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Lp-ERROR ESTIMATES
FOR “SHIFTED” SURFACE SPLINE INTERPOLATION

ON SOBOLEV SPACE

JUNGHO YOON

Abstract. The accuracy of interpolation by a radial basis function φ is usu-
ally very satisfactory provided that the approximant f is reasonably smooth.
However, for functions which have smoothness below a certain order associated
with the basis function φ, no approximation power has yet been established.
Hence, the purpose of this study is to discuss the Lp-approximation order

(1 ≤ p ≤ ∞) of interpolation to functions in the Sobolev space W k
p (Ω) with

k > max(0, d/2 − d/p). We are particularly interested in using the “shifted”
surface spline, which actually includes the cases of the multiquadric and the
surface spline. Moreover, we show that the accuracy of the interpolation
method can be at least doubled when additional smoothness requirements
and boundary conditions are met.

1. Introduction

Radial basis functions provide a convenient and simple tool to reconstruct mul-
tivariate functions from scattered data. Let Ω ⊂ Rd be an open bounded domain,
and let X := {x1, . . . , xN} be a discrete set in Ω. Let Πm denote the subspace
of C(Rd) consisting of all d-variate algebraic polynomials of degree less than m.
Radial basis function interpolation to a continuous function f : Rd → R on a set
X starts with choosing a function φ : Rd → R and defining an interpolant by

sf,X(x) :=
∑̀
i=1

βipi(x) +
N∑
j=1

αjφ(x− xj),(1.1)

where p1, . . . , p` is a basis of Πm and αj (j = 1, . . . , N) are chosen so that
N∑
j=1

αjpi(xj) = 0, 1 ≤ i ≤ `.(1.2)

For a wide choice of functions φ and polynomial orders m, including the case m = 0,
the coefficients of sf,X are required to satisfy the (N + `)× (N + `) system of linear
equations, which can be written in matrix form as(

A P
PT 0

)(
a
b

)
=
(

f
0

)
,
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where A and P are the N × N and ` × ` matrices that have the elements Aij =
φ(xi − xj) and Pij = pi(xj). Further, a ∈ RN and b ∈ R` are the vectors of
coefficients of sf,X , and the components of f are the data f(xj), j = 1, . . . , N . The
general conditions on φ that ensure the nonsingularity of the above system have
been given by Micchelli [M]. The function φ is radial in the sense that φ(x) = Φ(|x|),
where |x| :=

√
x2

1 + · · ·+ x2
d, and we assume φ = Φ(| · |) to be strictly conditionally

positive definite of order m, which implies that the matrix A is positive definite on
the subset of vectors u ∈ RN satisfying

∑N
j=1 ujp(xj) = 0 with p ∈ Πm. For m > 0,

we require X to have the nondegeneracy property for Πm, i.e., any polynomial in
Πm which vanishes on X must be identically zero. For more details, the reader is
referred to the papers [Du], [MN1], [MN2], [WS], and the survey papers [D], [Bu1]
and [P1].

We use the following notation throughout this paper. When g is a matrix or a
vector, ‖g‖p indicates its p-norm with 1 ≤ p ≤ ∞. For α, β ∈ Zd+ := {(γ1, . . . , γd) ∈
Zd : γk ≥ 0}, we set α! := α1! · · ·αd!, |α|1 :=

∑d
k=1 αk, and αβ = αβ1

1 · · ·α
βd
d .

The Fourier transform of f ∈ L1(Rd) is defined as

f̂(θ) :=
∫
Rd
f(t) exp(−iθ · t) dt.

Also, for a function f ∈ L1(Rd), we use the notation f∨ for the inverse Fourier
transform. The Fourier transform can be uniquely extended to the space of tem-
pered distributions on Rd.

In this paper, we are particularly interested in the basis function that is obtained
from the fundamental solution of the iterated Laplacian by the shifting |x| 7→
(|x|2 + λ2)1/2 with λ ≥ 0,

(1.3) φλ(x) :=

{
(−1)dm−d/2e(|x|2 + λ2)m−d/2, d odd,
(−1)m−d/2+1(|x|2 + λ2)m−d/2 log(|x|2 + λ2)1/2, d even,

where d, m ∈ N := {1, 2, . . .}, m > d/2, and where dse indicates the smallest integer
greater than s. This function φλ is called the “shifted” surface spline function.
When d is odd, φλ is called the multiquadric, and when λ = 0, the function φ0 is
the so-called surface spline. The interpolation properties of the “shifted” surface
spline interpolation have been studied in many articles. The reader is referred to
the papers cited above.

We demand some hypotheses on the domain Ω over which the error between f
and sf,X is measured. These assumptions are listed as follows:

(a) Ω ⊂ Rd is an open bounded domain with a Lipschitz boundary.
(b) Ω has the cone property.

In order to discuss the extent to which sf,X approximates f , we define the “density”
of X in Ω to be the number

h := h(X ; Ω) := sup
x∈Ω

min
xj∈X

|x− xj |.(1.4)

Actually, in this study, we need a stability result on the interpolation process.
Therefore, we define the separation distance within X by

q := min
1≤i6=j≤N

|xi − xj |/2.(1.5)
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Here and in the rest of the paper, we assume, without great loss, that there exists
a constant η > 0, independent of X , such that

h/q ≤ η.(1.6)

This condition asserts that the number of the scattered points in the set X is
bounded by ch−d, i.e., N ≤ ch−d, where the constant c is independent of X .

The accuracy of the aforesaid interpolation method is usually very satisfactory
provided that the approximand f itself is reasonably smooth. Indeed, most of the
current studies of radial basis function interpolation estimate errors for a class of
functions f whose Fourier transforms are dominated by the Fourier transform φ̂λ
in the sense that ∫

Rd
|f̂(θ)|2φ̂−1

λ (θ)dθ <∞.(1.7)

In this case, an approximand f is required to have a certain smoothness associ-
ated with the expression (1.7). Specifically, in the case λ = 0, f should have a
smoothness of order m. Even worse, when λ > 0, the Fourier transform φ̂λ decays
exponentially at infinity. Hence, the approximands need to be extremely smooth
for an effective error analysis. Unfortunately, no convergence order for functions
which are less smooth has been provided yet. For this reason, in the present pa-
per, we are concerned with providing the Lp-approximation order (1 ≤ p ≤ ∞) of
interpolation to functions f in a Sobolev space. For k ∈ Z+ and 1 ≤ p ≤ ∞, the
Sobolev space W k

p (Ω) is defined by

W k
p (Ω) :=

{
f : ‖f‖k,Lp(Ω) :=

( ∑
|α|1≤k

‖Dαf‖pLp(Ω)

)1/p
<∞

}
with the usual modification when p =∞, namely,

‖f‖k,L∞(Ω) :=
∑
|α|1≤k

‖Dαf‖L∞(Ω).

