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A non-stationary approximation scheme on scattered centers
in Rd by radial basis functions
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Abstract

A nonstationary approximation scheme on Rd using scattered translates of a smooth radial basis function
(e.g., Gaussian) is developed. The scheme is nonstationary and shown to provide spectral approximation
orders, i.e., approximation orders that depend only on the smoothness of the approximands.
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1. Introduction

A great deal of attention has been paid to the area of multivariate approximation of the form

s(x) :=
∑
�∈X

c� �(x − �); x∈Rd; (1.1)

with � a “suitable” basis function and X a set of arbitrary points in Rd, d¿ 1 (referred to as
“centers”). This approach is known to be e9ective for approximation to scatter data. The use of
a radially symmetric basis function � is particularly useful because (i) it facilitates the evaluation
of the approximant; (ii) the accuracy of approximation is usually very satisfactory provided the
approximand f is reasonably smooth; (iii) there is enough :exibility in the choice of basis functions.
A function � is radial in the sense that �(x)=
(|x|) where |x| := (x2

1 + · · ·+x2
d)1=2. Common choices

for � are �(x) = (|x|2 + c2)m−d=2, m¿d=2, d odd, (multiquadric) and �(x) = exp(−c|x|2), c¿ 0,
(Gaussian).
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Some basis functions � (e.g., multiquadric) are not suitable to be used directly for approximation
purposes since they increase polynomially fast around ∞. However, a suitable bell-shaped function

 (x) =
∑
�∈Zd

�(�)�(x − �)

with the inBnite sum being convergent in some topology (e.g., the C(Rd)-topology) is obtained by
applying a di9erence operator to �.

The initial approach to scattered data using radial basis functions has been focused on interpolation
at the Bnite set of scattered points X ⊂ Rd. The general conditions on � that ensure the existence
and uniqueness of the solution of the interpolation problem have been given by Micchelli [11].
Interpolation by translates of a suitable radial basis function is certainly an important approach
towards solving the scattered data problem. However, it carries its own disadvantage; as the number
of centers increases, one needs to solve a large linear system which is ill-conditioned. Thus, the
goal of this paper is to develop another approximation method (other than interpolation) with the
properties: (i) it is ‘local’ in the sense that a coeHcient in (1.1) should be determined by a few
values of the data, even when many centers are involved in the scheme; (ii) it provides spectral
approximation accuracy. Asymptotic approximation properties are usually quantiBed by the notion
of approximation order. In order to make this notion feasible, we measure the ‘density’ of X (in
Rd) by

� := �(X ) := sup
x∈Rd

min
�∈X

|x − �|: (1.2)

Then, given a sequence (L�)�¿0 of schemes, we say that (L�)�¿0 provides L∞-approximation order
k ¿ 0 if, for every suHciently smooth f∈L∞(Rd),

‖f − L�f‖L∞(Rd) = O(�k);

as � tends to 0. For more details on radial basis function approximation, the reader is referred to
the papers [10,13], and the survey papers [3,5,12].

In considering approximation schemes for discrete data, one observes that there already exist many
successful results that address the problem in the case X = Zd. In contrast, less is known for the
general case of X in Rd. In [4,6], quasi-interpolations from radial basis function space with inBnitely
many centers were studied and both showed that the approximation orders obtained in the scattered
case are identical to those that had been known on uniform grids, provided that the schemes are
stationary. In particular, Dyn and Ron provide a general tool that allows us to convert any known
approximation scheme on uniform grids to nonuniform grid, while preserving (to the extent that
this is possible) the approximation powers known in the former case. The approach of [6] can be
described as follows. Suppose that we are given an approximation scheme on uniform grids

f 	→
∑
�∈hZd

�hf(�)�(· − �):

Then, we replace each �(· − �) by a suitable combination

�(·; �) :=
∑
�∈X

a(�; �)�(· − �);
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with X a set of scattered centers we wish to use. As a matter of fact, this method provides a general
tool for deriving a scheme for a scattered set X from a scheme on a uniform mesh, instead of
approximating the function f directly from the space SX (�), which is deBned by

