with � = 1, 2, . . . . As observed in

section 2.2, the masks a1−2n associated to the scheme Sa are obtained by evaluating the
Lagrange function un(2−1) where

un(x) ∈ span
{
φλ(x + L − 1), . . . , φλ(x − L)

} + 	m,

with

φλ(x) = (
x2 + λ

)β/2
. (3.4)

Here, depending on the choice of λ and β, we provide various subdivision rules, i.e.,
the masks a1−2n. Furthermore, for each 2L-point subdivision rule Sa , there is a freedom

Table 2
Smoothness of 2L-point interpolatory subdivision scheme using the
multiquadric function φλ(x) = (x2 + λ2)β/2 with β ∈ 2N − 1. For
each chosen β and smoothing factor m in (3.3), the corresponding
smoothness is given. When m > 2(L − 1), this scheme is identical to

Deslauriers–Dubuc’s 2L-point interpolatory scheme.

2L (β;m): smoothness

4 (m = 1, . . . , 4; β = 1, 3): C1 limit function
6 (m = 1, 2; β = 1, 3): C1 limit function

(m = 3, . . . , 6; 3 � β � 2m − 1): C2 limit function

8 (m = 1, 2; β = 1, 3) : C1 limit function
(m = 3, 4; 3 � β � 2m − 1): C2 limit function
(m = 5, . . . , 8; 5 � β � 2m − 1): C3 limit function

10 (m = 1, 2; β = 1, 3): C1 limit function
(m = 3, 4; 3 � β � 2m − 1): C2 limit function
(m = 5, 6; 5 � β � 2m − 1): C3 limit function
(m = 7, . . . , 10; 7 � β � 2m − 1): C4 limit function
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of the degree m of polynomial reproducing. When considering all these ingredients, it
is basically almost impossible to analyze the smoothness of Sa without the help of a
computer program. Thus, the MAPLE program is utilized to figure out the convergence
and smoothness of Sa with different inputs of 2L, λ and m. In particular, we could get
the smoothness as in table 2 for λ ∈ [0, 30] with 2L = 4, . . . , 10. Further, it is necessary
to point out that the basis function φλ is conditionally positive definite of order (β+1)/2,
which requires the condition m � (β + 1)/2. Computing

∥∥∥∥

(
1

2
SL

)10∥∥∥∥∞
< 1,

table 2 displays the smoothness of the 2L-point scheme Sa . When m > 2(L − 2),
as observed in table 2, the 2L-point scheme provides the possible highest smoothness.
Finally, there is no restriction on the choice of β, yet β and m are normally chosen to be
m � β. Also, we remark that β has no effect on either the smoothness of Sa or to the
general form of a1−2n.

4. Approximation order

Suppose that the given initial data is of the form f 0 := {f 0
n = f (hn): n ∈ Z},

h > 0, with an underlying function f . Then the limit of a subdivision scheme, say f ∞,
approximates the sampled function f if f is smooth enough. It is basic to expect that
f ∞ approximates f better as h tends to 0. The quality of approximation is improved
with the reduction of the density of sampling. Asymptotic approximation powers are
usually quantified by the notion of approximation order in terms of h. In particular, this
study is interested in approximating functions f in a homogeneous Sobolev space. For
any γ ∈ Z+, the homogeneous Sobolev space W

γ
∞(R) consists of all functions g for

which g(γ ) ∈ L∞(R).

Definition 4.1. A binary subdivision scheme S has the approximation order γ on a com-
pact set K ⊂ R if for a given initial data f 0 := {f 0

n = f (hn): n ∈ Z} with a smooth
function f ,

∣∣f ∞(x) − f (x)
∣∣ � Chγ , x ∈ K,

where the constant C is independent of x and h, but may depend on f .

For the given initial data f 0 := {δ0,n: n ∈ Z}, the basic limit function of the
uniform subdivision scheme Sa is defined by

ϕ = lim
k→∞ Sk

a{δ0,n}. (4.1)

By definition, the basic limit function of a scheme has compact support if the mask of
the scheme is of finite support. Denoting a = {an: n ∈ Z}, it is known that supp(ϕ) =
supp(a). The scheme Sa is called Cm if its basic limit function is, and hence all functions
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generated by the scheme, are Cm. From now on, for convenience, we assume that the
given initial data is of the form f 0 := {f 0

n = f (2−kn): n ∈ Z} for some k ∈ Z+ with a
smooth function f . Then, the limit function f ∞ can be expressed as

f ∞(x) =
∑

n∈Z

f
(
n2−k

)
ϕ
(
2kx − n

)
. (4.2)

In what follows, we verify that the approximation order of a subdivision scheme directly
depends on the polynomial reproducing property of the basic limit function.

Lemma 4.2. Let Sa be the 2L-point interpolatory subdivision scheme using radial basis
function interpolation Sf,X as in (2.1). Assume that Sp,X(x) = p(x) for any p ∈ 	m,
and let ϕ be the basic limit function of Sa . Then, the map f �→ ∑

n∈Z
ϕ(2kx−n)f (2−kn)

reproduces 	m, i.e.,
∑

n∈Z

ϕ
(
2kx − n

)
p
(
2−kn

) = p(x), ∀p ∈ 	m.

