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Abstract

A new class of subdivision schemes is presented. Each scheme in this class is a quasi-interpolatory scheme with a tension para-
meter, which reproduces polynomials up to a certain degree. We find that these schemes extend and unify not only the well-known
Deslauriers–Dubuc interpolatory schemes but the quadratic and cubic B-spline schemes. This paper analyzes their convergence,
smoothness and accuracy. It is proved that the proposed schemes provide at least the same or better smoothness and accuracy than
the aforementioned schemes, when all the schemes are based on the same polynomial space. We also observe with some numeri-
cal examples that, by choosing an appropriate tension parameter, our new scheme can remove undesirable artifacts which usually
appear in interpolatory schemes with irregularly distributed control points.
 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent decades, subdivision schemes have become important and efficient ways to generate smooth curves and
surfaces. Given a set of control points at level 0, a subdivision rule is applied iteratively to generate a new (denser)
set of control points. If the refinement rule is the same at all levels and positions of iteration, the scheme is called
a stationary subdivision scheme. Under a suitable condition on the subdivision rule, the sequence of control points
converges to a smooth limit curve or surface. The convergence analysis of stationary subdivision schemes can be found
in (Cavaretta et al., 1991; Dyn, 1992; Deslauriers and Dubuc, 1989; Dyn et al., 1987; Dyn and Levin, 1991). The most
familiar examples of such schemes are subdivision of B-splines (Cohen et al., 1980) and 4-(or 6-)point interpolatory
scheme (Dyn et al., 1987), and polynomial-based interpolatory schemes studied independently by Deslauriers and
Dubuc (1989). Recently, a new four-point subdivision scheme that generates C2 curves has been introduced by Dyn
et al. (2004).

In this paper, we consider subdivision schemes for curves. Since each component of the curve is a scalar function
generated by the same subdivision scheme, the analysis of a subdivision scheme can be reduced to the case of initial
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control points in R. The refinement rule is represented by a subdivision operator S, and it defines new sets of points
f k = {f k

n : n ∈ Z} at each level k � 0 from a given set of control points at level zero f 0 = {f 0
n : n ∈ Z} formally by

f k = Skf 0.

A subdivision scheme is termed uniformly convergent, if for every initial data f 0 = {f 0
n ∈ R: n ∈ Z} ∈ �∞(Z),

there exists a function f ∈ C0(R) such that, for any interval [a, b],
lim

k→∞ sup
n∈Z∩2k[a,b]

∣∣f k
n − f (2−kn)

∣∣ = 0, (1)

and f �≡ 0 for some initial data f 0. The function f in (1) is denoted by S∞f 0, and called a limit function of S. In
particular, the basic limit function of S is defined by

ϕ = S∞δ, (2)

with the initial data δ = {δ0,n: n ∈ Z}, where δ0,n denotes the Kronecker delta. The scheme S is called Cγ , if its basic
limit function ϕ (and hence all functions generated by it) is Cγ .

Among the many common criteria for a convergent subdivision scheme S, two most important ones are the smooth-
ness and the approximation power of the scheme S. Indeed, the approximation power of a subdivision scheme can
be quantified by the polynomial reproducing property. A stationary subdivision scheme S reproducing polynomials is
called a quasi-interpolatory scheme.

It is well known that the B-spline subdivision schemes provide the optimal smoothness with the minimal support
of the basic limit function ϕ in (2) (Dyn, 1992). However, it reproduces only linear polynomials unless some suitable
operator is applied to each f k (Levin, 2003). On the other hand, the Deslauriers–Dubuc schemes provide the optimal
approximation order. But they are less smooth than B-spline schemes, when they are based on the same polynomial
space. For instance, the 4-point Deslauriers–Dubuc scheme generates C1 curves while the cubic B-spline is C2.
Further, interpolation, in spite of being a very desirable property in curve (and surface) design, may raise twisting
artifacts to the parametric curves if the initial control points are irregular.