SX (�) := closure S0(�);

under the topology of uniform convergence on compact sets, with

S0(�) : =span{�(· − �): �∈X };
the Bnite span of {�(· − �): �∈X }. Since the present state-of-art in the area of approximation
on uniform grids is quite satisfactory, it gives hope for Bnding new approaches into the unyielding
scattered case. For this reason, in the present paper, we are concerned with the following goals: Brst,
the conversion tool in [6] is designed to apply to the stationary approximation schemes, but we suc-
cessfully apply it to the de Boor and Ron’s (gridded) nonstationary scheme. In turn, we will observe
that the converted scheme provides spectral approximation orders that depend on the smoothness of
the function f we approximate. Next, when we convert the gridded scheme to the nonuniform case,
we are faced with the issue of choosing the density of the uniform grid, namely, hZd, corresponding
the scattered center set X : A method for selecting the density h associated with a given X is not
given in [6]. Thus, the other goal of this paper is to discuss on the optimal way of selecting the
density of uniform grid associated to the given set of scattered points X . Consequently, we obtain
an approximation scheme which is independent of any uniform grid issue. In fact, using the conver-
sion method in [6], an approximation scheme on scattered centers [14] was developed by using the
‘shifted’ surface spline (see Section 4). However, for this scheme, we encountered a heavy numerical
integration problem (for the details, see [14]), and hence, a cost e9ective method has been expected.
The scheme presented in this paper is easier to implement than [14], and it can be applicable to any
basis function whose Fourier transform is positive (more generally, around the origin).

The following notations are used throughout this paper. When g is a matrix or a vector, ‖g‖p

indicates its p-norm with 16p6∞. Also, for any �; �∈Zd
+ := {�∈Zd: �¿ 0}, we set

�! := �1! · · · �d!; |�|1 :=
d∑

k=1

�k ; and �� =
d∏

k=1

��k
k :

For any k ∈N,
∏

k stands for the space of all polynomials of degree 6 k in d variables. The Fourier
transform of f∈L1(Rd) is deBned as

f̂(�) :=
∫
Rd

f(t) e−�(t) dt e� : x 	→ ei�·x:

Also, we use the notation f∨ for the inverse Fourier transform. In particular, the Fourier trans-
form can be uniquely extended to the space of tempered distributions on Rd. In this paper, our
approximands f may be chosen from the Sobolev space

Wk
p(Rd); 16p6∞; k ∈Z+;

of all functions whose derivatives of orders 6 k are bounded. By | · |k;p, we shall denote the
homogeneous kth order Lp-Sobolev semi-norm, i.e.,

|f|k;p :=
∑
|�|1=k

‖D�f‖Lp(Rd):
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2. Basis functions and the conversion method

We assume through out this study that the function � has a generalized Fourier transform in the
sense of tempered distribution, and we require that this distribution coincide on Rd\0 with some
continuous function while having a certain type of singularity (necessarily of Bnite order) at the
origin. Hence, here and in the sequel, we assume that �̂ satisBes the following properties:

| · |2m�̂ = F ¿ 0; m¿ 0; and F ∈L∞(Rd): (2.1)

In many cases, we Bnd that the basis function � grows at some polynomial degree away from
zero. It may cause to lose local property of the approximation. To circumvent those diHculties, a
‘localization process’ is necessary. Usually, localization is done by applying a di9erence operator to
�, which constructs a bell-shaped function

 =
∑
�∈Zd

�(�)�(· − �) (2.2)

The coeHcients � :Zd → R are called a localization sequence. In our study, � is assumed to have
Bnite support (generally a milder condition is imposed on �) and the localized function  is assumed
to satisfy the condition

sup
x

(1 + |x|)m  (x)¡∞;  ̂ (0) �= 0 (2.3)

for some m ¿d.

Lemma 2.1 (Dyn and Ron [6]). Assume that �̂ is continuous on Rd\0 and has a singularity of
order 2m at the origin for some positive integer m. Let (�(�))�∈Zd be the localization sequence in
(2.2) and assume that the localization  satis4es the condition (2.3). Assume also that the linear
functional

Q� :p 	→
∑
�∈Zd

�(−�)p(�) (2.4)

is well de4ned on
∏

2m−1. Then Q� annihilates
∏

2m−1.