By | · |k,Lp(Ω), we shall denote the homogeneous kth order Lp-Sobolev semi-norm,
i.e.,

|f |k,Lp(Ω) :=

 ∑
|α|1=k

‖Dαf‖pLp(Ω)

1/p

.

Furthermore, it is clear that, due to edge effect, we lose some accuracy near the
boundary. This corroborates numerical experiments performed by Beatson and
Powell (see [P2]). Hence, the other goal of this paper is to show that when addi-
tional smoothness requirements and boundary conditions are met, the approxima-
tion order of the interpolation method can be improved at least twice. We now
present two theorems which may be regarded as prototypes of the main results of
this paper:

Theorem 1.1. Let sf,X in (1.1) be the interpolant to f using the “shifted” surface
spline φλ. Assume that the parameter λ in the basis function φλ is chosen to be
proportional to h. Then, there is a positive constant c, independent of X, such that
for every f ∈ Wm

2 (Ω) ∩Wm
∞(Ω), we have an error bound of the form

‖f − sf,X‖Lp(Ω) ≤ chγp |f |m,L2(Rd), 1 ≤ p ≤ ∞,
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with

γp := min(m,m− d/2 + d/p).(1.8)

Furthermore, if f ∈W k
2 (Ω) ∩W k

∞(Ω) with max(0, d/2− d/p) < k < m, then

‖f − sf,X‖Lp(Ω) = o(hγp−m+k).

Theorem 1.2. Suppose that Dαf is supported in Ω and bounded for any α ∈ Zd+
with |α|1 = 2m. Then, with the same notation and conditions as in Theorem 1.1,
we have an improved error estimate

‖f − sf,X‖Lp(Ω) ≤ cfhm+γp ,

with a constant cf depending on f .

The outline of the paper is as follows: In section 2, we discuss the properties of
the Fourier transform φ̂λ and then discuss the extension of a function f ∈ W k

p (Ω)
to a function in the space W k

p (Rd). In section 3, we provide some basic estimates
for the error f − sf,X ; these will be used in the following sections to quantify the
approximation power of sf,X . Section 4 is devoted to establishing the asymptotic
decay of the error between f and sf,X in the Sobolev space W k

p (Ω) in the sense
of Lp-norm. In section 5, we will observe that, under some suitable boundary and
smoothness conditions of f , the accuracy of the interpolation method can be at
least doubled.

2. Preliminaries

The basis function φλ in (1.3) grows polynomially for large argument. Then,
in the sense of tempered distributions, φλ has the following generalized Fourier
transform (see [GS]):

φ̂λ(θ) = cm,d|θ|−2mK̃m(|λθ|),(2.1)

where cm,d is a positive constant depending on m and d, and K̃ν(|t|) := |t|νKν(|t|)
with Kν(|t|) the modified Bessel function of order ν. From [AS], we find that

K̃ν(|t|) ∈ C2ν−1(Rd) ∩ C∞(Rd \ {0}),(2.2)

K̃ν(|t|) > 0, and K̃ν(|t|) ≈ e−|t|(1 + |t|(ν−1)/2).

We will see in the following sections that the Fourier transform φ̂λ is an important
ingredient in our error estimates between f and sf,X . Furthermore, for the given
basis function φλ, there arises a function space

Fφ :=
{
g : |g|2φλ :=

∫
Rd

|ĝ(θ)|2

φ̂λ(θ)
dθ <∞

}
,(2.3)

which is called the “native” space for φλ. This function space Fφ is equipped with
the semi-inner product

(f, g)φλ :=
∫
Rd
f̂(θ)¯̂g(θ)φ̂−1

λ dθ.

The kernel of the semi-inner product is Πm(Rd). It is known that the inter-
polant sf,X in (1.1) is the best approximation to f ∈ Fφ from the space
span{φλ(· − xj) : xj ∈ X} + Πm with respect to the | · |φλ-semi norm. Thus,
we have the property

|f − sf,X |2φλ + |sf,X |2φλ = |f |2φλ ,(2.4)
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which gives the relations

|sf,X |φλ ≤ |f |φλ and (f − sf,X , sf,X)φλ = 0.(2.5)

For a given function f ∈ W k
p (Ω), the assumptions on Ω in section 1 assure the

existence of a function on Rd whose restriction to Ω agrees with f . The following
results are cited from the literature.

Theorem 2.1 (Brenner and Scott, [BrS]). Suppose that Ω has a Lipschitz boundary.
Then for every function f ∈ W k

p (Ω), there is an extension mapping E : W k
p (Ω)→

W k
p (Rd), defined for all nonnegative integers k and real numbers p in the range

1 ≤ p ≤ ∞, satisfying Ef |Ω = f for all f ∈W k
p (Ω) and

‖fΩ‖k,Lp(Rd) ≤ c ‖f‖k,Lp(Ω),

where the constant c is independent of f .

The extension map E depends on Ω. Hence, in the following, we will use the
notation fΩ := EΩ(f) = E(f).

Lemma 2.2 (Light and Wayne, [LW]). Let B be any ball of radius r in Rd. Let f ∈
W k

2 (B). Then there exists a unique function fB = EB(f) such that |fB|k,L2(Rd) <

∞ and fB|B = f . Moreover, there exists a constant c, independent of B, such that
for all f ∈W k

2 (B),
|fB|k,L2(Rd) ≤ c |f |k,L2(B).

The construction of a suitable extension of f ∈ W k
p (Ω) to a function on Rd

can be done in two steps. First, according to Theorem 2.1, there exists a function
fΩ ∈W k

p (Rd) such that fΩ|Ω = f . Second, we let σΩ be a Ck-cutoff function such
that σΩ(x) = 1 for x ∈ Ω and σΩ(x) = 0 for |x| > r with a sufficiently large r > 0.
Then, we define an extension fo by

fo := σΩf
Ω.

Of course, fo is compactly supported and fo(x) = f(x) for x ∈ Ω. Indeed, for a
large part of this paper, we wish to work with fo and not f . For convenience, we
will henceforth write f for fo. Therefore, in this paper, we assume, without great
loss, that an approximand f ∈ W k

p (Ω) is supported on a sufficiently large compact
set in Rd, and that f ∈ W k

p (Rd).