In view of the above discussion, there is a need for subdivision schemes that combine the advantages of the afore-
mentioned schemes, while overcoming their drawbacks at the same time. To this end, we propose in this paper a
new class of subdivision schemes that unifies the Deslauriers–Dubuc schemes and the quadratic and cubic B-spline
schemes. However, higher order B-splines are not included in this class because our primary concern is to construct
subdivision schemes with high approximation orders. Specifically, the contribution of our schemes can be written as
follows:

• Each scheme in the new family is quasi-interpolatory. This guarantees good approximation orders of the schemes.
• Each scheme has a tension parameter so that it provides design flexibility. In particular, with proper tension

parameters, it can provide smooth curves without undesirable artifacts even with very irregular control points (see
Fig. 3 in Section 5).

• For a suitable range of tension parameter away from zero, the scheme provides the same or better smoothness at
the expense of slightly larger support than the Deslauriers–Dubuc schemes and the quadratic and cubic B-splines,
when all the schemes are based on the same polynomial space. For instance, the new scheme reproducing cubic
polynomials can provide up to C3-smoothness, while the 4-point Deslauriers–Dubuc scheme is C1 and the cubic
B-spline is C2 (see Table 3 in Section 5).

• The new schemes provide a large class of refinable functions which generate multiresolution analysis. Thus, the
refinable functions obtained by the new schemes can be used for the construction of wavelet systems that balance
and meet various demands, such as regularity of wavelets, shapes of refinable functions and approximation power,
in time-frequency analysis (H. Kim et al., 2005).

The rest of the paper is organized as follows: Section 2 is devoted to construct a new family of quasi-interpolatory
subdivision schemes. We discuss the convergence and the smoothness of the new schemes in Section 3, and the
approximation order in Section 4. In Section 5 we illustrate the performance of the new schemes with some specific
examples.
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2. Construction of the subdivision rule

In this section, we construct a new class of quasi-interpolatory subdivision schemes, which reproduce polynomials
up to a certain degree.

Starting with the initial values f 0 = {f 0
n ∈ R: n ∈ Z}, our subdivision defines recursively new discrete values

f k = {f k
n ∈ R: n ∈ Z} on finer levels by linear sums of existing values as follows:

f k+1
j =

∑
n∈Z

aj−2nf
k
n , k ∈ Z+. (3)

We assume here that only a finite number of coefficients an are non-zero so that changes of one control point affect only
a limited number of the control points in the next level. This property clearly facilitates the practical implementation
of (3). The mask {an: n ∈ Z} consisting of the nonzero coefficients is divided into the even and the odd masks
corresponding to even and odd n respectively. Their construction depends on the space of polynomials Π<L which
we want to reproduce. Here Π<L stands for the set of all univariate polynomials of degree less than L. Since one
desirable property is the symmetry of the basic limit function in (2), we consider the following two cases separately:

Case 1: L is even, i.e., L =: 2N .
For the construction of the odd mask, we use the stencil of L = 2N points to reproduce polynomials in Π<L. That is,
the odd mask {a1−2n: n = −N + 1, . . . ,N} is obtained by solving the linear system:

p�

(
1

2

)
=

N∑
n=−N+1

a1−2np�(n), � = 1, . . . ,L, (4)

where p1, . . . , pL is a basis of Π<L. Obviously, there is a unique solution of the linear system (4), and it is exactly the
same as the odd mask of the L-point Deslauriers–Dubuc scheme. Next, for the construction of the even mask, we use
the stencil of L+ 1 = 2N + 1 points to reproduce polynomials in Π<L. That is, the even mask {a2n: n = −N, . . . ,N}
is obtained by solving the linear system:

p�(0) =
N∑

n=−N

a−2np�(n), � = 1, . . . ,L. (5)

This is an underdetermined system of L + 1 unknowns in L equations so that there is one degree of freedom which
will be used as a tension parameter ω. One may set

ω := a2N. (6)

If ω = 0, then the scheme becomes the L-point Deslauriers–Dubuc interpolatory scheme, as we will see later in
Example 1. Note that the support of the mask is Z ∩ [−L, . . . ,L]. As an example, the stencil for the case L = 4 is
described in Fig. 1(B).

