
Approximation by Conditionally Positive Definite

Functions with Finitely Many Centers

Jungho Yoon

Abstract. The theory of interpolation by using conditionally positive
definite function provides optimal error bounds when the basis function
φ is smooth and the approximant f is in a certain native space Fφ. The
space Fφ, however, is very small for the case where φ is smooth. Hence, in
this study, we are interested in the approximation power of interpolation to
mollifications of functions in Sobolev space. Specifically, it turns out that
interpolation to mollifications provides spectral error bounds depending
only on the smoothness of the functions f .

§1. Introduction

In the last decades or so, there has been considerable progress concerning
the scattered data approximation problem in two or more dimensions. In
particular, the methods of radial basis function approximation are becoming
increasingly popular. Usually, the starting point of the approximation process
is the choice of a conditionally positive definite function φ : IRd → IR.

Definition 1.1. Let φ : IRd → IR be a continuous function. We say that
φ is conditionally positive definite of order m ∈ IN := {1, 2, · · ·} if for every
finite set of pairwise distinct points X := {x1, · · · , xN} ⊂ IRd and for every
α = (α1, · · · , αN ) ∈ IRN \ 0 satisfying

N∑
j=1

αjp(xj) = 0, p ∈ Πm,

the quadratic form
N∑
i=1

N∑
j=1

αiαjφ(xi − xj)
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is positive. Here, Πm denotes the subspace of C(IRd) consisting of all algebraic
polynomials of degree less than m on IRd.

Given a conditionally positive definite function φ : IRd → IR, we consider
approximation of a function f : IRd → IR by linear combinations of finitely
many translates φ(· − xj), j = 1, · · · , N , of φ. In many cases, it is helpful to
have additional polynomial terms. Then, we write the approximants as

af,X(x) :=
∑̀
i=1

βipi(x) +
N∑
j=1

αjφ(x− xj), (1.1)

where p1, · · · , p` is a basis for Πm and αj , j = 1, · · · , N , are chosen so that

N∑
j=1

αjq(xj) = 0 for all q ∈ Πm.

In particular, af,X becomes the φ-interpolant when af,X satisfies the condi-
tions

af,X(xj) = f(xj), j = 1, · · · , N.

The strengths of this method are as follows: (i) the accuracy of approximation
is usually very satisfactory provided the approximand f is reasonably smooth;
(ii) there is enough flexibility in the choice of basis functions. The common
choices of φ include:
(a) φ(x) := (−1)dm−d/2e(|x|2 + λ2)m−d/2, d odd, m > d/2, (multiquadrics),
(b) φ(x) := (−1)m−d/2+1(|x|2 + λ2)m−d/2 log(|x|2 + λ2)1/2, m > d/2, d even,

(‘shifted’ surface splines).
(c) φ(x) := (|x|2 + λ2)m−d/2, 0 < m < d/2, (inverse multiquadrics),
(d) φ(x) := exp(−α|x|2), α > 0, (Gaussians).
where d, m ∈ IN and λ > 0, and where dse indicates the smallest integer
greater than s. Indeed, the positive definiteness of continuous and absolutely
integrable functions φ : IRd → IR is equivalent to the Fourier transform φ̂
being nonnegative on IRd and positive at least on an open subset of IRd. We
note in passing that this argument is a consequence of the simple identity

N∑
j=1

N∑
k=1

αjαkϕ(xj − xk) =
∫

IRd
ϕ̂(θ)

∣∣ N∑
j=1

αje
ixj ·θ

∣∣2dθ
for any (α1, · · · , αN ) ∈ IRN \ 0 and the fact that the map θ 7→

∑N
j=1 αje

ixj ·θ,
θ ∈ IRd, has zeros at most on a set of measure zero. This identity is also
generalized to the case of conditionally positive definite functions φ of or-
der m > 0. Such conditionally positive definite functions obviously exist in
abundance. For instance, by the convolution theorem, all 2n ≥ 2-fold con-
volutions of compactly supported functions on IRd with Fourier transforms
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that are nonzero at least on an open subset of IRd will have strictly nonneg-
ative Fourier transform and thus be conditionally positive definite. Among
all those functions, the present paper is mainly concerned with using radially
symmetric functions but not necessary restricted to this condition. We assume
a function φ to be radial in the sense that φ(x) = Φ(|x|) and to be of at most
polynomial growth at infinity.