The conversion method in [6] starts with a known approximation scheme L of the form

L :f →
∑
�∈Zd

 (· − �)�f(�)

with � a bounded operator from L∞(Rd)∩C(Rd) into itself. Then one chooses for each shift  (·−�)
an approximation  (·; �) from the space SX (�), and by substituting  (·; �) for  (· − �), one obtains
an approximation of the form

LX :f →
∑
�∈Zd

 (·; �)�f(�)

with � as before. The function  (·; �) thus lies in SX (�). It is also assumed that  (·; �) satisBes the
decaying condition in (2.3). It follows that the approximation scheme LX is a bounded map from
L∞(Rd) ∩ C(Rd) into SX (�).
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The actual construction of  (·; �) is done as follows. We Brst approximate each �(· − �) by a
linear combination

�(·; �) :=
∑
�∈X

a(�; �)�(· − �); (2.5)

which is called a “pseudo-shift” of �, and then deBne  (·; �) by

 (·; �) :=
∑
�∈Zd

�(� − �)�(·; �); (2.6)

which is a localization of the function �(·; �). Under some suitable conditions of �, it is shown in
[6] that the scheme LX provides the same approximation order as L does, provided the scheme is
stationary. Thus, in order to extend our discussion to the nonstationary case, we introduce the notion
of ‘admissible coeHcients’ (a(·; �))�∈X .

De�nition 2.2. A vector (a(·; �))�∈X is termed ‘p-admissible if the following conditions hold:

(a) There exists a constant c1 ¿ 0 such that for any �∈Rd, a(�; �) = 0 whenever |�− �|¿c1� with
� the density of X as in (1.2).

(b) The set {a(�) := (a(�; �))�∈X : �∈Rd} is bounded in ‘p(X ), namely, there exists a constant
c2 ¿ 0 such that ‖a(�)‖p6 c2 for any �∈Rd.

When, in addition to (a) and (b), it particularly satisBes the polynomial reproduction property∑
�∈X

a(�; �)p(�) = p; �∈Rd; p∈
∏

n
; (2.7)

the vector (a(�; �))�∈X is called ‘p-‘admissible for
∏

n’.

Remark. Assuming that the sequence (a(·; �))�∈X is admissible for
∏

n, we note that the linear
system in (2.7) is invariant under the dilation and translation on Rd and X . Hence, without loss of
generality, we assume that the following identity holds in this study:

(a(ct; �))�∈X = (a(t; �=c))�∈X ; c¿ 0: (2.8)

For the examples of ‘p-admissible vectors (a(·; �))�∈X , the reader is referred to the papers [9]
and [13].

3. Approximation schemes and error estimates

When we are looking for an approximant from the space SX (�) with a suitable basis function �
in terms of the conversion method discussed earlier, it is essential to choose a good approximation
scheme on uniform grid. In the paper [2], de Boor and Ron introduced an optimal approximation
scheme from the spaces spanned by shifts of a basis function. One can observe here that spectral
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approximation order can be obtained if the basis function is smooth and satisBes certain other
conditions.

For a given integrable function f, the approximation scheme on uniform grid in [2] is given as
follows:

Lh :f →
∑
�∈Zd

 h(·=h− �)�hf(�) (3.1)

with �hf the bounded analytic function

�hf(x) := (2&)−d
∫
Rd

eihx�

 ̂ h(h�)
mh(�)f̂(�) d�; (3.2)

where m∨
h ∗ f is a (band-limited) molliBcation of f. In this case, we may choose

 h :=  ('·); ' := '(h):

Note that, in terms of the original basis function �h (i.e., prior to localization), we have the identity

�h(x=h− �) = �
(
'
h

(x − h�)
)

:

It ensures that the approximant Lhf belongs the space ShZd(�(('=h)·)). On the other hand, the
pseudo-shift �h(·=h; �) corresponding to �h(·=h− �) is deBned by

�h(·=h; �) =
∑
�∈X

a(h�; �)�
(
'
h

(x − �)
)

: (3.3)

Then, the scattered center variant LX of Lh is obtained by replacing �h(·=h− �) in Lh by �h(·=h; �)
in accordance with the conversion method in [6]:

LXf :=
∑
�∈Zd

 h(·=h; �)�hf(�): (3.4)

From (3.3), it is clear that LXf belongs to the space SX (�(('=h)·)). In particular, one must choose
the function  h (indeed, �h) very carefully so that this approximation schemes are e9ective (i.e.,
whose error decay) in some sense.

