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Abstract

A collocation method using scattered points applied to a second-order elliptic differential equation is analyzed
by establishing a new quadrature formula for the space of the polynomials. We show that a polynomial solution
possesses stability and preserves a similar convergence property occurred in the classical high order collocatiot
method.
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1. Introduction

Consider the following model problem:

Lu:=—[uy +uyl+cu=f, inQ=(-11 x (=11, (1.2)
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with homogeneous Dirichlet boundary condition
u=0 on 0Q,

wherec is a positive constant. The traditional high-order collocation method for solving (1.1) is to
approximateai by a polynomial at Legendre—Gauss (:=LG)-type or Chebyshev—Gauss (:=CG) type points
(se€[2,3,8,10] etc.). The usages of LG points or CG points in the classical collocation method for (1.1)
yield the so-called spectral convergences and well-posed algebraic linear systems. It is well known that
these approaches are very popular and accurate to approximate the solutions of boundary value problem:
like (1.1) among many other numerical techniques. Despite such merits on the classical high-order
collocation method, we are interested in a question on a spectral convergence property when arbitrarily
chosen scattered points are used for collocating a given differential equatios.(ket) be a bilinear

form corresponding to (1.1) on a Sobolev spaige({z) and.# (v) a linear functional orHOl(Q) such as

&/(u,v):/ Vu - Vv + 20uv dQ, f(v):/fde. (1.2)
Q Q

Then the corresponding variational formulation is to find Hol(Q) satisfying.«Z (u, v) = 7 (v) for all
v € H}(Q) and its Galerkin approximation is to findy € 2% () such thate/y (uy, v) = Z y (v) for
allv e ,@?V(Q), where.«Zy and.# y are discrete linear functionals ef and.#, respectively, andﬂg)v
is the space of polynomials vanishing on the boundaryThen the convergence analysis can be done
usually by estimating both the erro#&(u, v) — .o/ y (1, v), which depends on a numerical quadrature rule,
and.Z (v) — # y(v), which depends on an interpolation operator defined at LG- or CG-type collocation
points. In this paper, instead of using an interpolation operato#fp(v), we will employ a projection
operator forz y (v) as an approximation t@ (v). This is because the interpolation error estimates are not
known yet at general collocation points. We will use a new quadrature formula to approxifiate)
so thate7(u, v) — ./ (u, v) vanishes on a polynomial space. In some of the literatures there have been
some efforts to exploit arbitrarily scattered points as collocation points: for example, the differentiation
matrix for unstructured grids is introduced and applied to hyperbolic equatiofig.iA collocation
method using a radial basis function is reporte¢binfor solving Poisson’s (1.1) numerically, in which
nearly complete geometric freedom is allowed. Some developments of spectral methods on triangles and
tetrahedra are also reported®j, in which the approximate solutions can be represented as multivariate
Lagrange interpolation polynomials. In this paper, we choose any scattered points and then approximate
the solutionu of the Eq. (1.1) by a polynomial at chosen scattered pointz. iRor these purposes, let
Z ={s;: j=0,..., M} be a finite set of distinct points ih = [—1, 1] and let2y(I) be the set of
polynomials of degree less than or equalto

For a given set of scattered points{ we establish a quadrature formula @nwhich is exact for
polynomials of degree K by using(M + 1) scattered points witt + 1) > dim 2k (I). The key point
in this numerical quadrature is to find a unique kers#&l) := (a(z, sl)),"io such that for alp € 2k (1),

M
> plspalt.s) = p(). (1.3)

=0

Indeed, there are infinitely many solutiomé, s;) of the above linear system (1.3). However, it can be
uniquely determined by making the kernst, s;) in (1.3) be defined locally (we will see in Section 2).
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For the weights in the case of two or higher dimensions, the tensor arguments will be used. Then we
consider the corresponding discrete variational collocation formulation on a polynomial space, that is,
we want to find a polynomial solutiany € 99\,(9) satisfying

Ay (un, vy) =y foonly. Yoy € 2%(Q), (1.9)

wherelly is a projection operator from a space of all continuous functiomgto;sz(-, Sand[-, -1y
which are defined in Section 3. Then we show that (1.4) has a unique solution. The spectral convergence
analysis is also provided. The approach proposed here has the main advantage of providing spectre
accuracies similar to the classical pseudo-spectral method with any scattered p@nihastandard
Sobolev space#* (Q) and norms|ju||, are used. For exampl&2(Q) is same as1°(Q) whose inner
product is given byu, u) and its correspondingy® norm is given byju||. The subspacﬂol(sz) of Hlis
the closure ofC5°. The seminormu|; is also used.

