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Abstract. In this study, we are mainly interested in error estimates of interpolation, using
smooth radial basis functions such as multiquadrics. The current theories of radial basis function
interpolation provide optimal error bounds when the basis function φ is smooth and the approximand
f is in a certain reproducing kernel Hilbert space Fφ. However, since the space Fφ is very small
when the function φ is smooth, the major concern of this paper is to prove approximation orders
of interpolation to functions in the Sobolev space. For instance, when φ is a multiquadric, we
will observe the error bound o(hk) if the function to be approximated is in the Sobolev space of
smoothness order k.
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1. Introduction. Radial basis function interpolation is a very useful and con-
venient tool for multivariate scattered data approximation problems. Its strengths
are as follows: (i) it facilitates the evaluation of the approximant; (ii) the accuracy of
approximation is usually very satisfactory provided the approximand f is reasonably
smooth; (iii) there is enough flexibility in the choice of basis functions. A function
φ : Rd → R is radial in the sense that φ(x) = Φ(|x|), where | · | is the usual Euclidean
norm.

Let Πm denote the subspace of C(Rd) consisting of all algebraic polynomials of
degree less than m on Rd. Suppose that a continuous function f : Rd → R is known
only at a set of discrete points X := {x1, . . . , xN} in Ω ⊂ Rd. Radial basis function
interpolation to f on X starts with choosing a basis function φ, and then it defines
an interpolant by

af,X(x) :=
∑̀

i=1

βipi(x) +

N
∑

j=1

αjφ(x− xj),(1.1)

where p1, . . . , p` is a basis for Πm and the coefficients αj (j = 1, . . . , N) and βi

(i = 1, . . . , `) are chosen to satisfy the linear system

af,X(xj) = f(xj), j = 1, . . . , N,(1.2)

N
∑

j=1

αjpi(xj) = 0, i = 1, . . . , `.

Here, the set of scattered points X has the nondegeneracy property for Πm; that is, if
p ∈ Πm and p(xj) = 0, j = 1, . . . , N , then p = 0. It guarantees that the interpolation
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method reproduces the polynomial space Πm, i.e., ap,X = p for any p ∈ Πm. For a
wide choice of functions φ and polynomial orders m, the existence and uniqueness of
the solution of the linear system (1.2) is ensured when φ is a conditionally positive
definite function (see [M]).

Definition 1.1. Let φ : Rd → R be a continuous function. We say that φ is

conditionally positive definite of order m ∈ N := {1, 2, . . .} if for every finite set of

pairwise distinct points X = {x1, . . . , xN} ⊂ Rd and for every α = (α1, . . . , αN ) ∈
RN \ 0 satisfying

N
∑

j=1

αjp(xj) = 0, p ∈ Πm,

the quadric form

N
∑

i=1

N
∑

j=1

αiαjφ(xi − xj)

is positive definite.

In what follows, we assume φ = Φ(| · |) to be conditionally positive definite of
order m. Also, the function φ is considered as a tempered distribution in D′(Rd),

and we assume that its Fourier transform φ̂ coincides on Rd \ 0 with some continuous
function while having a certain type of singularity (necessarily of a finite order) at

the origin, i.e., φ̂ is of the form

| · |nφ̂ = F > 0, n ≥ 0, and F ∈ L∞(Rd).

Among many radial basis functions, our major concern is with smooth functions φ
such as multiquadrics φ(x) := cm,d(|x|

2 + λ2)m−d/2, d odd, m > d/2, where cm,d is a
suitable constant.

For a given basis function φ, there arises a function space

Fφ :=

{

f : |f |φ :=

∫

Rd

|f̂(θ)|2

φ̂(θ)
dθ < ∞

}

,(1.3)

which is called reproducing kernel Hilbert space (or “native” space) for φ ([MN2] and
[WS]). For all x ∈ Ω, f ∈ Fφ, bounds for the interpolation error are usually of the
form

|f(x) − af,X(x)| ≤ Pφ,X(x)|f |φ.(1.4)

Here Pφ,X is the power function that evaluates the norm of the error functional at x:

Pφ,X(x) = sup
|f |φ 6=0

|f(x) − af,X(x)|

|f |φ
.