Case 2: L is odd, i.e., L =: 2N + 1.
On the purpose of obtaining symmetric rules, we employ L + 1 = 2(N + 1)-point scheme reproducing polynomials
in Π<L, and define new (refined) values at 1

4 and 3
4 locations between successive old points. Based on this idea, the

masks {aj−2n: n = −N, . . . ,N + 1} with j = 0,1 can be given by solving the linear systems: For the even mask
{a2n: n ∈ Z},

p�

(
1

4

)
=

N+1∑
n=−N

a−2np�(n), � = 1, . . . ,L, (7)

where p1, . . . , pL is a basis of Π<L. Next, for the odd mask {a1−2n: n = −N, . . . ,N + 1},

p�

(
3

4

)
=

N+1∑
n=−N

a1−2np�(n), � = 1, . . . ,L. (8)

Then the obtained subdivision rule satisfies the following relation

a−2n = a2(n−1)+1, n = −N, . . . ,N + 1,
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Fig. 1. The construction of masks. (A) and (B) indicate the stencils of the scheme SL with L = 3 and 4 respectively.

and hence, the basic limit function becomes also symmetric. Each of the systems (7) and (8) consists of L + 1
unknowns in L equations and eventually has one degree of freedom which is used as the tension parameter ω. One
may set ω := a2N and ω := a−2N−1 for (7) and (8) respectively. The support of the mask is Z ∩ [−L − 1, . . . ,L]. As
an example, the stencil for the case L = 3 is described in Fig. 1(A).

Here and in the sequel, for any L ∈ N, we denote by SL the quasi-interpolatory subdivision scheme defined as
above. The general forms of the masks are presented at Table 1 for L = 1, . . . ,10 with maximal smoothness and the
corresponding range of ω. The detailed smoothness depending on ω is specified in Table 4 up to L = 20. Now we
observe that the 2N -point Deslauriers–Dubuc scheme and the (quadratic and cubic) B-splines are special cases of our
new schemes. The following examples discuss it in detail:

Example 1 (Deslauriers–Dubuc schemes). Let L = 2N , and for simplicity, set p�(x) = x�−1 for � = 1, . . . ,L. From
(6), the system (5) becomes of the form:

N∑
n=−N+1

a−2nn
�−1 = δ�−1,0, � = 1, . . . ,L, (9)

when ω = 0. This system has 2N unknowns in 2N equations, and it is easy to see that it has only the trivial solution
a2n = δn,0, n ∈ Z. Together with the odd mask from (4), this is exactly the mask of the 2N -point Deslauriers–Dubuc
scheme.

Example 2 (Quadratic and cubic B-spline schemes). Let L = 1. The mask of SL takes the form {ω,1 − ω,1 − ω,ω}.
Putting ω = 1

4 , we have 1
4 {1,3,3,1}, which is exactly the mask of the quadratic B-spline scheme. Similarly, we can

easily get the mask 1
8 {1,4,6,4,1} of the cubic B-spline scheme, if we take L = 2 and ω = 1

8 (see Table 1).

Furthermore, the new four-point subdivision scheme developed by Dyn et al. (2004) can also be obtained by
choosing ω = 5/128 in the scheme SL with L = 3. In addition, by this choice of ω = 5/128, the scheme is precise
up to cubic polynomials. In fact, for each scheme SL with L odd, there is a special choice of ω which increases the
approximation power. The resulting schemes coincide with the family of schemes introduced by Dyn et al. (2004).
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Table 1
The general forms of the masks of SL . The last two columns indicate the maximum smoothness of SL and the corresponding ranges of ω, which
are obtained by computing ‖( 1