In this study, we want to approximate functions f in the Sobolev space Wk∞(Rd) which is indeed
bigger than the space considered in [2]. Further, in order to get numerically stable scheme on
scattered points, we need to adjust the molliBcation m∨

h ∗ f according to the basis function �h and
X . (It is rather di9erent from the case of uniform grid in [2].) SpeciBcally, to apply the scheme LX

to an integrable function f∈Wk∞(Rd), we Brst mollify f as follows:

fo := (
(
h
'
·
)∨

∗ f; (3.5)

where ( :Rd → [0; 1] is a nonnegative C∞-cuto9 function whose support ( lies in some ball B*,
*¿ 0; furthermore ( = 1 on B*=2 and that ‖(‖∞ = 1. Here and hereafter, we assume that  ̂ �= 0 on
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B* such that (= ̂ is well deBned. Note that ' appears in the deBnition �h = �('·). It is clear that
fo = (((h=')·)∨ ∗ f is band-limited. Then, we apply the scheme LX to fo instead of f.

Lemma 3.1. Let f∈Wk∞(Rd) and fo be de4ned as in (3.5). Then, as h=' → 0, we have an estimate
of the form

‖f − fo‖Lp(Rd) = o((h=')k); 16p6∞:

Proof. In this proof, for simplicity, we use the abbreviation ! := h='. By the basic properties of
Fourier transform, it is obvious that

∫
Rd ((!·)∨(�) d� = 1 for any !¿ 0. Then, taking the Taylor

expansion of f(t − �) about t, we derive the following identities:

(f − ((!·)∨ ∗ f)(t) =
∫
Rd

((!·)∨(�)(f(t) − f(t − �)) d�

=
∫
Rd

∑
0¡|,|1¡k

((!·)∨(�)(−�),
D,f(t)

,!
+ Rkf(t; �) d�

with

Rkf(t; �) :=
∑
|,|1=k

(−�),D,f(t − y�)=,!

for some y∈ [0; 1]. Then the fact
∫
Rd ((!·)∨(�)� , d� = 0 for any , �= 0 implies that

(f − ((!·)∨ ∗ f)(t) =
∑
|,|1=k

∫
Rd

((!·)∨(�)(−�),D,f(t − y�) d�=,!

=
∑
|,|1=k

∫
Rd

((!·)∨(�)(−�),(D,f(t) − D,f(t − y�)) d�=,!

= (i!)k
∑
|,|1=k

∫
Rd

(D,()∨(�)(D,f(t) − D,f(t − y!�)) d�=,!:

One can in fact prove by using Minkowski’s inequality that

!−k‖f − (∨(!·) ∗ f‖Lp(Rd)6C
∑
|,|1=k

∫
Rd

|(D,()∨(�)‖|D,f − D,f(· − y!�)‖Lp(Rd) d�

with 16p6∞ and y∈ [0; 1]. It is known (see [7]) that ‖D�f(· − y!�) − D�f‖L2(Rd) → 0, for
any �∈Rd, as ! → 0. Therefore, by applying the Lebesgue Dominated Convergence Theorem, we
have the convergence property ‖f − ((!·)∨ ∗ f‖Lp(Rd) = o(!k) as ! tends to 0.

From [6], we Bnd that
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Lemma 3.2. Let Lh be de4ned as in (3.1). For any function f∈Wk∞(Rd), fo is de4ned as in (3.5).
Then, we have an error bound of the form

‖fo − Lhf‖L∞(Rd)6Chk |f|0;∞
with C depending on k.

The next lemma is useful to estimate (Lh − LX )f.