This paper is as follows: in Section 2, we derive a quadrature rule fum any scattered points and
then shows the way to get corresponding weights for one dimensional case. In Section 3, the variational
collocation method and its related linear system are introduced. In Section 4, the convergence analysis i
derived in the sense d@f2 and H norms. In Section 5, we provide numerical tests for weights obtained
in Section 2 and fof.2 and H! convergences of a polynomial solution. Finally, we add some concluding
remarks in Section 6.

2. Numerical quadrature

LetZ ={s;: j=0,..., M} be asetof distinct points inwith M + 1> K + 1 := dim(Zk (I)). Let
Z j be the subset of which has(K + 1)-elements as follows:

K+1
sy €2l =0, ... K} if1<j<L + J
. K—+1 . K L. | K+1 . K
. K
{s;eZll=M-K,... M} IfJ>M_LEJ'

Since the order ok is K + 1, we can represent the polynomjak Z?x as a linear combination of the
(K + 1)-number of valuep(s;) for s; € 2';, and corresponding polynomial ;(¢) on the subinterval
[sj—1,s;) as follows:

> ajps)=p@) forallrels; 1.s;). (2.2)
S1EX
Note thatthe kernel; ;(r) in (2.2) is defined locally and it becomes a polynomial of degrea([s; 1, 5;).
Moreovera; (t) is the Lagrange polynomial defined & _1, s;) such that

t—s
aj (1) = l_[ ", where rel[s;_1,5;) ands € Z;. (2.3)
S| — Sn
Sn €A j,SnFS|

Therefore, the kerne¥/ (1) = (aj,l(t))}‘io becomes continuous piecewise polynomials.
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Let

a0, telsji—1,sp) if s55€2;,
a(t,S[) T {0, t e [Sj_l,Sj) if S7 ¢%j, (24)

then it satisfies the relation

M

Y plsnatt, s =p(), V¥tel[-1,1], ¥p e 2x(I).
=0

In fact, there is no restriction for the choice of the Xetbut the distribution ofX ; is important in the
sense of calculating the numerical weigtitsdefined in (2.6) or (2.7). From the practical point of view,
a good choice for approximation is to put almost the same numbers of centers on each side of the interval
[sj—1,s;). Itis also interest to point out that an error bound usually depends on the maximal distance
between centers.

Proposition 2.1. Let 2 := {sx : k=0,1,..., M} with M > K be a set of arbitrary distinct points in

[—1, 1]. Assume thaf2.2) holds. Then, for all polynomials € 2 ([—1, 1]) and a given functionw(z)
defined orf—1, 1], we have

f pHw(t) dr = Z p(sp)iy, (2.5)

(=0

wherew is defined in(2.6) or (2.7).

Proof. From (2.2) and (2.4), one may have

f p@Ow () d = Z / pOw(r) di = Z f > aj i psw(e) de
.

j=1 Sj-1 SIEX j
M M

=) / > plspalt, spyw(r) de
j=1%-11=0

p(sp) Z/ a(t, s)w(t) d

Mi@gME

p(sp)wy,

N
I
o
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where because of (2.1) and (2.4), the quadrature weights can be represented as follows: For the case ¢
K<M/2,ieK<M—K,

1+ 551
_Zl f;}f_l aj (Hw()dr for 1=0,1,..., K,
J:

I+ 5 )
Wy = ZK fsif;l aj(Hw(ydt for I=K+1,....M —K —1, (2.6)
j:l—LjJ

M
3 j;j_laj’[(l)U)(t)dt for i=M—K,...,M.

; K
j=l=17

Forthecaseok >M/2,i.e. K>M — K,

I+ 53]
'21 f.{?_laj,z(t)w(t)dt for 1=0,1,....M — K — 1,
iz _
M .
w; = -21 f;f_l aj(Hw(r)dr fori=M—-K, ..., K, 2.7)
J:
M
ZK [ aju@w(yde for =K +1,... M.
.:l_\_ﬁj

J
This completes the proof.J

The above proposition tells us the way to get the numerical quadrature rule which is exact for a
polynomial of degree up t&. We note that one may use a tensor argument to extend one-dimensional
numerical quadrature formula to a higher-dimensional case immediately. In fact, one may notice that
several numerical tests for the convergence for a two-dimensional case, which needs two-dimensiona
weights.