Proof. Let p be a polynomial in 	m, and assume that the initial data is given by f 0
n =

p(2−kn). Then, invoking the relation that a1−2n = un(2−k−1) with the Lagrange func-
tion un on X = {�2−k: � = −L + 1, . . . , L}, the polynomial reproducing property in
(2.4) is applied to get

f 1
2j+1 =

∑

n∈Z

a1−2nf
0
j+n =

∑

n∈Z

un

(
2−k−1

)
p
(
2−k(j + n)

) = p
(
2−k

(
j + 2−1

))
.

Repeating this process, we find that S∞f 0(x) = p(x) with f 0
n = p(2−kn). On the other

hand, since S∞f 0(x) = ∑
n∈Z

ϕ(2kx − n)f 0
n , the lemma’s claim can be obtained. �

We are now ready to prove the approximation order of our subdivision scheme Sa .

Theorem 4.3. Let Sa be a 2L-point interpolatory subdivision scheme using radial basis
function interpolation Sf,X in (2.1). Assume that Sp,X(x) = p(x) for any p ∈ 	m,
and let the given initial data be of the form f 0 := {f 0

n = f (2−kn): n ∈ Z} with a
smooth function f . If f ∈ Wm∞(K) with a compact set K , then the scheme Sa has the
approximation order m on K .

Proof. First, recalling lemma 4.2, apply the identity
∑

�∈Z
ϕ(2kx − n) = 1 to get the

relation

f (x) − f ∞(x) = f (x) −
∑

n∈Z

ϕ
(
2kx − n

)
f

(
n2−k

)

=
∑

n∈Z

ϕ
(
2kx − n

)(
f (x) − f

(
n2−k

))
.
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Then, taking Taylor polynomial of f (n2−k) of degree m − 1 at x implies that

f (x) − f ∞(x) =
∑

n∈Z

ϕ
(
2kx − n

) m−1∑

�=1

(n2−k − x)�f (�)(x)

�!

+
∑

n∈Z

ϕ(2kx − n)(n2−k − x)mf (m)(ξ)

m! ,

with ξ between x and n2−k. Here, due to lemma 4.2, the first term on the right-hand side
of the above equation is identically zero. Thus, it follows that

∣∣f (x) − f ∞(x)
∣∣ � c2−mk

∥∥f (m)
∥∥∞

∑

n∈Z

∣∣ϕ
(
2kx − n

)(
2kx − n

)m∣∣. (4.3)

For any x ∈ K , define a set 
x by 
x := {n ∈ Z: ϕ(2kx − n) �= 0}. Since ϕ is
compactly supported, it is obvious that #
x � Cϕ for some constant Cϕ . Therefore, we
get the bound

∑

n∈Z

∣∣ϕ
(
2kx − n

)(
2kx − n

)m∣∣ =
∑

n∈
x

∣∣ϕ
(
2kx − n

)(
2kx − n

)m∣∣ � Cϕ,m,

with a constant Cϕ,m > 0. When combined with (4.3), this theorem is proved. �

Remark. Although this study concentrated on the interpolatory binary subdivision
schemes using the multiquadrics, the proposed approach can also be applied to any basis
function φ whose Fourier transform φ̂ coincides on R\0 with some continuous function
while having a certain type of singularity (necessarily of a finite order) at the origin, i.e.,
φ̂ is of the form | · |nφ̂ = F > 0 with n � 0 and F ∈ L∞(R). For instance, the Gaussian
function φ(x) := e−cx2

, c > 0, and inverse multiquadric function φ(x) := (x2 +λ2)−1/2,
λ > 0, can be candidates.

Appendix

For a given basis function φλ, the general form of the mask set {a1−2n} of the
2L-point interpolatory scheme can be given in terms of w = w(λ). However, the explicit
forms of w(λ) are too lengthy. For instance, in the case of the 4-point interpolatory
scheme using the multiquadrics φλ(x) = (x2 + λ2)1/2 its mask set is known as

a−3 = a3 = −w(λ), a−1 = a1 = 1

2
+ w(λ),

and with the help of symbolic computation via MAPLE 8, w(λ) can be written as fol-
lows:

w(λ) = −1

4

(−11λ2 + 20
√

1 + λ2λ + 4λ
√

4 + λ2 + 21 + 7
√

1 + λ2
√

9 + λ2

− 12
√

1 + λ2
√

4 + λ2 − 4
√

4 + λ2
√

9 + λ2 − 4λ
√

9 + λ2
)−1
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× (
15

√
9 + 4λ2

√
1 + λ2 − 10

√
9 + 4λ2λ − 6

√
9 + 4λ2

√
4 + λ2

− 15
√

1 + 4λ2
√

1 + λ2 + 10
√

1 + 4λ2λ −
√

1 + 4λ2
√

9 + λ2

+ 6
√

1 + 4λ2
√

4 + λ2 +
√

9 + 4λ2
√

9 + λ2 + 24 − 4λ2 + 15
√

1 + λ2λ

− 15
√

1 + λ2
√

4 + λ2 + 4λ
√

4 + λ2 + λ
√

9 + λ2 −
√

4 + λ2
√

9 + λ2
)
.
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