In fact, when the basis function φ is smooth, the interpolation method provides opti-
mal asymptotic decay of errors, but the space Fφ is very small. The approximands f
need to be extremely smooth for effective error estimates. However, practically, most
multivariate scattered data are not arising from extremely smooth functions. An error
analysis for the case that the underlying function is reasonably smooth needs to be



948 JUNGHO YOON

provided. Thus, the main objective of this paper is to prove asymptotic error bounds
of interpolation (by using smooth basis function φ) to functions in a larger space,
especially in the Sobolev space.

Asymptotic approximation properties are usually quantified by the notion of ap-
proximation order. In order to make this notion feasible, we measure the “density”
of X (in Ω) by

h := h(X; Ω) := sup
x∈Ω

min
xj∈X

|x− xj |.(1.5)

Here we assume that Ω ⊂ Rd is an open bounded domain with both cone property
and Lipschitz boundary. In particular, for a given set X, we adopt the scaled basis
functions φω := φ(·/ω), where

ω := ω(h)

is a parameter depending on h such that h/ω → 0 as h → 0, and we use the notation

sf,X(x) :=
∑̀

i=1

βipi(x) +

N
∑

j=1

αjφω(x− xj)(1.6)

to differentiate from the notation af,X in (1.1). Then our goal is to provide error
estimates of f − sf,X of the following form: Let φ be a smooth basis function (e.g.,
multiquadric). Under some suitable conditions of the parameter ω (e.g., ω = hr with
r ∈ [0, 1)), we will show the asymptotic property

‖f − sf,X‖L∞(Ω) = o(hk), h → 0,

provided that f ∈ W k
∞(Ω), the L∞-Sobolev space of smoothness order k. To the

writer’s knowledge, this is the first paper dedicated to the study of spectral approxi-
mation order of interpolation to the functions in the Sobolev space W k

∞(Ω). Indeed,
Buhmann and Dyn also explored the spectral convergence order of multiquadric in-
terpolation in the paper [BuD]. However, this result considers interpolants on h · Zd

under some conditions of the underlying function f , while we work with a finite subset
X in Ω.

The reader who is interested in knowing more about the state of the art in the
area of radial basis function methods may find it useful to consult with the surveys
[Bu], [D], and [P]. Other important sources are the works of Wu and Schaback [WS]
and especially those of Madych and Nelson [MN1], [MN2], who developed a theory of
interpolation based on reproducing kernel Hilbert spaces. Interpolation by compactly
supported basis functions has been studied by Wendland [W].

The following notations will be used throughout this paper. For any k ∈ N, the
Sobolev space is defined by

W k
p (Ω) :=

{

f : ‖f‖k,Lp(Ω) :=

(

∑

|α|1≤k

‖Dαf‖pLp(Ω)

)1/p

< ∞

}

with 1 ≤ p ≤ ∞. Several different function norms are used. When g is a matrix or a
vector, ‖g‖p indicates its p-norm with 1 ≤ p ≤ ∞. For x ∈ Rd, |x| := (x2

1+· · ·+x2
d)

1/2

stands as its Euclidean norm. The Fourier transform of f ∈ L1(R
d) is defined as

f̂(θ) :=

∫

Rd

f(t) exp(−iθ · t) dt.
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Also, for a function f ∈ L1(R
d) we use the notation f∨ for the inverse Fourier trans-

form. In particular, the Fourier transform can be uniquely extended to the space of
tempered distributions on Rd.

2. The extension of a function f in W k

∞
(Ω). Our analysis in this paper

requires the construction of a suitable extension of a given function f ∈ W k
∞(Ω) to a

function on Rd. Indeed, the lengthy assumptions on Ω in section 1 assure the existence
of a function on Rd whose restriction to Ω agrees with f . The following result is cited
from literature.