2 SL)13‖∞ < 1 with MAPLE 8, digits = 15

L Mask Cγ Range of w

1 [w,1 − w,1 − w,w] C1 w = 1
4

2 [w, 1
2 ,1 − 2w, 1

2 ,w] C2 w = 1
8

3 [−w,− 3
32 + w, 5

32 + 3w, 15
16 − 3w, 15

16 − 3w, 5
32 + 3w,− 3

32 + w,−w] C2 0.030799 < w < 0.085930

4 [−w,− 1
16 ,4w, 9

16 ,1 − 6w, 9
16 ,4w,− 1

16 ,−w] C3 0.020262 < w < 0.044039

5 [w, 35
2048 − w,− 45

2048 − 5w,− 63
512 + 5w, 105

512 + 10w, 945
1024 − 10w,

945
1024 − 10w, 105

512 + 10w,− 63
512 + 5w,− 45

2048 − 5w, 35
2048 − w,w]

C3 0.006261 < w < 0.016737

6 [w, 3
256 ,−6w,− 25

256 ,15w, 150
256 ,1 − 20w, 150

256 ,15w,− 25
256 ,−6w, 3

256 ,w] C4 0.004495 < w < 0.008855

7 [−w,− 231
65536 + w, 273

65536 + 7w, 1001
32768 − 7w,− 1287

32768 − 21w,− 9009
65536 + 21w,

15015
65536 + 35w, 15015

16384 − 35w, 15015
16384 − 35w, 15015

65536 + 35w,

− 9009
65536 + 21w,− 1287

32768 − 21w, 1001
32768 − 7w, 273

65536 + 7w,− 231
65536 + w,−w]

C4 0.001598 < w < 0.003228

8 [−w,− 5
2048 ,8w, 49

2048 ,−28w,− 245
2048 ,56w, 1225

2048 ,1 − 70w,

1225
2048 ,56w,− 245

2048 ,−28w, 49
2048 ,8w,− 5

2048 ,−w]
C5 0.001132 < w < 0.001754

9 [w, 6435
8388608 − w,− 7293

8388608 − 9w,− 8415
1048576 + 9w, 9945

1048576 + 36w,

85085
2097152 − 36w,− 109395

2097152 − 84w,− 153153
1048576 + 84w,

255255
1048576 + 126w, 3828825

4194304 − 126w, 3828825
4194304 − 126w, 255255

1048576 + 126w,

− 153153
1048576 + 84w,− 109395

2097152 − 84w, 85085
2097152 − 36w,

9945
1048576 + 36w,− 8415

1048576 + 9w,− 7293
8388608 − 9w, 6435

8388608 − w,w]

C5 0.000394 < w < 0.000629

10 [w, 35
65536 ,−10w,− 405

65536 ,45w, 567
16384 ,−120w,− 2205

16384 ,210w,

19845
32768 ,−252w + 1, 19845

32768 ,

210w,− 2205
16384 ,−120w, 567

16384 ,45w,− 405
65536 ,−10w, 35

65536 ,w]

C6 0.000301 < w < 0.000355

3. Convergence and smoothness analysis

With the mask {an} of SL at hand, a fundamental question will be the convergence and the smoothness of SL,
which will be the main topic of this section. To simplify the presentation of subdivision schemes and their analysis, it
is convenient to assign to each rule {an: n ∈ Z} the Laurent polynomial

a(z) :=
∑
n∈Z

anz
n,

where only a finite number of the coefficients an are non-zero. Further, the Laurent polynomial corresponding to the
m-iterated rule Sm

L is given by

a[m](z) =
m−1∏
�=0

a
(
z2�) =

∑
n∈Z

a[m]
n zn, (10)

where the scheme corresponding to {a[m]
n } is a rule mapping f k to f k+m. Note that the norm of Sm

L is

‖Sm
L ‖∞ = max

{∑
n∈Z

∣∣a[m]
j+2mn

∣∣: j = 0,1, . . . ,2m − 1

}
.