3. Basic results

In this section, we provide some basic estimates for the error f − sf,X in the
Sobolev space W k

2 (Ω). These results will be used in the following sections to esti-
mate the approximation power of sf,X . Before we advance our discussion further,
we introduce the following definition.

Definition 3.1. A vector (u1(x), . . . , uN(x)), x ∈ Ω, is said to be `p-admissible
on Ω if the following conditions hold:

(a) There exists a constant c1 > 0 such that for any x ∈ Ω, uj(x) = 0 whenever
|x− xj | > c1h, with h the density of X as in (1.4).

(b) The set {u(x) := (u1(x), . . . , uN(x)) : x ∈ Ω} is bounded in `p(X), namely,
there exists a constant c2 > 0 such that for any x ∈ Ω, ‖u(x)‖p ≤ c2 for
any x ∈ Ω.
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If, in addition to (a) and (b), the vector (u1(x), . . . , uN(x)) also satisfies the poly-
nomial reproduction property

N∑
j=1

uj(x) p(xj) = p(x), x ∈ Ω, p ∈ Πn,

then we say that the vector is “`p-admissible for Πn” on Ω.

Remark. In Definition 3.1, the centers in the set

Xx := {xj ∈ X : uj(x) 6= 0}, x ∈ Ω,

are assumed to be some “close neighbors” of x. Of course, the set Xx is required
to have the nondegeneracy property for Πn. This implies that #Xx should be no
smaller than dim Πn(Rd), where #S denotes the number of elements of a set S. For
examples of such `p-admissible vectors (u1(x), . . . , uN (x)), the reader is referred to
the papers [L] and [WS].

Remark. For any j = 1, . . . , N , we find easily that the function uj is supported in
Ω and vol(suppuj) ≤ chd for some c > 0. In this section, we use the notation Sj
for the smallest ball centered at xj including supp uj. Then we have the following
result:

Lemma 3.2. Suppose X = {x1, . . . , xN} ⊂ Ω, and let (u1(x), . . . , uN(x)) be `p-
admissible for Πn on Ω. Let Sj, j = 1, . . . , N , be as above. The following hold:

(a)
∑N

j=1 χSj ≤ cn, with the constant cn depending on n, where χ
S

is the
characteristic function of a set S.

(b) Ω ⊂
⋃N
j=1 Sj.

(c) vol(Sj) ≤ chd for some c > 0.

Proof. According to Definition 3.1 (a), for any x ∈ Ω, there exists a constant c > 0
such that if |xj − x| > ch, then uj(x) = 0 and χ

Sj
(x) = 0. Then, from (1.6), we

find that there exist at most M terms (M depends on n), say ui1(x), . . . , uiM (x),
such that χ

Si`
(x) 6= 0 with ` = 1, . . . ,M , which proves (a). The relations (b) and

(c) are direct consequences of Definition 3.1. �

Lemma 3.3. Let sf,X in (1.1) be an interpolant to f using the basis function φλ.
Let Sj with j = 1, . . . , N be the smallest ball centered at xj including suppuj. Then,
for every f ∈ Wm

2 (Sj),

‖f − sf,X‖Lp(Sj) ≤ chm−d/2+d/p|(f − sf,X)Sj |m,L2(Rd).

Proof. Since f − sf,X ∈ Wm
2 (Sj) for any j = 1, . . . , N , Theorem 2.1 shows that

there exists an extension (f − sf,X)Sj ∈ Wm
2 (Rd) such that |(f − sf,X)Sj |m,L2(Rd)

is bounded and
(f − sf,X)|Sj = (f − sf,X)Sj |Sj .

Now, let Tf be an interpolant to f on a set X ∩ Sj by using the surface spline φ0;
for simplicity, we use the notation Tf temporarily in this proof. Then, it is clear
that for any y ∈ X ∩Sj we have (f − sf,X)Sj (y) = 0, implying that the interpolant
T (f − sf,X)Sj is identically zero. Therefore,

(f − sf,X)Sj = (f − sf,X)Sj − T (f − sf,X)Sj .
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Note that the density of the set X ∩ Sj in Sj is bounded by a constant times h.
Then it is known (e.g., see [WS] or [Y2]) that

‖(f − sf,X)Sj − T (f − sf,X)Sj‖L∞(Sj) ≤ chm−d/2|(f − sf,X)Sj |m,L2(Rd).

Using condition (c) of Lemma 3.2, we obtain

‖f − sf,X‖Lp(Sj) ≤ vol(Sj)1/p‖(f − sf,X)Sj − T (f − sf,X)Sj‖L∞(Sj)

≤ chm−d/2+d/p|(f − sf,X)Sj |m,L2(Rd),

which completes the proof of the lemma. �

Theorem 3.4. Let sf,X in (1.1) be an interpolant to f on X using the basis function
φλ. Assume that γp is defined by (1.8) for 1 ≤ p ≤ ∞. Then, there exists a constant
c > 0, independent of X, such that for every function f ∈ Wm

2 (Ω), we obtain an
estimate of the form

‖f − sf,X‖Lp(Ω) ≤ chγp |f − sf,X |m,L2(Rd).(3.1)

Proof. First, for 1 ≤ p ≤ ∞, we claim the following inequality:

‖f − sf,X‖Lp(Ω) ≤ chγp
( N∑
j=1

|(f − sf,X)Sj |2m,L2(Rd)

)1/2
.(3.2)

When p =∞, this inequality is directly implied by Lemma 3.3. Hence, we assume
that 1 ≤ p < ∞. Let q be the exponent conjugate to p, i.e., 1/p + 1/q = 1, and
let u(x) := (u1(x), . . . , uN (x)), x ∈ Ω, be an `q-admissible vector for Π1 on Ω.
Recalling that Sj is the smallest ball including supp uj , we apply the property∑N
j=1 uj(x) = 1, x ∈ Ω, to obtain the estimate

|f(x)− sf,X(x)| = |
N∑
j=1

uj(x)(f − sf,X)(x)|

≤ ‖u(x)‖q

 N∑
j=1

|χ
Sj

(x)(f − sf,X)(x)|p
1/p

.