For a given basis function φ whose (tempered) Fourier transform coin-
cide on IRd \ 0 with a positive continuous function, the existing theory of
interpolation estimates errors for the functions in the space

Fφ := {g : |g|φ :=
∫

IRd

|ĝ(θ)|2

φ̂(θ)
dθ <∞}

which is called “native” function space ([8], [14]). Specifically, for all x ∈ Ω
and f ∈ Fφ, bounds for the interpolation error are of the form

|f(x)− af,X(x)| ≤ Pφ,X(x)|f |φ.

Here Pφ,X is the power function that evaluates the norm of the error functional:

Pφ,X(x) = sup
|f |φ 6=0

|f(x)− af,X(x)|
|f |φ

.

In particular, when the basis function φ is smooth (e.g, Gaussian), the inter-
polation method provides optimal asymptotic decay of errors. The space Fφ,
however is very small ([8], [14]). The approximands f need to be extremely
smooth for effective error estimates. Thus, employing smooth basis functions
φ, our major concern is to study the approximation power of interpolation
to mollified functions of f which belongs to larger spaces, especially to the
Sobolev spaces. For any k ∈ IN, we define the Sobolev spaces by

W k
p (IRd) := {f : |f |k,p :=

∑
|α|1≤k

‖Dαf‖Lp(IRd) <∞}

with 1 ≤ p ≤ ∞.
In [13], Schaback also studied the interpolation behavior to mollifications

of a function f . In this paper, however, we provide sharper error estimates
than [13]. Another advantage of this study is that it can be applied to a wider
range of basis functions φ. We can employ any basis function φ whose Fourier
transform φ̂ is nonnegative on IRd and positive on an open ball centered at
the origin in IRd.

§2. Basic Assumptions

Let K be the space of C∞0 functions with the topology in [5], and let S be
the space of rapidly decaying functions. Throughout this paper, the function φ
is considered as a tempered distribution on K, and we assume that its Fourier



4 J. Yoon

transform φ̂ coincides on IRd \ 0 with some continuous function while having
a certain type of singularity (necessarily of a finite order) at the origin, i.e., φ̂
is of the form

| · |2mφ̂ = F (2.1)

with m ≥ 0 and F a nonnegative function in S. In particular, we assume that
the function F is positive on the Euclidean ball Br centered at the origin for
some r > 0.

Assuming φ = Φ(| · |) to be conditionally positive definite of order m ≥ 0,
we require X to have the nondegeneracy property for Πm, that is, if p ∈ Πm

and p|X = 0, then p = 0. We also assume that Ω ⊂ IRd is an open bounded
domain with cone property. Then, for a given set X in Ω, we measure the
‘density’ of X by

h := h(X; Ω) := sup
x∈Ω

min
xj∈X

|x− xj |.

For a given basis function φ and a center set X, we especially adopt the
scaled basis function

φω := φ(·/ω)

where
ω := ω(h)

is a parameter depending on h such that h/ω → 0 as h tends to 0. Then, in
order to differentiate from af,X in (1.1), we use the notation

sf,X(x) :=
∑̀
i=1

βipi(x) +
N∑
j=1

αjφω(x− xj), (2.2)

where p1, · · · , p` is a basis for Πm.