Theorem 2.1 (Brenner and Scott [BrS]). Suppose that Ω has a Lipschitz bound-

ary. Then for every function f ∈ W k
p (Ω), there is an extension mapping E : W k

p (Ω) →

W k
p (Rd) defined for all nonnegative integer k and real numbers p in the range 1 ≤ p ≤

∞ satisfying Ef |Ω = f for all f ∈ W k
p (Ω) and

‖Ef‖k,Lp(Rd) ≤ c‖f‖k,Lp(Ω),

where the constant c is independent of f .

The construction of our suitable extension of f ∈ W k
∞(Ω) to a function on Rd

can be done in two steps. First, according to Theorem 2.1, there exists a function
Ef ∈ W k

∞(Rd) such that Ef |Ω = f . Second, we let σ
Ω

be a C∞-cutoff function such
that σ

Ω
(x) = 1 for x ∈ Ω and σ

Ω
(x) = 0 for |x| > r with a sufficiently large r > 0.

Then we define an extension fo by

fo := σ
Ω
Ef.

Of course, fo is compactly supported and fo(x) = f(x) for x ∈ Ω. Indeed, for a
large part of this paper, we wish to work with fo and not f . For convenience, we will
henceforth write f for fo. Therefore, here and in what follows, without great loss, we
assume that an approximand f ∈ W k

∞(Ω) is supported in a sufficiently large compact
set in Rd such that f ∈ W k

∞(Rd).

3. Error bounds. In this section, we will provide a (modified) method of error
analysis of interpolation to functions in the Sobolev space W k

∞(Ω). In addition, we
obtain a sufficient condition for the optimal convergence order ‖f − sf,X‖L∞(Ω) =

o(hk) with f ∈ W k
∞(Ω). For this purpose, we start with finding a mollified function

(say, fH) of a given (underlying) function f . The function fH is supposed to be in
the space Fφω in (1.3) and should be a good approximation to f in some sense. In
order to define a mollification fH of f , we use a nonnegative C∞-cutoff function

σ : Rd → [0, 1].(3.1)

Here, for convenience, we assume that the function σ is radially symmetric and supp
σ lies in the Euclidean ball B1 = {x ∈ Rd : |x| ≤ 1}, and we assume that σ = 1 on
B1/2 and ‖σ‖L∞(Rd) = 1. Then, letting σδ := σ(·/δ) with δ > 0, we construct two
functions fH and fT by

fH := σδ(h·)
∨ ∗ f,(3.2)

fT := f − σδ(h·)
∨ ∗ f.

It clearly follows that

f = fH + fT .
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Also, due to the fact that the interpolation operator sf,X is linear, it is useful to split
the error f − sf,X as follows:

f − sf,X = (fH − sfH ,X) + (fT − sfT ,X).

Accordingly, this section falls naturally into two parts. In the first, since fH ∈ Fφω ,
we estimate the term fH − sfH ,X by applying the well-known method in (1.4). The
second part of the section deals with fT − sfT ,X . Our main tool for this case is to use
stability results on the interpolation process. Afterward, the final result is stated in
Theorem 3.6

From the papers (see, e.g., [WS], [MN2]), we cite the following lemma.
Lemma 3.1. Let aX,f in (1.1) be an interpolant to f on X = {x1, . . . , xN}. Given

φ and m, for all functions f in the space Fφ, there is an error bound of the form

|f(x) − af,X(x)| ≤ |f |φPφ,X(x),

where Pφ,X(x) is the norm of the error functional at x, i.e.,

Pφ,X(x) = sup
|f |φ 6=0

|f(x) − af,X(x)|

|f |φ
.(3.3)

The following lemma estimates the error fH − sfH ,X .
Lemma 3.2. Let fH := σδ(h·)

∨ ∗ f with σδ(h·) as the cutoff function in (3.1),
and let sfH ,X in (1.6) be the interpolant to fH on X using the basis function φω. Let

ω be a parameter depending on h, i.e., ω = ω(h). Then, for every f ∈ L2(R
d), we

have an estimate of the form

|fH(x) − sfH ,X(x)| ≤ Pφ,X/ω(x/ω)Mφ,ω(δ/h)‖f‖L2(Rd), x ∈ Ω,

where Mφ,ω(r), r > 0, is defined by

Mφ,ω(r) := sup
θ∈Br

|φ̂ω(θ)|−1/2.(3.4)