By condition (b) of Definition 3.1, the term ‖u(x)‖q is uniformly bounded. Conse-
quently,

‖f − sf,X‖pLp(Ω) ≤ c

N∑
j=1

∫
Sj

|(f − sf,X)(x)|pdx

≤ c
N∑
j=1

vol(Sj) ‖f − sf,X‖pL∞(Sj)

≤ c′hp(m−d/2)+d
N∑
j=1

|(f − sf,X)Sj |p
m,L2(Rd)

,

where the last inequality is implied by the fact vol(Sj) ≤ chd (see Lemma 3.2)
and a direct application of Lemma 3.3 with p = ∞. Now, since N ≤ ch−d, we
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prove (3.2) by using the inequality
(∑N

j=1 a
p
j

)1/p ≤ chmin(0,d/2−d/p)(∑N
j=1 a

2
j

)1/2
(see [H]). Consequently, using Lemmas 2.2 and 3.2, we have

N∑
j=1

|(f − sf,X)Sj |2m,L2(Rd) ≤ c
∑
|α|1=m

N∑
j=1

∫
Sj

|Dα(f − sf,X)(x)|2dx

= c
∑
|α|1=m

∫
Rd

N∑
j=1

|χ
Sj

(x)Dα(f − sf,X)(x)|2dx

≤ c′
∑
|α|1=m

∫
Rd
|Dα(f − sf,X)(x)|2dx.

This together with (3.2) gives the desired estimate:

‖f − sf,X‖Lp(Ω) ≤ chγp |f − sf,X |m,L2(Rd). �

Corollary 3.5. Assume that f is a function in the space Fφ. Then, under the
same conditions and notation of Theorem 3.4, we have

‖f − sf,X‖Lp(Ω) ≤ chγp |f − sf,X |φλ ≤ chγp |f |φλ ,

where γp is defined by (1.8).

Proof. Remembering the properties of the Fourier transform φ̂λ in (2.1) and (2.2),
we find that

φ̂−1
λ = cm,d|θ|2mK̃−1

m (|λθ|) ≥ c|θ|2m(3.3)

for some c > 0, where K̃m(|t|) := |t|mKm(|t|) with Km(|t|) the modified Bessel
function of order m. Then the inequality (3.3) and Theorem 3.4 imply the bound

‖f − sf,X‖Lp(Ω) ≤ chγp |f − sf,X |m,L2(Ω) ≤ chγp |f − sf,X |φλ .

The required result follows from the inequality |f − sf,X |φλ ≤ |f |φλ , which is an
easy consequence of (2.4). �

When λ = 0 in φλ, the basis function φ0 becomes the surface spline φ0 :=
(−1)dm−d/2e| · |2m−d if d is odd, and φ0 := (−1)m−d/2+1| · |2m−d log | · | if d is even,
where m > d/2 in both cases. Then we have the following estimate, which is
equivalent to Duchon’s results [Du, page 334].

Corollary 3.6. Let sf,X in (1.1) be an interpolant to f on X using the surface
spline function φ0. Then, for every f ∈ Wm

2 (Ω), there is an error bound of the
form

‖f − sf,X‖Lp(Ω) ≤ chγp |f |m,L2(Rd),

where γp is given by (1.8).

Proof. The generalized Fourier transform of φ0 is of the form φ̂0 = cm,d| · |−2m (see
(2.1)). Then it follows that |f |φ0 ≤ c|f |m,L2(Rd). Hence, this corollary is immediate
from Corollary 3.5. �
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4. Lp-error estimates in Sobolev space

We shall now prove the approximation order of interpolation to functions f in
a Sobolev space. To this end, for a given function f , we first approximate f by a
band-limited function

fH := fH,h := σ(h·)∨ ∗ f ∈ Fφ,(4.1)

where σ : Rd → [0, 1] is a nonnegative C∞ cutoff function whose support σ lies in
the Euclidean ball B1 with σ = 1 on B1/2 and ‖σ‖L∞(Rd) = 1. Then, it is useful
for error analysis to divide f − sf,X into two parts,

f − sf,X = (fH − sfH ,X) + (fT − sfT ,X),(4.2)

where

fT := fT,h := f − σ(h·)∨ ∗ f.(4.3)

Since the function fH belongs to the space Fφ, Corollary 3.5 can be applied directly
to estimate the error fH − sfH ,X . As seen from (4.1), the function fH depends on
h. In the following lemma, we estimate the magnitude of |fH |φλ for small h > 0.

Lemma 4.1. Suppose that the parameter λ in φλ satisfies the relation λ = ρh for
a fixed ρ ≥ 0. Then, for every f ∈ Wm

2 (Ω),

|fH |φλ ≤ cρ|f |m,L2(Rd),

where the constant cρ is independent of h but depends on ρ. Furthermore, if f ∈
W k

2 (Ω) with max(0, d/2− d/p) < k < m, then

|fH |φλ = o(hk−m), h→ 0.

Proof. First, let us assume that f ∈ Wm
2 (Ω). From the definition of fH in (4.1),

it is clear that f̂H = σ(h·)f̂ . From (2.1) and (2.3), we find, via Parseval’s identity,
that

|fH |2φλ = cm,d

∫
Rd

|θ|2m

K̃m(|λθ|)
σ2(hθ)|f̂(θ)|2dθ

≤ c

∥∥∥∥ σ2(·)
K̃m(|ρ · |)

∥∥∥∥
L∞(Rd)

|f |2m,L2(Rd)

≤ c′ |f |2m,L2(Rd),

where the first inequality is valid by the condition λ = ρh with ρ > 0.
Next, let us consider the case f ∈ W k

2 (Ω) with max(0, d/2 − d/p) < k < m.
Denote |θ|2m =:

∑
|ν|1=m cνθ

2ν for some suitable constants cν > 0. For each ν ∈ Zd+
with |ν|1 = m, we can write ν = α+ β with α, β ∈ Zd+ such that |α|1 = m− k > 0
and |β|1 = k. Here, for simplicity, we use the following abbreviation:

Kh,α :=
(·)2ασ2(h·)
K̃m(|λ · |)

.