Let SL,1 be the subdivision rule for the divided differences of the original control points so that it has the property

df k+1 = SL,1df
k,
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Table 2
Let L = 2N . Comparison between the (maximal) smoothness of SL and Deslauriers–Dubuc (DD) interpolatory schemes

L 2 4 6 8 10 12 14 16 18 20

DD 0 1 2 3 4 4 5 5 6 6
SL 2 3 4 5 6 6 7 7 8 9

where f k = Sk
Lf 0 and (df k+1)n = 2k(f k

n − f k
n−1). In fact, the characteristic Laurent polynomial a1(z) for SL,1 is

given by

a1(z) = 2z

1 + z
a(z).

We will use the following standard tools for the convergence analysis of subdivision schemes:

Theorem 1. (Dyn, 1992) Let S and S1 be stationary subdivision schemes with the characteristic Laurent polynomials
a(z) and a1(z), respectively. Then, we have the following:

(1) The scheme S is uniformly convergent if and only if there exists an integer M � 1 such that ‖( 1
2S1)

M‖∞ < 1.
(2) If a(z) = 1

2 (1 + z)b(z) and the scheme Sb corresponding to b(z) is Cγ , then S is a uniformly convergent scheme
and the basic limit function ϕ of S is in Cγ+1(R).

We can induce from Theorem 1 that in order to assure a certain smoothness of SL, the Laurent polynomial should
have the (smoothing) factor 2−�(1 + z)� for some � ∈ N. Indeed the polynomial reproducing property of SL as in (4),
(5), (7) and (8) guarantees the existence of this smoothing factor such that

a(z) = 2−L(l + z)Lq(z) (11)

for some Laurent polynomial q(z). For more details about the above discussion, the readers are referred to the paper
(Dyn, 1992).

Recall that if ω = 0 and L is even, the scheme SL becomes the L-point Deslauriers–Dubuc scheme. Thus, for a
small perturbation of ω around zero, we can prove immediately that the scheme SL has at least the same smoothness
as the L-point Deslauriers–Dubuc scheme.

Theorem 2. Let L be an even integer, i.e., L = 2N with N ∈ N, and assume that the L-point Deslauriers–Dubuc
scheme is Cγ with γ ∈ N. Then, there exists ω0 > 0 such that for any |ω| < ω0, the scheme SL is also Cγ .

Beyond the observation in the above theorem, the smoothness of SL can be increased by choosing ω from a
suitable area away from the origin. The specific smoothness of SL can be obtained by using Theorem 1. Although
this is algorithmic in principle it is almost impossible to analyze it without the help of a computer program be-
cause the algebraic manipulations are too much involved. Thus, the MAPLE program is utilized to figure out the
convergence and smoothness of SL. The readers who are interested in knowing the details about this algorithm
are referred to the paper (Dyn, 1992). Further, it is also necessary to remark that the support of the basic limit
function of SL is [−L,L], which is slightly larger than the case of the L-point Deslauriers–Dubuc scheme, i.e.,
[−L + 1,L − 1]. Table 2 provides the comparison between the smoothness of SL and the Deslauriers–Dubuc inter-
polatory scheme.

As we have seen in Example 2, SL becomes the quadratic B-spline scheme when L = 1 and ω = 1
4 , and the cubic

B-spline scheme when L = 2 and ω = 1
8 .