Proof. Recalling the definition of sfH ,X in (1.6), one simply notes that the function
sfH ,X(ω·) can be considered as an interpolant (employing the shifts of φ) to the scaled
function fH(ω·) on X/ω, i.e.,

sfH ,X(ω·) =
∑̀

i=1

βipi(x) +

N
∑

j=1

αjφ(· − xj/ω) = afH(ω·),X/ω,

with af,X in (1.1). Then, since fH(ω·) belongs to the space Fφ, Lemma 3.1 can be
used directly to derive the bound

|fH(x) − sfH ,X(x)| = |fH(ω·) − afH(ω·),X/ω|(x/ω)(3.5)

≤ Pφ,X/ω(x/ω)|fH(ω·)|φ.

Now, in order to estimate the term |fH(ω·)|φ, we find from the definition of fH in
(3.2) that

f̂H(ω·)(θ) = ω−dσδ(hθ/ω)f̂(θ/ω).
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Then the explicit formula of the norm | · |φ in (1.3) induces by change of variables
that

|fH(ω·)|2φ = ω−d

∫

Rd

∣

∣σδ(hθ)f̂(θ)
∣

∣

2
φ̂−1(ωθ)dθ

≤ sup
θ∈Bδ/h

|φ̂ω(θ)|−1‖f‖2
L2(Rd).

Due to the expression (3.5), we finish the proof.
Now, we are going to turn to the estimate of the error fT −sfT ,X with fT in (3.2).

Since there is no guarantee that the function fT belongs to the space Fφ, the classical
method of the error analysis of interpolation is not applicable to this case. Hence,
in order to make the estimate fT − sfT ,X feasible, we employ the stability results on
interpolation process. To this end, we define the separation distance within X by

q := qX := min
1≤i6=j≤N

|xi − xj |/2.(3.6)

It is well known from literature (e.g., [NSW2], [S1]) that as q is getting smaller, the
condition number of the interpolation matrix becomes larger. Also, the irregularity
of a set X can be measured by the ratio h/q. In particular, we assume that the sets of
scattered points considered in this study are sets of quasi-uniformly distributed points.
These sets satisfy the following property: There exists a constant η > 0 independent
of X such that

2q ≤ h ≤ ηq.(3.7)

This condition implies that the number of the scattered points in the set X is bounded
above by a quantity that depends on the density of X, i.e., N = O(h−d). On the
other hand, we particularly introduce a function ϕ defined by

ϕ := σ∨
ε = σ(·/ε)∨,(3.8)

where σε is the cutoff function in (3.1). For the purpose of simplifying the following
analysis, we assume ε > 0 to be any fixed number satisfying the condition

ε < δ/η(3.9)

with δ in (3.2). It is obvious that the Fourier transform of ϕ is ϕ̂ = σε, which is
supported in the ball Bε. Furthermore, since σ is a C∞-cutoff function, ϕ(x) decays
fast as x tends to ∞. Indeed, the function ϕ is employed to use the stability results
on the interpolation process. It first requires us to show that ϕ is a conditionally
positive definite radial function. For this proof, we find the following identity:

N
∑

i=1

N
∑

j=1

αiαjϕ(xi − xj) =

∫

Rd

ϕ̂(θ)

∣

∣

∣

∣

∣

∣

N
∑

j=1

αje
ixj ·θ

∣

∣

∣

∣

∣

∣

2

dθ

for any α = (α1, . . . , αN ) ∈ RN \ 0. Since the map θ 7→
∑N

j=1 αje
ixj ·θ, θ ∈ Rd, has

zeros at most on a set of measure zero, we see that the integral in the right-hand side
of the above identity is always positive. It is asserted from Definition 1.1 that the
function ϕ is conditionally positive definite of order m = 0. Also, since the cutoff
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function σε is radially symmetric, its inverse Fourier transform ϕ is also a radial
function (see [S3]). Then an interpolant to f on X using the (scaled) function