1358 JUNGHO YOON

Then, rewriting cν =: cm,α,β, we get

|fH |2φλ = i−2|β|1
∑

|α+β|1=m

cm,α,β

∫
Rd
Kh,α(θ)|D̂βf(θ)|2dθ

≤ c
∑

|α+β|1=m

∫
Rd

∣∣Dβf(−θ)(K∨h,α ∗Dβf)(θ)
∣∣ dθ

≤ c|f |k,L2(Rd)

∑
|α+β|1=m

‖K∨h,α ∗Dβf‖L2(Rd),

where the first inequality is valid by Parseval’s formula and the relation (gh)∨ =
g∨ ∗ h∨ for suitable g and h, and the second follows from Hölder’s inequality. Also,
using the property

∫
Rd g(t)dt = ĝ(0) for any g ∈ L1(Rd), we note that∫

Rd
K∨h,α(θ)dθ = Kh,α(0) = 0, |α|1 = m− k > 0,

whence we get the equation

K∨h,α ∗Dβf(t) =
∫
Rd

(
(·)2ασ2(h·)
K̃m(|λ · |)

)∨
(θ)
(
Dβf(t− θ)−Dβf(t)

)
dθ

= h−2(m−k)

∫
Rd

(
(·)2ασ2(·)
K̃m(|ρ · |)

)∨
(θ)(Dβf(t− hθ)−Dβf(t))dθ

by a change of variables and the relation λ = ρh. Consequently, by using the
generalized Minkowski’s inequality, we have an estimate for |fH |φλ as follows:

|fH |2φλ ≤ ch
−2(m−k)

∫
Rd

∣∣∣∣∣
(

(·)2ασ2(·)
K̃m(|ρ · |)

)∨
(θ)

∣∣∣∣∣ ‖Dβf(· − hθ)−Dβf‖L2(Rd)dθ.

It is known (see [F, Proposition 8.5]) that ‖Dβf(·−hθ)−Dβf‖L2(Rd) → 0 as h→ 0.
Therefore, by applying the Lebesgue dominated convergence theorem, we have the
convergence property |fH |φλ = o(hk−m) as h→ 0. �

The following lemma treats the error fH − sfH ,X .

Lemma 4.2. Assume that the parameter λ in φλ satisfies the relation λ = ρh for
a fixed ρ ≥ 0. Let γp be defined as in (1.8) for 1 ≤ p ≤ ∞. Then, for every
f ∈ Wm

2 (Ω),

‖fH − sfH ,X‖Lp(Ω) ≤ chγp |f |m,L2(Rd), 1 ≤ p ≤ ∞.

Furthermore, if f ∈W k
2 (Ω) with max(0, d/2− d/p) < k < m, then

‖fH − sfH ,X‖Lp(Ω) = o(hγp−m+k).

Proof. This is a direct consequence of Corollary 3.5 and Lemma 4.1. �

Next we shall estimate the error fT − sfT ,X . Of course, there is no guarantee
that the function fT belongs to the space Fφ, and this makes the analysis more
complicated than the previous case. In order to obtain the required error estimate,
we employ the interpolant, say gf,X , using the (scaled) Gaussian function

ϕq(x) := ϕ(x/q) := e−|x|
2/q2

,(4.4)
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where q is the separation distance (1.5) within X (see, for example, [NW, page 80]).
In this case m = 0 (see (1.2)), and hence the interpolant gf,X is of the form

gf,X(x) =
N∑
j=1

βjϕq(x− xj).(4.5)

Also, it is well known that the Gaussian function ϕq is a strictly conditionally posi-
tive definite function; that is, the matrix Ag = (φq(xi−xj))i,j=1,...,N is nonsingular
for every choice of distinct points x1, . . . , xN in Rd (e.g., see [P1]). Indeed, the sepa-
ration distance q is employed to use the stability results on Gaussian interpolation.
The following lemma depends on the estimate of the inverse matrix Ag

−1, though
it is not explained explicitly. The reader is referred to the papers [BSW] and [Y2]
for more details.

Lemma 4.3. Let q be the separation distance within X, and ϕq the dilated Gaussian
function defined above. Let gf,X in (4.5) be the interpolant to f on X. Then, for
every f ∈ L∞(Ω), we have the following properties:

(a) ‖gf,X‖Lp(Ω) ≤ c‖f‖L∞(Ω), where 1 ≤ p ≤ ∞ and the constant c is indepen-
dent of X.

(b) If the parameter λ in φλ satisfies the relation λ = ρh for a fixed ρ > 0, then
|gf,X |φλ ≤ ch−m‖f‖L∞(Ω), with c independent of X.

Proof. Let

Mq :=
∥∥ N∑
j=1

ϕq(· − xj)
∥∥
L∞(Rd)

.(4.6)

The finiteness of M is a consequence of the decay of the Gaussian function ϕq and
the fact that X is a q-separated set. Then, denoting bf := (β1, . . . , βN ), we derive
from the definition of gf,X in (4.5) that

‖gf,X‖pLp(Ω) =
∫

Ω

∣∣ N∑
j=1

βjϕq(x− xj)
∣∣pdx

≤ Mp−1
q ‖bf‖p∞

N∑
j=1

∫
Ω

ϕq(x− xj)dx

≤ Mp−1
q ‖bf‖p∞Nqd‖ϕ‖L1(Rd)

≤ cMp−1
q ‖bf‖p∞,

the last inequality being valid by the conditions N ≤ ch−d and q ≤ h. Here, the
constant c is independent of X . Furthermore, with the help of Lemma 2.5 in [Y2],
we get ‖bf‖∞ ≤ c‖f‖L∞(Ω). This completes the proof of (a).

Now we prove (b). Recalling the explicit form of | · |φρ in (2.3), we deduce by a
change of variables that

|gf,X(h·)|2φρ = |gf,X |2φρ(·/h) ≤ c
∫
Rd

∣∣ N∑
j=1

βje
ixj·θ

∣∣2ϕ̂q(θ)dθ
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for some c > 0, where the inequality is implied by the condition that ϕ̂q/φ̂ρ(·/h) is
uniformly bounded. Now we claim that

ϕ̂2

q/
√

2
= qd(π/4)d/2ϕ̂q.

In fact, remembering the Fourier transform ϕ̂(θ) = πd/2e−|θ|
2/4 with ϕ in (4.4),

this is proved by the following direct calculations:

ϕ̂2

q/
√

2
(θ) = (q/

√
2)2dϕ̂2(qθ/

√
2) = (π/2)de−q

2|θ|2/4q2d = qd(π/4)d/2ϕ̂q(θ).