Now the weightsi; defined in (2.6) and (2.7) can be written explicitly with help of Legendre—Gauss-
Lobatto [=:LGL] quadrature rule applied to the kernel;(r) which is a polynomial of the degrde
on the subintervalls;_1,s;] for j =1,2,..., M with so = —1 andsy = 1. For this, letL,(x) be the
Legendre polynomial of degr@eThen the LGL quadrature points; }'}:o are the zeros of the polynomial
1- xZ)L;,(x) a nd the corresponding LGL Weigrft,sj}’}zo are

2
o AT LR

j=01,....n (2.8)

Then LGL quadrature rule is exact for polynomials of degree umto 2
Now, we can represent the weighiisin (2.6) and (2.7) for the case(r) = 1 by using the quadrature
form. Using the change of variables and the exactness of the LGL quadrature withk /2| + 1,
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the integral in the weights can be rewritten as

w(j, 1) = /] a; () dr

o1
S;i—85;i-1 1 S'—S']_L%J—’—l
= / a0 dy==—2="% = a1, (2.9)
-1 i=0
where

G000 = ay, <(sj' — Sj—1)x;— (sj—1+ Sj)) Coxe[L1] (2.10)

Since the expression (2.3) @f ;(¢) leads to

gy sia— &) +s;(L+ &) — 2

p= 3T %1 fl jo - T e A 2.11
w(j, 1) Z pi [1 21— 50) : (2.11)

Sn€X j,Sn 7SI

the weightsi; in (2.6) and (2.7) can be written as follows. For the cas&ef M/2,i.e. K <M — K,

1+ 55
> w(,l) for1=0,1,...,K
j=1
I+ 55

w=3 > w@,l) forl=K+1,....M—K-1, (2.12)
j=l-1%]
M
> w(l) fori=M-K,...,M.
j=1-1%]

Forthe case oK >M/2,i.e. K >M — K,

I+ 542
> w(,l) forl=0,1,....M - K —1,
j=1
M

Wy =1 > w0 fori=M—-K,... K, (2.13)
j=1
M
> w(,l) fori=K+1,....M
j=1-1%]

Finally, one may note that the quadrature weightgan be determined in a different way. For example,
since

M L 1+1

1
f PO dr= / ZP(Sz)a(t spw() dr =Y p(s) Z a(éj. snp;,

1=0 j=0

. . K41
the quadrature weights can be givenias= ZJL.i(J,+ a(Cj,snp;j-
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3. Avariational collocation method

From now on we assume that the weight functiotx) = 1. LetZ ={s; | i =0, 1, ..., M} where
M > 2N. Then the numerical quadrature in the previous section shows that

M

1
/ ptyde=>" p(sp; forall pe2ay(l). (3.1)
-1 i=0

3.1. One-dimensional case

In this section, we describe one-dimensional high-order variational collocation method using scattered
points and a projection operator for the following model problem:

—u"+cu=f in(-1,1), u(-1)=u() =0, 3.2

wherec is a positive constant.
The variational form for (3.2) is to find € Hol(l) such that

A (u,v)=F ) forall ve H3), (3.3)

where the bilinear functionaV/ (-, -) : H3(I) x H3(I) — % and the linear functiona () : C[—1, 1]
—> R are defined as

o/ (u, v) :=/u/v/+cuvdt, f(v):/fvdt. (3.4)
I I

Assume that there is an orthogonal projection operafor: L2(I) — #x(I) with the following
property: for allf € L?(I),
If = anFISCNT" | fllms (3.5)

wherem >1 is an integer (seR2]). The variational collocation formulation corresponding to (3.3) is to
finduy € #%(Q) such that

Ay, vy) =Fyy) foral vy e 2%1), (3.6)

where the discrete bilinear functionaly, (-, -) : 99\,(1) X /7’?\,(1) — R and the discrete linear functional
Fm 9’?\,(1) —> R, corresponding ta/(-, -) and.Z (-), respectively, are defined as

M

AUy, vN) = Z [ty (si) vy (si) + cun (si)vn (si) 1w (3.7)
i=0
and
M
Fn) =) (un sy (s0);. (3.8)

i=0
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Due to the exactness of numerical quadrature, we note that