§3. Error Estimates

For a given continuous function f , we first approximate f by a mollified
function f∗ω ∈ Fφ obtained via truncation of the Fourier transform, i.e.,

f∗ω := σ(·/ω)∨ ∗ f

where
σ : IRd → [0, 1]

is a nonnegative C∞-cutoff function whose support σ lies in the Euclidean
ball Bη with σ = 1 on Bη/2 and ‖σ‖L∞(IRd) = 1. Here and in the sequel, we
assume that η < r, where r appears in the property of F in (2.1). Then, in
this section, we will observe the approximation behavior of sf∗ω,X to f .

The following lemma is from [15].
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Lemma 3.1. Let ω = ω(h) be a parameter depending on h the density of
X. Then, for every f ∈ W k

∞(IRd) with k > 0, we have the following decay
property

‖f − σ∨ω ∗ f‖∞ = o(ωk).

From the papers ([8], [14]), we cite

Lemma 3.2. Let aX,f in (1.1) be an interpolant to f on X = {x1, · · · , xN}.
Given φ and m, for all functions f in the native space Fφ, there is an error
bound of the form

|f(x)− af,X(x)| ≤ |f |φPφ,X(x)

where Pφ,X(x) is the norm of the error functional, i.e.,

Pφ,X(x) = sup
|f |φ 6=0

|f(x)− af,X(x)|
|f |φ

(3.1)

and it is the minimum of all such norms, if quasi-interpolants

qf,X(x) :=
N∑
j=1

uj(x)f(xj)

with p(x) =
∑N
j=1 uj(x)p(xj), p ∈ Πm, are allowed instead of af,X .

We now present the following theorem.

Theorem 3.3. Let sf∗ω,X in (2.2) be an interpolant to f∗ω on X by way of

employing φω = φ(·/ω). Suppose that the Fourier transform φ̂ of φ satisfies
the condition (2.1). Then, for every function f ∈ W k

∞(IRd) ∩W q
2 (IRd) with

q = min(k,m), we have

|f(x)− sf∗ω,X(x)| ≤ o(ωk) + cωq−d/2Pφ,X/ω(x/ω)|f |k,2, x ∈ Ω,

with a constant c > 0 independent of X and Ω. Here, m is the order of
singularity of φ̂ at the origin.

Proof. We first split the error f − sf∗ω,X by the two terms:

f − sf∗ω,X = (f∗ω − sf∗ω,X) + (f − f∗ω).

Since ‖f − f∗ω‖L∞(IRd) = o(ωk) by Lemma 3.1, it suffices to estimate only the
error f∗ω − sf∗ω,X . From the definition of sf∗ω,X in (2.2), we can write

sf∗ω,X(ω·) :=
∑̀
i=1

βipi(ω·) +
N∑
j=1

αjφ(· − xj/ω),

and then it is obvious that

sf∗ω,X(ω·)|X/ω = f∗ω(ω·)|X/ω.
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Thus, one simply notes that the function sf∗ω,X(ω·) can be considered as an
interpolant (employing the translates φ(· − xj), j = 1, · · · , N) to the dilated
function f∗ω(ω·) on X/ω, i.e.,

sf∗ω,X(ω·) = af∗ω(ω·),X/ω.

Since the function f∗ω(ω·) belongs to the native space Fφ, it is immediate from
Lemma 3.2 that, for any x ∈ Ω,

|f∗ω(x)− sf∗ω,X(x)| = |f∗ω(ω·)− af∗ω(ω·),X/ω|(x/ω)

≤ Pφ,X/ω(x/ω)|f∗ω(ω·)|φ.

Here, let us first consider the case k ≥ m. Using the condition | · |2mφ̂ = F
with F ∈ S, the explicit formula of the norm | · |φ induces

|f∗ω(ω·)|2φ ≤ ω−2d

∫
Bη

∣∣σ(θ)f̂(θ/ω)
∣∣2φ̂−1(θ)dθ

= ω2m−d
∫
Bη/ω

(σ2

F

)
(ωθ)

∣∣| · |2mf̂ ∣∣2(θ)dθ

≤ cω2m−d‖σ2/F‖L∞(Bη)|f |2m,2.