ϕq(x) := ϕ(x/q)

is of the form

gf,X(x) =

N
∑

j=1

βjϕq(x− xj).(3.10)

One simply notes that the matrix Aϕq := (ϕq(xi − xj))i,j=1,...,N is positive definite.
Proposition 3.3. Let X be a q-separated set with q in equation (3.6). Let

bf := (β1, . . . , βN )T , and let Aϕq := (ϕq(xi−xj))i,j=1,...,N be the interpolation matrix

by ϕq. Then we have the following properties:

(a) ‖A−1
ϕq

‖2 ≤ c1 for some c1 > 0.

(b) ‖A−1
ϕq

‖1 = ‖A−1
ϕq

‖∞ ≤ c2 ‖A
−1
ϕq

‖2 for some c2 > 0.
(c) ‖bf‖∞ ≤ c3‖f‖L∞(Rd) for some c3 > 0.
Proof. Since the interpolation matrix Aϕq has the separation distance 1, the

matrix norm ‖A−1
ϕq

‖2 is bounded by a constant (see [NSW2]). Furthermore, the basis
function ϕq decays fast around ∞, and the inequality in (b) is proved by a direct
application of Theorem 3.11 in the paper [BSW]. The identity ‖A−1

ϕq
‖1 = ‖A−1

ϕq
‖∞ is

an obvious consequence of symmetry. Finally, to prove (c), we find that the matrix
bf can be written as

bf = A−1
ϕq

f

with f := (f(x1), . . . , f(xN ))T . After some direct calculations, one can prove the
inequality ‖bf‖∞ ≤ ‖A−1

ϕq
‖1‖f‖L∞(Rd). Hence, by using (b), the relation in (c) is

immediate.
Before estimating the error fT − sfT ,X , we cite the following result.
Lemma 3.4 (Yoon [Y1]). Let fT = f −σδ(h·)

∨ ∗f with σδ(h·) the cutoff function

in (3.1). Then, for every f ∈ W k
∞(Rd) with k a positive integer, we have the following

decaying property:

‖fT ‖L∞(Rd) = ‖f − fH‖L∞(Rd) = o(hk).

Lemma 3.5. Let X be a set of scattered points with the condition (3.7), and let

sfT ,X in (1.6) be the interpolant to fT on X using φω, where fT = f −σδ(h·)
∨ ∗f and

ω = ω(h). Then, for every f ∈ W k
∞(Ω) with k a positive integer, there is an error

bound of the form

|fT (x) − sfT ,X(x)| ≤ o(hk)(1 + Pφ,X/ω(x/ω)Mφ,ω(δ/h)), x ∈ Ω,

as h → 0, with Mφ,ω(r), r > 0, in (3.4).

Proof. Let us first define a function f̃ by

f̃ := h−kfT .

It is clear that h−ksfT ,X = sf̃ ,X . Then, we employ the interpolant gf̃ ,X in (3.10) to
derive the following bound:

h−k|fT (x) − sfT ,X(x)| ≤ |f̃(x)| + |gf̃ ,X(x)| + |gf̃ ,X(x) − sf̃ ,X(x)|.
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The convergence property ‖fT ‖L∞(Rd) = o(hk) in Lemma 3.4 yields that ‖f̃‖L∞(Rd) =
o(1) as h tends to 0. Also, by applying Proposition 3.3, we get

|gf̃ ,X(x)| ≤ ‖bf̃‖∞

N
∑

j=1

ϕq(x− xj)

≤ c ‖f̃‖L∞(Rd) = o(1).

Here, since X is a q-separated set and the function ϕq decays fast around ∞, we can

easily check that
∑N

j=1 ϕq(·−xj) is uniformly bounded on Ω. Therefore, it remains to
show that the term gf̃ ,X − sf̃ ,X is bounded by o(1)Pφ,X/ω(x/ω)Mφ,ω(δ/h) as h → 0.
For this, we claim that

sf̃ ,X = sgf̃,X ,X .