AUy, vy) = /u},vﬁv—}—cquth:/(—uX,%—cuN)det
1 1

M
= Y (—uly +cun)(si)vn(s)w;. (3.9
i=0
Let
N—2
un(®) =Y ujpj(t) € 2%,
=0

where{p;(t)} is a basis fo@?v(l). Then we can define the matricBeandE whose elements are given
as

B(i, k) = —p/(si), E@, k)=pi(si) 0<i<M, O<k<N —2.
Note that

(Lp)(si) = —py (si) + cpi(si) (3.10)
leads to theM + 1) x (N — 1) matrix

(B + cE) =: B. (3.11)

Then the matrix (3.11) results in an over-determined system which takes after the usual collocation
method for the approximations of the given differential (3.2). But there is no solution usually for such an
over-determined system. The matrix representation of (3.6) becomes

E'WBUy =E"WFy, (3.12)
where
W = diag(;)

and, with vectors arranged by the same order as basis,

Uy = (o, ..., un—2)" and Fy = ((an) f(50), .-, (an f)sm))'

We note thate” W B is the square matrix with the siz2e— 1 because of zero boundary conditions, which
enables us to solve the linear system (3.12) if it has an inverse. The nidtixB is not symmetric
positive definite, but we can obtain the symmetric positive definite system directly from (3.7):

(D"WD + cETWE)Uy = E"WFy, (3.13)

whereD(i, k) = pl/((si) withk=0,1,...,N—2andi =0,1, ..., M. This matrix (3.13) which comes
from the variational collocation problem (3.6) will be used for actual computations in Section 5.
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3.2. Two-dimensional case

Consider the two-dimensional model problem (1.1)
Lu:=—[uyx +uyl+cu=f in Q and u=0 on 0Q.

Assume that there i62(Q) orthogonal projection operatdfy : L2(Q) — 2x5() such that for all
function f € L2(Q), Iy f € 2y (Q) which has the following properties: for afl € L2(Q)

Lf = INFI<SCNT| i (3.14)
and
1f = In fIIL<CN I s (3.15)

wherem >1 is an integer and the constahtloes not depend dx (se€[10]). Let 22 = # x % be the set
of scattered points i. The variational form for (1.1) is to find € H(-}(Q) such that

A (u,v)=F ) foral ve H}Q), (3.16)

where the bilinear functiona/ (-, -) : H3(Q) x H}(2) — % and the linear functiona¥ () :— R are
defined as

o (u, v) :=/Vu-Vv+cude, f(v)z/ fovdQ. (3.17)
Q Q

Now consider the variational collocation formulation corresponding to (3.16)ufinet @%(9) such
that
Ayuy,vy) =y f,only foral vy e 23(Q), (3.18)

where the discrete bilinear functionaly (-, -) : W?V(Q)x?]’?v(g) — Randthediscrete linear functional
Fm W?\,(Q) —> R, corresponding ta7 (-, -) and.Z y (), respectively, are defined as

M
AUy, vy) = Z [Vun(si, sj) - Vony(si, ) + cun(si, sj)v(s;, Sj)]wfw;’ (3.19)
i,j=0
and
M
T u(vy) = Z (HNf)(Si,Sj)UN(si,Sj)ﬁ)fﬁ)]y'- (3.20)

i,j=0
The two-dimensional scattered points@tan be arranged as
Su=(si,s;), n=j+i(M+1), i,j=0,...,M
and, accordingly, the polynomial basis fBﬁ () can be also arranged as

p(x, y)=piX)pn(y), v=n+k(N—-1), k,n=0,...,N—2.
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Let

(N—1)2-1

un () = ) wpu(x, y) € 23(Q).
v=0

Define the two collocation matricésandE, respectively, as

EG, j) = pj(s:) = (1= sPL;(s0),
D(. j) = pi(si) = —sHLi(s)) = 25Lj(s)). i=01....M, j=01... N-2

whereL ;(¢) is the Legendre polynomial. Then the matrix versions of (3.19) and (3.20) can be written as

(DIWDy + D{WDy +c ETWE)Uy = ETW Fy, (3.21)

and

Uy =0, ..., u(y_12_1)" and Fy = ((IN)f(0), -, Ty f) (5422107

with vectors arranged by the same order as basis.