Hence, we use this claim to derive the relation

|gf,X(h·)|2φρ ≤ cq−d
∫
Rd

∣∣ N∑
j=1

βje
ixj ·θϕ̂

q/
√

2
(θ)
∣∣2dθ

= cq−d
∫
Rd

∣∣ N∑
j=1

βjϕq/√2
(x− xj)

∣∣2dx.
Thus,

|gf,X(h·)|2φρ ≤ cMq/
√

2‖bf‖2∞q−d
∫
Rd

∣∣ N∑
j=1

ϕ
q/
√

2
(x− xj)

∣∣dx
≤ cMq/

√
2N‖bf‖2∞q−d‖ϕq/√2

‖L1(Rd)

≤ c′h−d‖f‖2L∞(Ω)

with Mq/
√

2 given by (4.6), where the last inequality is true by the condition N ≤
ch−d. Then, using the relation λ = ρh, we derive by a change of variables that

|gf,X |φλ = h−m+d/2|gf,X(h·)|φρ ≤ ch−m‖f‖L∞(Ω),

as desired. �

Lemma 4.4. Assume that f ∈ W k
∞(Ω) with k > 0, and define f̃ as follows:

f̃ := f̃h := h−kfT ,

with fT given by (4.3). Then ‖f̃‖Lp(Rd) = o(1) as h tends to 0.

Remark. We remind the reader of the assumption that every function f in the space
Wm
p (Ω) is supported in a sufficiently large compact domain in Rd (see Section 2).

Hence, every function f ∈ Wm
∞(Ω) belongs to the space Wm

p (Ω) for any p in [1,∞].

Proof. This is a restatement of the fact, proved in [Y1], that ‖fT ‖Lp(Rd) = o(hk)
as h→ 0. �

Now we are ready to estimate the error fT − sfT ,X .

Lemma 4.5. Let sf,X in (1.1) be an interpolant to f on X using the basis function
φλ. Suppose that the parameter λ in φλ is chosen to be proportional to the density
of X, i.e., λ = ρh, ρ > 0. Then, for every f ∈ W k

∞(Ω) with max(0, d/2 − d/p) <
k ≤ m, we have an error bound of the form

‖fT − sfT ,X‖Lp(Ω) = o(hγp−m+k),

where γp is defined by (1.8).
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Proof. Using the function f̃ = h−kfT in Lemma 4.4, we can estimate the error
fT − sfT ,X as follows:

(4.7) h−k‖fT − sfT ,X‖Lp(Ω) ≤ ‖f̃‖Lp(Ω) + ‖gf̃ ,X‖Lp(Ω) + ‖gf̃ ,X − sf̃ ,X‖Lp(Ω).

According to Lemma 4.3 and Lemma 4.4, the terms ‖f̃‖Lp(Ω) and ‖gf̃ ,X‖Lp(Ω) con-
verge to 0 as h tends to 0. So it remains to show that the last term on the right-hand
side of (4.7) is o(hγp−m). To this end, we first note that, since f̃(xj) = gf̃ ,X(xj)
for every 1 ≤ j ≤ N , the interpolant sf̃ ,X can be considered as an interpolant to
the function gf̃ ,X ; that is, sf̃ ,X = sgf̃,X ,X . Therefore, it follows from Corollary 3.5
that

‖sf̃ ,X − gf̃ ,X‖Lp(Ω) = ‖sgf̃,X ,X − gf̃ ,X‖Lp(Ω) ≤ chγp |gf̃ ,X |φλ = o(hγp−m),

the final bound resulting from Lemmas 4.3 and 4.4. �
The next theorem is the main result of this section.

Theorem 4.6. Let sf,X in (1.1) be an interpolant to f on X using the basis function
φλ. Let γp = min(m,m− d/2 + p/d) with 1 ≤ p ≤ ∞. Assume that:

(a) There exists a constant η > 0, independent of X, such that h/q ≤ η, where
q is the separation distance of X (see (1.5)), and h is the density of X (see
(1.4)).

(b) The parameter λ is chosen to satisfy the relation λ = ρh for a fixed ρ > 0.
Then, there is a constant c > 0, independent of X, such that for every f ∈ Wm

2 (Ω)∩
Wm
∞(Ω), we have an error bound of the form

‖f − sf,X‖Lp(Ω) ≤ chγp |f |m,L2(Rd).

Furthermore, for every f ∈ W k
2 (Ω) ∩W k

∞(Ω) with max(0, d/2− d/p) < k < m, we
have

‖f − sf,X‖Lp(Ω) = o(hγp−m+k).

Proof. This follows from (4.2), Lemma 4.2, and Lemma 4.5. �
Remark. Since the domain Ω is a bounded set in Rd, the space Wm

2 (Ω) ∩Wm
∞(Ω)

coincides with Wm
∞(Ω). However, in order to indicate that the error bounds depend

on the norm |f |m,2, we preferred to write Wm
2 (Ω) ∩Wm

∞(Ω).

Remark. When λ = 0 in φλ, the basis function φ0 becomes the surface spline.
In this case, we find that the native space Fφ0 is identically equal to the m-th
order homogeneous Sobolev space. Hence, if f ∈ Wm

2 (Ω), the error f − sf,X can
be estimated directly (as in the proof of Lemma 4.2) without splitting f into two
functions fH and fT .

Corollary 4.7. Let sf,X in (1.1) be an interpolant to f on X using the surface
spline function φ0. Then, for every f ∈ Wm

2 (Ω), there is an error bound of the
form

‖f − sf,X‖Lp(Ω) ≤ chγp |f |m,L2(Rd),

where γp is defined by (1.8). Furthermore, for every f ∈ W k
2 (Ω) ∩ W k

∞(Ω) with
max(0, d/2− d/p) < k < m,

‖f − sf,X‖Lp(Ω) = o(hγp−m+k).

Note that the estimate in the first part of the above corollary is equivalent to
known results (see [Du], [MN2] or [WS]).
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5. Improved error bounds of interpolation method

When X is an infinite square grid of mesh size h and Ω is taken as all of Rd,
it is known that the “shifted” surface spline cardinal interpolation enjoys the con-
vergence property O(h2m) provided that f is sufficiently smooth (see [Bu2], [P1]).
However, with a finite number of interpolation points, we obtained the order of
accuracy O(hγp) with γp = min(m,m − d/2 + d/p) in section 3. Usually, owing
to the edge effects, one must lose some order of accuracy near the boundary. This
corroborates experimental evidence reported by Powell and Beatson. Hence, the
purpose of this section is to show that if additional smoothness requirements and
boundary conditions are met, the approximation order of interpolation method can
be at least doubled. For this purpose, we have to restrict ourselves to the functions
f in the space

V 2m
p (Ω) := {f ∈W 2m

p (Ω) : suppDαf ⊂ Ω, |α|1 = 2m}.