Lemma 3.3. Let � be a smooth basis function, and assume that �̂ is continuous on Rd\0 and has a
singularity of order 2m at the origin for some nonnegative integer m. Assume that the coe7cients
(a(�; �))�∈X for �(·; �) is admissible for

∏
n−1 with n¿ 2m + 1. Then

|�h(x=h− �) − �h(x=h; �)|6C'n−d−1

(
�
h

)n

(1 + |x=h− �|)−d−1;

where C is independent of X , x, h, and �.

Proof. Since ‖g‖L∞(Rd)6 ‖ĝ‖L1(Rd), it is suHcient to prove that the Fourier transform of
(1 + | · |)d+1(�h(·) − �h(· + �; �)) is bounded by C'n−d−1(�=h)n in L1-norm, where the pseudo-shift
�h(· + �; �) can be written as

�h(· + �; �) =
∑
�∈X

a(�; �=h)�h(· + �− �=h)

(see (2.8) and (3.3)). This is equivalent to show that, for any �∈Zd
+ with |�|16d + 1, the Fourier

transform of (·)�(�h(·) − �h(· + �; �)) is bounded by C'n−d−1(�=h)n in L1-norm. Note that

[(·)�(�h(·) − �h(· + �; �))]∧(�) = i|�|1D�[�̂h(�)(1 − E�(�))];

where

E�(�) =
∑
�∈X

a(�; �=h)ei�·(�−�=h):

Hence, by using Leibniz’ rule, we will show that∫
Rd

|D�−��̂h(�)D�(1 − E�(�))| d�6C'n−d−1

(
�
'

)n

: (3.6)

First, assume that �¿ 0 and let P0(x) be the Taylor polynomial of degree n − |�|1 − 1 of the
function ex around the origin. Using the polynomial reproduction property of (a(·; �=h))�∈X , it is
easy to verify the following relations:

D�(1 − E�(�)) = i|�|1
∑
�∈X

a(�; �=h)(�− �=h)�ei�·(�−�=h)

= i|�|1
∑
�∈X

a(�; �=h)(�− �=h)�P0(i� · (�− �=h))
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+in
∑
�∈X

a(�; �=h)(�− �=h)�(� · (�− �=h))n−|�|1eiy�·(�−�=h)

= in
∑
�∈X

a(�; �=h)(�− �=h)�� · (�− �=h)n−|�|1eiy�·(�−�=h)

for some y between the origin and i� · (� − �=h). From the property (a) in DeBnition 2.2, that is,
a(t; �) = 0 whenever |�− �=h|¿ c(�=h) with � in (1.2), we obtain the bound

D�(1 − E�)(�)6C(�=h)n|�|n−|�|1 :

In a similar fashion, we can prove this inequality for the case � = 0. Thus, invoking the deBnition
�h = �('·) and the relation |�|16d + 1, we get∫

Rd
D�−��̂h(�)D�(1 − E�(�)) d�6C(�=h)n

∫
Rd

|�|n−|�|1D�−��̂(�=') d�='d

6C(�=h)n'n−d−1
∫
Rd

|�|n−|�|1D�−��̂(�) d�:

Finally, in order to complete the proof, we need to show that the last integration (above) makes sense.
Since D�−��̂ decays fast around ∞, the function |·|n−|�|1D�−��̂ is in L1(N∞) for some neighborhood
N∞ of ∞. Also, we see that the distribution D�−��̂ has a singularity of order 2m + |�− �|1 at the
origin. Thus, we Bnd that the function | · |n−|�|1D�−��̂ has a singularity of order 2m + |�|1 − n and
2m + |�|1 − n¡d by the conditions n¿ 2m + 1 and |�|16d + 1. It implies that | · |n−|�|1D�−��̂ is
in L1(N0) with N0 a neighborhood at the origin.

Lemma 3.4. Let Lh and LX be the schemes de4ned as in (3.1) and (3.4), respectively. Assume that
�̂ is continuous on Rd\0 and has a singularity of order 2m at the origin for some nonnegative
integer m. Assume further that the coe7cients (a(�; �))�∈X for �(·; �) are admissible for

∏
n−1.

Then, for every function f∈Wk∞(Rd), we have the error bound

‖(Lh − LX )f‖L∞(Rd)6C
(
�
h

)n

'n−1hmin(k;2m)|f|p;∞

with C independent of X and h.