In a similar fashion, for the case k < m, we have the bound

|f∗ω(ω·)|2φ ≤ cω2k−d
∫
Bη/ω

|ωθ|2(m−k)
(σ2

F

)
(ωθ)

∣∣| · |kf̂ ∣∣2(θ)dθ

≤ cω2k−d‖σ2| · |2(m−k)/F‖L∞(Bη)|f |2k,2.

It completes the proof.

§4. Approximation in Sobolev Spaces

In this section, employing smooth conditionally positive definite functions
φ, we prove that the interpolant sf∗ω,X provides spectral approximation orders
(i.e., the asymptotic rates of the error f−sf∗ω,X depend only on the smoothness
of the functions f) under some suitable conditions on ω. For this proof, we
first estimate the function Pφ,X/ω(·/ω) on Ω. In fact, the general idea of our
analysis of Pφ,X/ω(·/ω) is similar to the work of Wu and Schaback [14]. Our
method is simpler, however, and the conditions are less restrictive.

Lemma 4.1. Let the basis function φ satisfy the assumption in (2.1). Then,
for any n ∈ IN, there exists a constant cn independent of X and Ω such that

Pφ,X/ω(x/ω) ≤ cn(h/ω)n, x ∈ Ω.

Proof. Let us denote u(x) := (u1(x), · · · , uN (x)) as a vector in IRN . Then,
the so-called power function in (3.1) can be rewritten as

P 2
φ,X(x) = min

u∈Km

∫
IRd

φ̂(θ)
∣∣eix·θ − N∑

j=1

uj(x)eixj ·θ
∣∣2dθ
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where Kn, n ∈ IN, indicates the set

Kn :=
{

(u1(x), · · · , uN (x)) ∈ IRN
∣∣ N∑
j=1

uj(x)p(xj) = p(x), p ∈ Πn

}
,

see [14] for the details. Then, for any n ∈ IN with n ≥ m, there is a vector
ū := ūn := (ū1, · · · , ūN ) in the admissible set Kn such that it satisfies the
following conditions:
(a) There exists c1 > 0 such that, for any x ∈ Ω, ūj(x) = 0 whenever
|x− xj | > c1h, with h the density of X.

(b) The set {(ū1(x), · · · , ūN (x)) : x ∈ Ω} is bounded in `1(X).
For the examples of such vectors ū, the readers are referred to the papers [6]
and [15]. Remembering the condition for φ̂ in (2.1), we have

P 2
φ,X/ω(x/ω) ≤

∫
IRd

F (θ)|θ|−2m
∣∣1− N∑

j=1

ūj(x)ei(xj−x)·θ/ω∣∣2dθ. (4.1)

Let pn−1(x) be the Taylor expansion of ex about the origin of degree n − 1.
The polynomial reproducing property of ū ∈ Kn implies that

N∑
j=1

ūj(x)[1− pn−1(i(xj − x) · θ/ω)] = 0.

Thus, using the properties (a) and (b) of the vector ū, it follows that

|θ|−m
∣∣1− N∑

j=1

ūj(x)ei(xj−x)·θ/ω∣∣ ≤ |θ|−m N∑
j=1

|ūj(x)((xj − x) · θ/ω)n|/n!

≤ cn|θ|n−mhn/ωn‖ū‖1

where ‖ū‖1 indicates the `1-norm of the vector ū. Inserting this bound into
(4.1), we get

P 2
φ,X/ω(x/ω) ≤ c′n(h/ω)2n‖( )2(n−m)F‖L1(IRd).

The last integral of the above expression is finite because F ∈ S. Therefore,
we finish the proof.