4. Approximation order

An important issue in the implementation of subdivision algorithm is how to actually attain the original function
as close as possible if a given initial data f 0 is sampled from an underlying function. A high quality reconstruction
scheme should guarantee that the approximation error decreases when the quality of the sample increases.
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For simplicity, suppose that f 0 = {f 0
n : n ∈ Z} is sampled from an underlying function f with the density 2−k0 for

some k0 ∈ Z. Then our goal is to find the largest exponent m > 0 such that

‖S∞f 0 − f ‖L∞(K) � C2−k0m

with a constant C > 0 independent of k0, where K is a compact subset of R. The exponent m is called the approxi-
mation order of the scheme S. Furthermore, if a scheme S is uniformly convergent, its limit function can be written
as

S∞f 0 =
∑
n∈Z

f 0
n ϕ(2k0 · −n),

where ϕ is the basic limit function of S defined by ϕ = S∞δ with δ = {δ0,n} (see (2)). In this paper, we are particularly
interested in approximating functions f in the Sobolev space

Wn∞(K) :=
{

g:
n∑

m=0

‖g(m)‖L∞(K) < ∞
}

, n ∈ Z+.

Theorem 3. Suppose that f ∈ WL∞(K) and the given initial data f 0 = {f 0
n : n ∈ Z} is of the form: f 0

n = f (2−k0n) if
L is even, and f 0

n = f (2−k0(n − 1/2)) if L is odd. Then, for any compact set K in R, we have

‖S∞f 0 − f ‖L∞(K) � C2−k0L‖f (L)‖L∞(K)

with a constant C > 0 independent of k0.

Proof. First, for the case L is even, the approximation order L can be obtained by using the known technique of
quasi-interpolation; for example, see (Powell, 1992, Section 3.8). Next, consider the case L is odd. If the data is
sampled from a polynomial in Π<L, the limit function is a shifted version of the same polynomial, that is, S∞

L p0 = p

Fig. 2. The effect of the tension ω on the shape of the basic limit functions of SL with L = 3,4. Here, for (a), ω = −0.007, 0, 0.02, 0.04, 0.06 from
the top at x = −1/2 and for (b), ω = −0.02, 0, 0.02, 0.04, 0.06 from the top at the origin.
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if p0
i = p(i − 1

2 ) with p ∈ Π<L (Dyn et al., 2004, Lemma 1). Using the same analysis of Theorem 2 in (Dyn et
al., 2004)) based on this “shifted” polynomial precision, the scheme SL can be proven to provide the approximation
order L. �

5. Examples

In this section, we illustrate the performance of SL with some numerical examples. In order to investigate how the
tension parameter ω affects the limit function, we first look at the basic limit function ϕ of SL (see (2)). Fig. 2 presents

Table 3
Comparison of basic limit functions of cubic B-spline, the 4-point Deslauriers–Dubuc (DD) scheme, and the scheme SL with L = 4

Cubic B-spline 4-point DD scheme SL (L = 4)

Support of ϕ [−2,2] [−3,3] [−4,4]
Maximal smoothness C2 C1 C3

Approximation order 2 4 4

Fig. 3. (A) The 4-point Deslauriers–Dubuc scheme. (B) The scheme SL with L = 4 and ω = 0.03.

Fig. 4. The curvatures of the basic limit functions of SL with L = 4 and 0 < ω < 0.0769, where SL is C2. The spot between two vertical dotted
lines indicates the area of C3 smoothness.
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Table 4
Smoothness of the scheme SL . Depending on the range of the tension parameter ω, we can get different smoothness. By computing
‖( 1

2 SL)13‖∞ < 1 with MAPLE 8, digits = 15, the ranges of ω are obtained

L 1 2 3 4

C0 .0, .95574250 −.25, .75 −.09247323, .26960141 −.13528135, .24451083
C1 1

4 .0, .47779109 −.01114900, .14653826 −.04005134, .13879261
C2 1

8 .03079863, .08593042 .0, .07693204
C3 .02026201, .04403884

L 5 6 7 8

C0 −.04612298, .08273090 −.05539807, .07863532 −.01800369, .02613960 −.02010382, .02534770
C1 −.01680405, .04509990 −.02119504, .04252798 −.00803940, .01409678 −.00851685, .01336099
C2 .00004704, .02639276 −.00668461, .02363848 −.00208118, .00809265 −.00358493, .00732443
C3 .00626104, .01673668 .00160036, .01438940 .00036845, .00501444 −.00061206, .00436987
C4 .00449500, .00885490 .00159808, .00322807 .00056945, .00282662
C5 .00113172, .00175372