Before we proceed further, let us introduce a bell-shaped function ψλ which is
obtained by applying a suitable difference operator to φλ. The actual form of ψλ
is as follows:

ψλ(x) :=
∑
α∈G

µ(α)φλ(x− α),(5.1)

where G is a finite subset of a scaled uniform grid δZd with δ > 0 and (µ(α))α∈G
is a localization sequence. From now on, we assume that the localized function ψλ
satisfies the following conditions:

(a) ψ̂λ ∈ C4m−1(Rd), Dαψ̂λ(0) = δα,0, |α|1 < 2m;(5.2)

(b) sup
x

(1 + |x|)2m+d+k|ψλ(x)| <∞, k > 0.

In order to ensure the existence of ψλ (actually, the sequence (µ(α))α∈G), the reader
is referred to the article [DJLR].

Lemma 5.1. Let ψλ be defined as above. Then, the map f 7→ ψλ ∗ f reproduces
Π2m, i.e., ψλ ∗ p = p for any polynomial p ∈ Π2m.

Proof. It suffices to prove that
∫
Rd ψλ(x− t)tνdt = xν for any |ν|1 < 2m. For this

proof, using the property
∫
Rd f(t)dt = f̂(0) for any f ∈ L1(Rd), we derive from

(5.2)(b) that∫
Rd
ψλ(x− t)tνdt =

(
(·)νψλ(· − x)

)∧(0)(5.3)

= (−i)−ν(Dν(ψ̂λe−ix))(0), e−ix : θ 7→ e−ix·θ,

the second equality being valid because (̂·)νf = (−i)−λDλf̂ for a sufficiently smooth
f̂ . Then, letting ν = α+ β with α, β ∈ Zd+, we can write

(Dν(ψ̂λe−ix))(0) =
∑

α+β=ν

cα,β(Dαψ̂λ)(0)(Dβe−ix)(0)

=
∑

α+β=ν

cα,β(Dαψ̂λ)(0)(−ix)β
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for some suitable coefficients cα,β. According to (5.2), (Dαψ̂λ)(0) = 0 for any
|α|1 > 0. Moreover, since c0,ν = 1, we have

(Dν(ψ̂λe−ix))(0) = (−ix)ν .

Combining this identity with (5.3), we obtain the required result. �
With these preliminaries in place, let us turn to the estimate of the error f−sf,X .

First, for any function f ∈ V 2m
p (Ω) with 1 ≤ p ≤ ∞, we approximate f by

f∗ := f∗ρ,h := (ψρ ∗ f(h·))(·/h),(5.4)

where ρ = λ/h, and then we split the error f − sf,X as follows:

‖f − sf,X‖Lp(Rd) ≤ ‖f − f∗‖Lp(Ω) + ‖f∗ − sf∗,X‖Lp(Ω) + ‖sf∗−f,X‖Lp(Ω).

It is essential that f∗ should approximate f better as h→ 0. The following lemma
illustrates the approximation behavior of f∗ to f .

Lemma 5.2. Let f∗ be defined as in (5.4). Then there exists a constant cρ, inde-
pendent of h, such that for every f ∈ V 2m

p (Ω) with 1 ≤ p ≤ ∞, we have

‖f − f∗‖Lp(Ω) ≤ cρh2m|f |2m,Lp(Ω).

Proof. From (5.2), it is easy to check that
∫
Rd ψρ(·/h − t)dt = ψ̂ρ(0) = 1 for any

h > 0. Hence, the definition f∗ = (ψρ ∗ f(h·))(·/h) leads to the identity

f∗(x)− f(x) =
∫
Rd
ψρ(x/h− t)(f(ht)− f(x))dt.(5.5)

Then, taking the Taylor expansion of f(ϑ) about ϑ = x, we get the expression

f(ht)− f(x) =
∑

0<|α|1<2m

(ht− x)αDαf(x)/α! +R2mf(x, t)(5.6)

with the remainder in the integral form

R2mf(x, t) :=
∑

|α|1=2m

(ht− x)α
∫ 1

0

2m(1− y)2m−1(Dαf)((1− y)x+ yht)dy/α!.

Invoking the polynomial reproduction property ψρ ∗ p = p for any p ∈ Π2m (see
Lemma 5.1), it is immediate that

∫
Rd ψρ(x/h− t)(x/h− t)

αdt = 0 with 0 < |α|1 <
2m. Hence, the integral of ψρ(x/h−t) multiplied by the first term in the right-hand
side of (5.6) is identically zero. Consequently, we get

f∗(x)− f(x) = h2m
∑

|α|1=2m

∫
Rd
ψρ(x/h− t)(t− x/h)α

×
∫ 1

0

2m(1− y)2m−1Dαf((1− y)x+ yht)dy dt/α!.

Moreover, (5.2) (b) implies, via a change of variables, that

|f(x)− f∗(x)| ≤ cρh2m
∑

|α|1=2m

∫
Rd

(1 + |t|)−d−k
∫ 1

0

Dαf(x− yht)dy dt/α!

with k > 0. Consequently, by using the generalized Minkowski inequality, we obtain
the required result:

‖f − f∗‖Lp(Ω) ≤ cρh2m|f |2m,Lp(Ω), 1 ≤ p ≤ ∞. �
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The next lemma describes the behavior of f∗ − sf∗,X .

Lemma 5.3. Let f∗ be defined as in (5.4) and sf∗,X the interpolant to f∗ on X
using the basis function φλ. Suppose that that the parameter λ satisfies the relation
λ = ρh for some ρ > 0. Then there is a constant c > 0 such that for every function
f ∈ V 2m

2 (Ω),

‖f∗ − sf∗,X‖Lp(Ω) ≤ chm+γp |f |2m,L2(Ω), 1 ≤ p ≤ ∞,
where γp = min(m− d/2 + d/p,m) as in (1.8).

Proof. It is clear from (5.1) that ψ̂ρ(θ) = τ(θ)φ̂ρ(θ), where τ is a trigonometric
function of the form

τ(θ) :=
∑
α∈G

µ(α)e−iα·θ .