In fact, this identity is immediate from the interpolation property f̃(xj) = gf̃ ,X(xj)
for any j = 1, . . . , N . Then, applying the same technique as in the proof of Lemma
3.2 gives us the bound

|sf̃ ,X(x) − gf̃ ,X(x)| ≤ Pφ,X/ω(x/ω)|gf̃ ,X(ω·)|φ, x ∈ Ω.(3.11)

Moreover, according to the definition of the norm | · |φ, we get

|gf̃ ,X(ω·)|2φ =

∫

Rd

∣

∣

∣

∣

∣

∣

N
∑

j=1

βje
ixj ·θ

∣

∣

∣

∣

∣

∣

2

σ2
ε (qθ)φ̂

−1
ω (θ)q2ddθ(3.12)

≤ M2
φ,ω(ε/q)

∫

Rd

∣

∣

∣

∣

∣

∣

N
∑

j=1

βjϕq(x− xj)

∣

∣

∣

∣

∣

∣

2

dx.

Remembering the relations 1
q ≤ η

h in (3.7) and ε < δ
η in (3.9), we easily find that

ε
q ≤ ηε

h ≤ δ
h . Then since Mφ,ω(r) is monotonically increasing as r grows, it follows

that

Mφ,ω(ε/q) ≤ Mφ,ω(δ/h).(3.13)

Also, since
∑N

j=1 ϕq(· − xj) is uniformly bounded, we have

∫

Rd

∣

∣

∣

∣

∣

∣

N
∑

j=1

βjϕq(x− xj)

∣

∣

∣

∣

∣

∣

2

dx ≤ c‖bf̃‖
2
∞

∫

Rd

∣

∣

∣

∣

∣

∣

N
∑

j=1

ϕq(x− xj)

∣

∣

∣

∣

∣

∣

dx(3.14)

≤ c′‖f̃‖L∞(Rd) = o(1)

by Proposition 3.3 and the condition N = O(h−d). Hence, inserting (3.13) and (3.14)
into (3.12), we arrive at the bound

|gf,X |φ ≤ Mφ,ω(δ/h)o(1).

Together with (3.11), we complete the proof of this lemma.
From Lemma 3.2 and Lemma 3.5, we realize that one of the important ingredients

for the estimate f − sf,X is the term Mφ,ω(δ/h), δ > 0. Observing the definition of
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fH in (3.2) carefully, we find that the number δ can be chosen arbitrarily. Of course,
a certain choice of δ should induce a suitable bound of Pφ,X/ω(x/ω)Mφ,ω(δ/h), which
leads to a desirable estimate of f − sf,X . We are now ready to describe the main
result of this section.

Theorem 3.6. Let X be a set of scattered points with the condition (3.7), and

let sf,X in (1.6) be an interpolant to f on X using the basis function φω = φ(·/ω).
Let Mφ,ω(r), r > 0, be defined as in (3.4). Assume that there exists a constant δ0 > 0
such that

Pφ,X/ω(x/ω)Mφ,ω(δ0/h) ≤ o(hk).

Then, for every function f ∈ W k
∞(Ω) with k a positive integer, we have an error bound

of the form

‖f − sf,X‖L∞(Ω) = o(hk).

4. Applications to special radial basis functions. We now turn to appli-
cations to special radial basis functions. Employing some known basis functions φ,
we will show that the interpolant sf,X provides optimal approximation orders for
f ∈ W k

∞(Ω). All the examples here are based on Theorem 3.6.
Example 4.1. Let the radial basis function φ be chosen to be one of the following:
(a) φλ(x) := (−1)dm−d/2e(|x|2 + λ2)m−d/2, d odd, m > d/2 (multiquadrics),
(b) φλ(x) := (−1)m−d/2+1(|x|2 + λ2)m−d/2 log(|x|2 + λ2)1/2, m > d/2, d even

(“shifted” surface splines).
(c) φλ(x) := (|x|2 + λ2)m−d/2, 0 < m < d/2 (inverse multiquadrics),

where d, m ∈ N and λ > 0, and where dse indicates the smallest integer greater than
s. Note that we stress the parameter λ by using the notation φλ. We find (see [GS])
that the Fourier transform of φλ is of the form

φ̂λ = c(m, d)K̃m(λ·)| · |−2m,

where c(m, d) is a positive constant depending on m and d, and K̃ν(|t|) := |t|νKν(|t|) 6=
0, t ≥ 0, with Kν(|t|) the modified Bessel function of order ν. It is well known from
literature (e.g., [AS]) that

K̃ν ∼ (1 + | · |(2ν−1)/2) exp(−| · |).