Proof. First, from the deBnitions of Lh and LX , we can write (Lh − LX )f(x) as follows:

(Lhf − LXf)(x) =
∑
�∈Zd

( h(x=h− �) −  h(x; �))�hf(�)

=
∑
�∈Zd

∑
�∈Zd

(�h(x=h− �) − �h(x=h; �))�(�− �)�hf(�):
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Recalling the deBnition �h = �('·), due to Lemma 3.3, the above double sum converges absolutely,
and summation by parts implies that

(Lhf − LXf)(x) =
∑
�∈Zd

(�h(x=h− �) − �h(x=h; �))
∑
�∈Zd

�(�− �)(�hf)(�)

6C'n−d−1

(
�
h

)n ∑
�∈Zd

|1 + (x=h− �)|−d−1
∑
�∈Zd

�(−�)�hf(� + �); (3.7)

the inequality being a consequence of Lemma 3.3. According to the deBnition of the linear functional
Q� in (2.4), we have the identity

Q�(�hf(� + ·)) =
∑
�∈Zd

�(−�)�hf(� + �):

Let p := min(k; 2m), and let T�(�hf) be the Taylor polynomial of degree p−1 of �hf about #=�.
Then, the fact that Q� annihilates

∏
p−1 (see Lemma 2.1) implies that

Q�(T�(�hf)(� + ·)) =
∑
�∈Zd

�(−�)T�(�hf)(� + �) = 0:

Therefore, we have

∑
�∈Zd

�(−�)(�hf)(� + �) =
∑
|,|1=p

∑
�∈Zd

�(−�)
�,

,!
D,(�hf)(��) (3.8)

with �� between � and � + �. Now, using the relation  ̂ h(h·) =  ̂ ((h=')·)'−d, from the explicit
formula of �hf in (3.2), we get the expression

D,(�hf)(x) = (ih)p'd(2&)−d
∫
Rd

(

 ̂
(h�=')� ,f̂(�)eihx·� d�

= (ih)p'd

[(
(

 ̂

(
h
'
·
))∨

∗ ((·),f̂)∨
]

(hx);

where |,|1 = p. Thus, it clearly follows from (3.8) that∣∣∣∣∣∣
∑
�∈Zd

�(−�)(�hf)(� + �)

∣∣∣∣∣∣6Chp'd|f|p;∞ (3.9)

with a constant C independent of h, ', and f, where p = min(k; 2m). Consequently, combining the
relations (3.7) and (3.9), we obtain the required results.

Now, we are ready provide an approximation scheme on scattered centers which is independent
of density of the uniform grid argument. On the base of the above results, we choose h := � and
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' := �1−r with r ∈ (0; 1). Then, the Bnal version of our approximation scheme is deBned by

LXf :=
∑
�∈Zd

 �(·=�; �)��f(�); (3.10)

where  � =  (�1−r·) and

��f(x) := (2&)−d
∫
Rd

((�r�)

 ̂ �(��)
f̂(�)ei�x·� d�:

The main result of this section is as follows:

Theorem 3.4. Assume that �̂ is continuous on Rd\0 and has a singularity of order 2m at the
origin for some nonnegative integer m. Also assume that the sequence (a(·; �))�∈X for �(·; �) be
admissible for

∏
n−1 with n¿ 2m+ 1. Then, for every f∈Wk∞(Rd), the approximation scheme LX

in (3.10) satis4es the following error estimate:

‖f − LXf‖L∞(Rd) = o(�rk) +

{
O(�(1−r)n+2m) if k¿ 2m;

o(�(1−r)n+k) if k ¡ 2m:

Proof. It is useful to divide the error (f − LXf)(x) as follows:

(f − LXf)(x) = (f − fo)(x) + (fo − Lhf)(x) + (Lhf − LXf)(x)

Then, this theorem is proved immediately by Lemmas 3.1, 3.2, and 3.4.