Then, invoking (2.1) and applying the relation ρ = λ/h, we deduce that φ̂ρ(hθ) =
h−2mφ̂λ(θ). Hence, the explicit form of f∗ in (5.4) implies that

f̂∗ = ψ̂ρ(h·)f̂ = h−2mτ(h·)φ̂λf̂ .(5.7)

Considering the decaying condition of ψρ in (5.1), we realize that ψ̂ρ is continuous
everywhere, in particular, at the origin. In addition, since ψ̂ρ(0) = 1, the trigono-
metric function τ should have a zero of order 2m at the origin. Thus, it is obvious
that the function f∗ belongs to the space Fφ. Consequently, a direct application of
Corollary 3.5 yields the inequality

‖f∗ − sf∗,X‖Lp(Ω) ≤ chγp |f∗ − sf∗,X |φλ ,(5.8)

with γp being defined via (1.8). Using the fact that (f∗ − sf∗,X , sf∗,X)φλ = 0 (see
(2.5)), we see that

|f∗ − sf∗,X |2φλ = (f∗ − sf∗,X , f∗ − sf∗,X)φλ(5.9)

= (f∗, f∗ − sf∗,X)φλ

=
∫
Rd

(f̂∗/φ̂λ)(t)(f∗ − sf∗,X)∧(t)dt

=
∫
Rd

(f̂∗/φ̂λ)∨(t)(f∗ − sf∗,X)(t)dt,

where the last equation is valid by the Parseval’s identity. Now, it is immediate
from (5.7) that

f̂∗/φ̂λ = h−2mτ(h·)f̂ .(5.10)

According to Lemma 2.2.13 in [DR],
∑

α∈G µ(α)αβ = 0 for any |β|1 < 2m. Hence,
expanding τ(hϑ) in a Taylor series about ϑ = 0, we have

τ(hθ) =
∑
α∈G

µ(α)(ihα · θ)2me−iyh(α·θ)/(2m)!(5.11)

= (ih)2m
∑
α∈G

µ(α)
∑

|β|1=2m

cβα
βθβe−iyh(α·θ)/(2m)!,

where the cβ ’s are suitable constants and y ∈ [0, 1]. Therefore, combining (5.10)
and (5.11), we obtain the equation

(f̂∗/φ̂λ)∨ =
∑
α∈G

µ(α)
∑

|β|1=2m

cβα
βDβf(· − yhα)/(2m)!.(5.12)
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Here, since f ∈ V 2m
p (Ω), the function Dβf with |β|1 = 2m is supported in Ω.

Further, since y ∈ [0, 1], it is evident that the function Dβf(· − yhα), α ∈ G, is
supported in the domain

Ωh :=
⋃
α∈G

(Ω + αh).

Then, using (5.12), (5.9) yields the following estimates:

|f∗ − sf∗,X |2φλ ≤ c
∑

|β|1=2m

∑
α∈G

∫
Ωh

|Dβf(t− yhα)(f∗ − sf∗,X)(t)|dt(5.13)

≤ c′ |f |2m,L2(Rd)‖f∗ − sf∗,X‖L2(Ωh).

Recalling that G is a finite subset of δZd (δ > 0), we find that the density of X
in Ωh (not Ω) is bounded by ch with a constant c depending only on G. Thus, a
direct application of Corollary 3.5 with p = 2 yields

‖f∗ − sf∗,X‖L2(Ωh) ≤ chm|f∗ − sf∗,X |φλ .
Combining this inequality with (5.13) yields the estimate

|f∗ − sf∗,X |φλ ≤ chm|f |2m,L2(Rd).

Since f ∈ V 2m
2 (Ω), we have |f |2m,L2(Rd) = |f |2m,L2(Ω). Therefore, applying the

above inequality to (5.8), we obtain the lemma’s claim. �

Lemma 5.4. Let f∗ be defined as in (5.4). Then there is a positive constant c such
that for every function f ∈ V 2m

∞ (Ω), we have

‖sf−f∗,X‖Lp(Ω) ≤ chm+γp |f |2m,L∞(Ω).

Proof. The proof technique of Lemma 4.5 is adapted in a straightforward fashion
to prove this lemma. Hence the proof is only sketched here. Using the Gaussian
interpolant gf,X in (4.5), we can write sf−f∗,X as follows:

‖sf−f∗,X‖Lp(Ω) ≤ ‖sf−f∗,X − gf−f∗,X‖Lp(Ω) + ‖gf−f∗,X‖Lp(Ω).(5.14)

It is immediate from Lemma 4.3 and Lemma 5.2 that

‖gf−f∗,X‖Lp(Ω) ≤ c‖f − f∗‖L∞(Ω) ≤ ch2m|f |2m,L∞(Ω).

Hence, it remains to estimate only the first term on the right-hand side in (5.14).
Since sf−f∗,X = sgf−f∗,X ,X , we apply Corollary 3.5 and Lemma 4.3 to get

‖sf−f∗,X − gf−f∗,X‖Lp(Ω) ≤ chγp |gf−f∗,X |φλ
≤ chγp−m‖f − f∗‖L∞(Ω)

≤ chγp+m|f |2m,L∞(Ω),

the last inequality being a consequence of Lemma 5.2. �

We summarize the results of this section:

Theorem 5.5. Let sf,X be as in (1.1), and let φλ be the “shifted” surface spline.
Assume that the parameter λ in φλ is chosen to be λ = ρh for some ρ > 0. Let
γp = min(m,m− d/2 + d/p) with 1 ≤ p ≤ ∞. Then, for every f ∈ V 2m

∞ (Ω),

‖f − sf,X‖Lp(Ω) ≤ cfhm+γp ,

where the constant cf depends on f .
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Proof. It is obvious that V 2m
∞ (Ω) ⊂ V 2m

p (Ω) for 1 ≤ p <∞. Therefore, the desired
result is immediate from Lemmas 5.2–5.4. �

Note that when 1 ≤ p ≤ 2, we obtained the approximation order O(h2m), which
is equivalent to the case that Ω is all of Rd and X is an infinite uniform grid. In
particular, as we observed before, when the parameter λ in φλ is zero, it becomes
the surface spline φ0. In this case, we do not have to employ the function f∗, but
can estimate the error f−sf,X directly by using the technique of Lemma 5.3. Then
we have the following estimate:

Corollary 5.6. Let φ0 be the surface spline function. Let f be a function in the
space V 2m

2 (Ω). Then we have an error bound of the form

‖f − sf,X‖Lp(Ω) ≤ cfhm+γp

with γp in (1.8).

Remark. The improvement of error bounds of the radial basis function interpolation
method was first obtained by Schaback in [S3], where he considered the case that
the Fourier transform of a basis function does not decay faster than | · |−k for some
k > 0. However, the conditions of this paper are more general; when λ > 0, the
Fourier transform φ̂λ (2.1) decays exponentially. Also, when λ = 0, the function φ̂0

decays like | · |−2m.
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