Then, for all θ ∈ Bδ/h, we have the bound φ̂λ(ωθ)−1/2 ≤ c|ωδ/h|m exp(λωδ/2h) for a
constant c > 0. It leads to the inequality

Mφλ,ω(δ/h) ≤ c(δ)ω−d/2|ω/h|m exp(λωδ/2h),

where c(δ) is a constant depending on δ. On the other hand, due to Madych and
Nelson [MN3], we see that there exists a constant c′ > 0 independent of X such that

Pφλ,X/ω(x/ω) ≤ c exp(−c′λω/h)

for a sufficiently small h > 0. Since ωm−d/2 ≤ o(h−d/2) (see section 1), from the
above two inequalities, we arrive at the expression

Mφλ,ω(δ/h)Pφλ,X/ω(x/ω) ≤ c(δ)h−m−d/2 exp

(

−
λω

h
(c′ − δ/2)

)

.(4.1)
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Here, we can choose a sufficiently small δ0 > 0 such that c′ − δ/2 > 0 for any δ ≤ δ0.
In particular, we assume ω to satisfy the relation

h| log h|1+r ≤ ω

for any fixed r > 0. Then, it follows that

exp

(

−
λω

h
(c′ − δ0/2)

)

≤ exp
(

− λ| log h|1+r(c′ − δ0/2)
)

(4.2)

= hλ(c′−δ0/2)| log h|r .

Indeed, as h tends to 0, the number λ(c′ − δ0/2)| log h|r > 0 becomes arbitrarily
large. Hence, for any given k ∈ N, there exists a sufficiently small h0 > 0 such that
hλ(c′−δ/2)| log h|r ≤ o(hk+m+d/2) for any h ≤ h0. Consequently, together with (4.1)
and (4.2), we conclude that

Mφλ,ω(δ0/h)Pφλ,X/ω(x/ω) ≤ o(hk), h ≤ h0.

According to Theorem 3.6, we have the following result.
Theorem 4.1. Let φλ be one of the radial basis functions: multiquadrics, inverse

multiquadrics, and “shifted” surface splines. Let X be a set of scattered points with

the condition (3.7), and let sf,X in (1.6) be an interpolant to f on X using φλ(·/ω).
Assume that ω = ω(h) is chosen to satisfy the relation

h| log h|1+r ≤ ω

for any fixed r > 0. Then, for every f ∈ W k
∞(Ω) with k a positive integer, we have

an error estimate of the form

‖f − sf,X‖L∞(Ω) = o(hk) as h → 0.

Corollary 4.2. Let φλ be one of the radial basis functions: multiquadrics,

inverse multiquadrics, and “shifted” surface splines. Let X be a set of scattered points

with the condition (3.7), and let sf,X in (1.6) be an interpolant to f on X using

φλ(·/ω). Assume that ω(h) = hs with s ∈ [0, 1) or ω(h) = h| log h|1+r with r > 0.
Then, for every f ∈ W k

∞(Ω) with k a positive integer,

‖f − sf,X‖L∞(Ω) = o(hk) as h → 0.

Remark. Recalling that the interpolant af,X in (1.1) uses the original (nonscaled)
basis function, we make an observation concerning the interpolants af,X in relation
to sf,X . Given a set X, assume that the interpolant af,X employs the basis function
φωλ instead of φλ. Then, one should realize that the interpolant af,X is identically
equal to sf,X , which uses φλ. The equality can be verified by the uniqueness of the
solution of the linear system (1.2). The reader is referred to the paper [Y2] for the
details of the proof.