Corollary 3.5. Under the same conditions and notations as in the Theorem 3.4, assume that
f∈W∞(Rd) with k¿ 2m. Let the number n (¿ 2m + 1) be chosen to satisfy the condition
(1 − r)n + 2m¿rk for a given r ∈ (0; 1). Then, we have

‖f − LXf‖L(Rd) = o(hrk):

Remark. The deBnition of the pseudo-shift ��(·; �), �∈Zd, in (3.3) leads to the explicit form

LXf(x) :=
∑
�∈Zd

 �(·=�; �)��f(�) =
∑
�∈X

c�(f)�
(
'
�

(x − �)
)

;

where

c�(f) =
∑
�∈Zd

∑
�∈Zd

a(�(� + �); �)�(�)��f(�):

It is clear that LXf is an element of SX (�(('=�)·)).

4. Examples

We discuss here several examples by which spectral approximation orders are obtained.
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Example 4.1. The Gaussian kernel: �(x) = exp(−|x|2=4). Its Fourier transform is of the form �̂ =
ce−|·|2 , c¿ 0, which vanishes nowhere. According to Theorem 3.4, we choose '(�) = �1−r with
r ∈ (0; 1). Then the approximant LXf is from the space SX (�(�−r·)) with �(�−r·) = e−�−2r |·|2 and
we can get approximation order o(�rk).

Example 4.2. Let the radial basis function � be chosen to be one of what follows:

(a) �c(x) := (−1)�m−d=2	(|x|2 + c2)m−d=2, d odd, m¿d=2 (multiquadrics),
(b) �c(x) := (−1)m−d=2+1(|x|2 +c2)m−d=2log(|x|2 +c2)1=2, m¿d=2, d even (‘shifted’ surface splines).
(c) �c(x) := (|x|2 + c2)m−d=2, 0¡m¡d=2 (inverse multiquadrics),

where d; m∈N := {1; 2; : : :} and c¿ 0, and where �s� indicates the smallest integer greater than
s. Note that we stress the parameter c by using the notation �c. When c = 0 in the case of (b),
the function �0 is the so-called surface spline. The properties of these basis functions are quite well
understood, both theoretically as well as practically. We Bnd (see [8]) that the Fourier transform of
�c is of the form

�̂c = c(m; d)K̃m=2(c·)| · |−2m

where c(m; d) is a positive constant depending on m and d, and K̃,(|t|) := |t|,K,(|t|) �= 0, t¿ 0,
with K,(|t|) the modiBed Bessel function of order ,. It is well known from literature (e.g., [1]) that

K̃, ∼ (1 + | · |(2,−1)=2) exp (−| · |):
Due to Theorem 3.4, we choose '(�) = �1−r with r ∈ (0; 1). Then the approximant LXf is from the
space SX (��r ), and we can get approximation order o(�rk).

Remark. By using the ‘shifted’ surface spline (see Example 4.2 (b)), a nonstationary approximation
scheme on scattered centers is introduced in [14]. It is independent of the issue of choosing the
density of the uniform grid hZd, and it can be written in the form of integral as follows:∫

Rd
 c(x=!; t) Q�!f(!t) dt; ! = !(�); (4.1)

where Q�! is the operator

Q�!f(x) =
∫
Rd

((!�)

 ̂ c(!�)
f̂(�)ei!x·� d�:

In practice, for this scheme (4.1), we encounter a numerical integration problem and a cost e9ective
way for computation should be addressed. However, we will see that the scheme (3.10) in this study
can be interpreted as a discretization of the above integral, while preserving spectral approximation
orders. For the proof of this claim, recalling the deBnition  c;� =  c('·) with ' = '(�), we see that

 ̂ c;�(�·) = '−d ̂ c

(
�
'
·
)

:

Denote ! := �='. It is easy to show that

��f = 'd Q�!f('�):
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Then, it follows that∑
�∈Zd

 c;�(x=�; �)��f(��): =
∑
�∈Zd

'd c(x=!− '�)) Q�!f('�):

The right-hand side can be amounted as the Riemann sum approximation to (4.1). Thus, the claim
is justiBed. In addition, as we discussed in the previous section, the primary concern of the present
work is to discuss on the optimal way of the conversion method for the nonstationary case. In
the near future, some suitable algorithm will be developed along with computational results with
di9erent basis functions.
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