L 9 10 11 12

C0 −.00644494, .00837536 −.00693486, .00823911 −.00222275, .00270558 −.00234159, .00269391
C1 −.00311559, .00443643 −.00309893, .00425457 −.00110817, .00141017 −.00107919, .00136704
C2 −.00110257, .00248603 −.00144914, .00228808 −.00044613, .00076978 −.00052675, .00072123
C3 −.00025920, .00149172 −.00044421, .00132523 −.00016482, .00044674 −.00019655, .00040501
C4 .00022995, .00102248 −.00002958, .00082733 .00000460, .00029266 −.00005715, .00024349
C5 .00039388, .00062908 .00020669, .00059615 .00007065, .00020936 .00002598, .00016755
C6 .00030131, .00035479 .00011318, .00012718 .00005728, .00012607

L 13 14 15 16

C0 −.00075324, .00088073 −.00078420, .00088323 −.00025275, .00028819 −.00026176, .00029022
C1 −.00038211, .00045317 −.00036775, .00044298 −.00012972, .00014667 −.00012401, .00014439
C2 −.00016417, .00024162 −.00018382, .00022985 −.00005783, .00007688 −.00006299, .00007392
C3 −.00007013, .00013559 −.00007545, .00012550 −.00002656, .00004187 −.00002721, .00003950
C4 −.00001440, .00008479 −.00002892, .00007260 −.00000827, .00002500 −.00001174, .00002205
C5 .00000867, .00005769 −.00000129, .00004763 −.00000050, .00001617 −.00000268, .00001377
C6 .00002154, .00004497 .00000997, .00003405 .00000401, .00001205 .00000115, .00000935
C7 .00001636, .00002352 .00000591, .00000870 .00000333, .00000730
C8 .00000440, .00000480

L 17 18 19 20

C0 −.00008447, .00009455 −.00008709, .00009559 −.00002813, .00003112 −.00002892, .00003151
C1 −.00004371, .00004774 −.00004155, .00004726 −.00001462, .00001561 −.00001387, .00001552
C2 −.00001994, .00002472 −.00002134, .00002394 −.00000679, .00000800 −.00000717, .00000780
C3 −.00000955, .00001313 −.00000955, .00001259 −.00000334, .00000417 −.00000327, .00000405
C4 −.00000352, .00000754 −.00000438, .00000682 −.00000135, .00000233 −.00000156, .00000214
C5 −.00000093, .00000464 −.00000140, .00000407 −.00000047, .00000137 −.00000058, .00000123
C6 .00000058, .00000328 −.00000012, .00000262 .00000001, .00000091 −.00000016, .00000076
C7 .00000120, .00000253 .00000062, .00000195 .00000023, .00000067 .00000009, .00000053
C8 .00000158, .00000173 .00000093, .00000157 .00000034, .00000055 .00000019, .00000041
C9 .00000025, .00000031

various basic limit functions depending on the tension ω = −0.007, 0, 0.02, 0.04, 0.06 with L = 3 and ω = −0.02, 0,
0.02, 0.04, 0.06 with L = 4. When ω = 0, it becomes interpolatory. In Table 3, we compare the scheme SL, L = 4,
with the cubic B-spline and the 4-point Deslauriers–Dubuc scheme.

Fig. 3 shows an advantage of using SL. In fact, if the given control points are very irregular, the limit curves of
the Deslauriers–Dubuc schemes may result in unpleasant artifacts as shown in Fig. 3(A). However, choosing an ω

away from the origin, we can obtain visually better curves without twisting artifacts. Having performed numerical
experimentations with several alternatives for ω, we found out that a good choice is about 0.025 � ω � 0.06. Fig. 4
describes the maximum curvatures of ϕ with L = 4, corresponding to ω in the area of C2 smoothness.
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