Example 4.2. Let us consider the basis function φ whose Fourier transform φ̂ is
of the form

φ̂(θ) = exp(−|θ|a)

with 0 < a ≤ 1. In the case a = 1, the basis function φ becomes the so-called Poisson
kernel

φ =
cd

(1 + | · |2)(d+1)/2
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with a suitable constant cd. For any θ ∈ Bδ/h, we get φ̂(ωθ)−1 ≤ exp((ωδ/h)a). It
leads to the inequality

Mφ,ω(δ/h) ≤ ω−d/2 exp((ωδ)a/ha).

Also, due to Madych and Nelson (see [MN3]), there exists a constant c′ > 0 indepen-
dent of X such that

Pφ,X/ω(x/ω) ≤ c exp(−c′ωa/ha)

for sufficiently small h > 0. Invoking the condition ω−d/2 ≤ o(h−d/2), we derive from
the above inequalities that

Mφ,ω(δ/h)Pφ,X/ω(x/ω) ≤ ch−d/2 exp

(

−
ωa

ha
(c′ − δa)

)

.(4.3)

Now, in a similar fashion to the case of Example 4.1, we can choose a sufficiently small
δ0 > 0 such that c′ − δa > 0 for any δ ≤ δ0 . In particular, we assume ω to satisfy

ha| log h|1+r ≤ ωa

for any fixed r > 0. Then, it follows that

exp

(

−
ωa

ha
(c′ − δa0 )

)

≤ exp
(

− | log h|1+r(c′ − δa0 )
)

= h| log h|r(c′−δa
0
).

Here, | log h|r(c′ − δa0 ) becomes arbitrarily large as h tends to 0. Thus, for any given
k ∈ N, there exists a sufficiently small h0 > 0 such that h| log h|r(c′−δa) ≤ o(hk+d/2) if
h ≤ h0. Therefore, together with (4.3), we conclude that

Mφλ,ω(δ/h)Pφλ,X/ω(x/ω) ≤ o(hk), h ≤ h0.

According to Theorem 3.6, we have the following result.
Theorem 4.3. Let φ be the basis function whose Fourier transform φ̂ is defined

by φ̂ = exp(−|x|a) with a ≤ 1. Let X be a set of scattered points with the condition

(3.7), and let sf,X in (1.6) be an interpolant to f on X using φλ(·/ω). Assume that

ω = ω(h) is chosen to satisfy the relation

h| log h|(1+r)/a ≤ ω

with a fixed number r > 0. Then, for every f ∈ W k
∞(Ω) with k a positive integer, we

have an error bound of the form

‖f − sf,X‖L∞(Ω) = o(hk) as h → 0.

Corollary 4.4. Let φ be the function whose Fourier transform φ̂ is of the form

φ̂ = exp(−|x|a) with 0 < a ≤ 1. Let X be a set of scattered points with the condition

(3.7), and let sf,X in (1.6) be an interpolant to f on X using φλ(·/ω). Assume that

ω = hs with s ∈ [0, 1) or ω = h| log h|(1+r)/a with r > 0. Then, for every f ∈ W k
∞(Ω)

with k a positive integer,

‖f − sf,X‖L∞(Ω) = o(hk) as h → 0.
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Remark. The Gaussian function φ := exp(−α| · |2), α > 0, is not included in the
examples of section 4. Indeed, the “quadratic exponential” error bound exp(−c/h2),
c > 0, of its power function Pφ,X is necessary to obtain the condition

Pφ,X/ω(x/ω)Mφ,ω(δ0/h) ≤ o(hk)

for some δ0 > 0. However, it is not yet proven in the bounded domain case, but it
is shown only on all of Rd under certain circumstances. The reader is referred to the
manuscript [S3] for the details. More generally, for any given basis function φ, there

would be a general theorem on the bounds of Pφ,X in terms of φ̂. In fact, we can

easily check that Pφ,X is dependent only on the Fourier transform φ̂, more precisely,

on the decaying property of φ̂ (see [WS] and [MN2] for the details).
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