Corollary 4.2. Let φ be a smooth basis function satisfying the condition
in (2.1), i.e., φ̂ is of the form | · |2mφ̂ = F ∈ S with m ≥ 0. Let ω be
chosen to satisfy the relation ω(h) = hr with r ∈ (0, 1). Then, for any
f ∈W k

∞(IRd) ∩W q
2 (IRd) with q = min(k,m), we have the error bound

|f(x)− sf∗ω,X(x)| = o(hrk), x ∈ Ω.
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Proof. It is obvious from Lemma 4.1 that for any n ∈ IN, there is a constant
cn such that

Pφ,X/ω(x/ω) ≤ cnhn(1−r)

with r ∈ (0, 1). Invoking Theorem 3.3., we arrive at the bound

|f(x)− sf∗ω,X(x)| ≤ o(hrk) + c′nh
r(q−d/2)+n(1−r)

with q = min(m, k). By choosing n ∈ IN such that n > r(k− q+ d/2)/(1− r),
we can get the required result.

Now, in what follows, we consider the well-known smooth conditionally
positive definite radial functions. In this case, in order to get sharper error
bounds, we employ the results in [10].

Example 4.1 Let the radial basis function φ be chosen to be one of what
follows:
(a) φ(x) := (−1)dm−d/2e(|x|2 + λ2)m−d/2, d odd, m > d/2, (multiquadrics),
(b) φ(x) := (−1)m−d/2+1(|x|2 + λ2)m−d/2 log(|x|2 + λ2)1/2, m > d/2, d even,

(‘shifted’ surface splines),
(c) φ(x) := (|x|2 + λ2)m−d/2, 0 < m < d/2, (inverse multiquadrics),
where d, m ∈ IN and λ > 0, and where dse indicates the smallest integer
greater than s. We find (see [GS]) that the Fourier transform of φ is of the
form

φ̂ = c(m, d)K̃m(λ·)| · |−2m

where c(m, d) is a positive constant depending on m and d, and K̃ν(|t|) :=
|t|νKν(|t|) 6= 0, t ≥ 0, with Kν(|t|) the modified Bessel function of order ν. It
is well-known from literature (e.g., [AS]) that K̃ν ∼ (1+ | · |(2ν−1)/2) exp(−|·|).

Corollary 4.3. Let φ be one of the basis functions in the above Example 4.1.
Let sf∗ω,X in (2.2) be an interpolant to f∗ω on X by way of employing φω. Let

ω(h) = h| log h|r with r > 1. Then, for every f ∈ W k
∞(IRd) ∩W q

2 (IRd) with
q = min(k,m), we have the error bound

|f(x)− sf∗ω,X(x)| = o(hk| log h|rk), x ∈ Ω.

Proof. Due to the result of Madych and Nelson (see [10]), we can find con-
stants c1, c2 > 0 independent of X and Ω such that

Pφ,X/ω(x/ω) ≤ c1 exp(−c2| log h|r)

≤ c1hc2| log h|r−1
,

where ω(h) = h| log h|r with r > 1. Then, for any given n ∈ IN, there exists a
number hn > 0 such that for any h < hn, we get c2| log h|r−1 > n. It follows
that

hc2| log h|r−1
≤ c1hn.
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Thus, this corollary is proved immediately by Theorem 3.3.

Example 4.2. Let us consider the basis function φ whose Fourier transform
φ̂ is of the form

φ̂(θ) = exp(−α|θ|a), α > 0

with 0 < a ≤ 2. In the case a = 1 and α = 1, the function φ becomes the
Poisson kernel

φ =
cd

(1 + | · |2)(d+1)/2

with a suitable constant cd. When a = 2, it is the Gaussian function. Then, by
applying the same technique in the above corollary, we can get the following
result:

Corollary 4.4. Let φ be one of the basis functions in Example 4.2. Let
sf∗ω,X in (2.2) be an interpolant to f∗ω on X by way of employing φω, where

ω(h) = h| log h|r with r > 1. Then, for every f ∈ W k
∞(IRd) ∩Wm

2 (IRd), we
have the error bound

|f(x)− sf∗ω,X(x)| = o(hk| log h|rk), x ∈ Ω.
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