4. Convergence analysis
In this section, we discuss the uniqueness, stability and convergence for the problem (3.18):

Proposition 4.1. The problen(3.18)has a unique solutiony € @%(Q). Moreover the unique solution
uy € 9’?\,(9) satisfies that for all continuous function f &,

lunlla<ClIIn f1, (4.1)

where the constant C is independent of N

Proof. Because of the exactness of numerical quadrature and Green’s formyla, -) satisfies for
some positive constant, andC»

AUy, un) = / Vuy - Vuy + cuyuy dQ=>Cylluy|2 (4.2)
Q

and

St s o) = / Vuy - Voy + cuyoy dQ< Callun I w12 4.3)
Q
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Therefore, the Lax—Milgram lemma yields the existence and the uniqueness of the solution of (3.18).
Using Cauchy—Schwarz inequality, we have d@r € @?\,(9)

M
Fuun) =Y Iy f)(si,s)uy(si, s;)i7 i}
i,j=0

1/2 1/2

M M
2AXAY 2.Ax A
<| D UIn )i s ] > unlsio )2 )

i.j=0 .j=0

1/2 1/2
=</ |HNf|2> (/ |uN<x,y>|2dxdy)
Q Q

=[N fll llunllz- (4.4)
The stability estimate (4.1) comes from (4.2) and (4.4)1

Because of Proposition 4.1, the problem (3.18) has the unique solution with a stability.

Theorem 4.1. Let u be the solution B.16)andu y be the solution of the proble(B.18).Then we have
the following error estimate

IIM—MNII1<C( inf ||M_UN||1+||f_HNf||>1 (4.5)
un e (@)

where the constant C depends®@n

Proof. Due to (4.2) and (3.18), it follows that for any, € P2 (Q)

Cillun — UN”%gﬂM(uN —uN,uN —oN) =F yuy —vN) — Ly (Uy, Uy — UN). (4.6)

Letube the solution of (3.16). Then, using (4.6), the exactness of numerical quadrature, Schwarz inequality
and Poincare inequality yields

Cilluy — vnll3 = o (u, un —vy) — F(uy — vn) + Fuuy — vn) — S p(Vy, uy — V)
= (u—vN,uy —vN) — F(UN —VN) + F m(Un — VUN)
<C(lu —vnlla +I1f =N fID llun — vnl1. (4.7)
Due to (4.7) and the triangle inequality, we can deduce that fovgny P}\),(Q)
lu = unlla<llu = vyl + lloy —unla<Cllu = vyl + 1Lf =7 f1D- (4.8)
Hence this argument yields the conclusion

Corollary 4.1. Suppose that the solution u of the probl€Bnl6)is in H* with an integers>1 and
f € H" with an integer > 1. Then for problem(3.18),we have

3 y' —r
lu —unlls<CNZ™ulls + N[ £II,)- (4.9)

Proof. Since (4.5) holds for anyy € PI?,(Q), the result comes from (3.15) and (3.14)J
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Theorem 4.2. Under the hypothesis of Corollad1,for problem(3.18),we have
e — un I <SCN* " llully + NI £1l,)- (4.10)
Proof. Lettingt = (x, y), we note that
Jou —un)(®)g(t) dt

lu —uy|l= sup (4.11)
2eL2(Q) lgll
The solutionw € H3 () to the problem
A (w, v) :/Qg(t)v(t) dt Vv e H}(Q), Vg € L?(Q), (4.12)
satisfies
lwll2<Cligll- (4.13)

Using the exactness of numerical quadrature, (3.16) and (3.18), we have for all polyaméaiﬁ%({z)

S =y ) = 7o) = F ) = [ (F = Ty HOwN O
and, from (4.12), we have
/(u —un)gt)dt = /(U —uy, w)
! =/(u—uy,w—wyn)+.ZWu—uy,wy)
=AU —un,w—wy) + /Q(f — Iy fHOwn () dt.
Now using the continuity of7(-, -), Schwarz inequality, Poincare inequality, (3.15) and (3.14) lead to

/Q(u —un)®OgM® dt<C(lu —unlilw —wylr+ I f — I flllwnl1)

<C(lu —unltlw —wyl1 + I f — Oy fll(Jw —wy(1 + [w]l1))
1 1
SC(N"2|lu —unlallwlla + NI fll-(N"2[lwll2 + [lwl]l1))
1
SC(N"2|lu —unl1+ NI flI)wll2. (4.14)

Combining (4.11), (4.9) and (4.13), we have the conclusionl

5. Numerical example

LetQ=(—1,1) x (-1, 1). Then the following model problem:

[ty +tyy] +u=@2r? + Dsinnx sinzy in  Q
u=0 on 0Q,
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Table 1
Quadrature weights for equally spaced point§efh, 1] : s;, = -1+ 2i/M, i=0,1,..., M
Scattered points (M =100, K =50)
selecteds;)
Quadrature weights
64 bit mantissa 128 bit mantissa
—1.000000 4.02917283811215760568403 4.0291728381121576050318324003355185138308e
—0.800000 —7.60851091955374213645€65 —7.608510919553742142125844657370495859623208
—0.600000 —1.71855216754343152609e09 —1.7185521675434315270039482440802818856130@
—0.400000 —1.13986966342148075378e09 —1.1398696634214807543287389736969204759000@
—0.200000 —1.85861753522131415982€05 —1.85861753522131416036760750795824692104308
0.000000 1.997109432197527753762 1.997109432197527757730630556530116822088Pe
0.200000 —1.8586175352214448322%€05 —1.85861753522144483291839460187026109584208
0.400000 —1.13986966342154070640€09 —1.1398696634215407068950431256920132873430@
0.600000 —1.71855216754349147870e09 —1.7185521675434914795702523961333331945410@
0.800000 —7.60851091955387280838€05 —7.60851091955387281467663836243739266959608
1.000000 4.029172838112156332903 4.02917283811215633294253895293817014026B0e
Error of weights 6.95614e10 4.18957e-29

will be taken for a numerical evidence to support the convergence results. Furthermore, we provide here
one-dimensional weights for several cases numerically. Note that the above model problem has the uniqu
solution ofu(x, y) = sin nx sin wy.

To obtain the quadrature weighis, we need to evaluate Lagrange polynomials (2.3). But it is well
known that this polynomial is very unstable for higher degree. This instability results in difficulties for
achievement of our goals by usual single/double precision arithmetic for floating-point numbers, which
have 24 bit mantissa and 53 bit mantissa, respectively: even if we work with double precision floating-
point arithmetic, we cannot avoid significant digit cancellation in calculation of Lagrange polynomial of
high degree because of roundoff error. To perform the computation of Lagrange polynomials of higher
degree successfully, we adopt the 128 bits precision floating-point numbers in GNU MP (Gnu multiple
precision library[11]), which gives an arbitrary precision. With the help of this library, we can obtain
guadrature weights with high accuracy of about 30 decimal place3ébdes 1-3)In each table, we list
some selected scattered points and their corresponding weights. The 64 and 128 bit mantissa have abo
19 and 38 significant decimal digits respectively. The error of weights means the difference of 2 and the
sum of all weights.

Now, we solve this system by a conjugate gradient method without precondifignér Figs. 1and
2, we report theL2 and H! Sobolev norm for the Legendre variational collocation method. In these
numerical tests, we chood€ = 50 or 100 points in eackandy directions, so that 2500 or 10 000 points
are taken in the computational domain. The degrees of polynomial solutiprase 5 10, 15, 20 and
25. These numerical tests for the model problem show the spectral convergetiesfod H* sense,
regardless of choice and numbers of scattered points. In the computational aspects, the scattered poin
distributed like Chebyshev points are preferred to other cases of scattered points.
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Table 2
Quadrature weights for Chebyshev points= — cogni/M), i=0,1,..., M

Selected scattered (M =100 K =50)
points selecteds;)

Quadrature weights

64 bit mantissa 128 bit mantissa
—1.000000 2.32935338587141686305680 2.3293533858714168634259715344273372182400&
—0.951057 8.006254865526497127684 8.0062548655264971290341234331626468922780e
—0.809017 2.227911387022563238302 2.227911387022563241654826981569075309392Pe
—0.587785 2.5416383908012423038102 2.54163839080124230852391142493912031446QPe
—0.309017 2.9878321647577889957402 2.987832164757789001464583422047941450248Pe
—0.000000 3.141592653589791558862 3.14159265358979156498590401469325685260dDe
0.309017 2.987832164700208770592 2.987832164700208776183350660083147048913De
0.587785 2.5415095499201054152402 2.541509549920105419152175617594103909740Pe
0.809017 8.983317156088209018998 8.9833171560882090412431595850733820102608¢e
0.951057 —1.91107025541142409354e00  —1.9110702554114240944084441847962086023290@
1.000000 —5.58115812046907569974e00  —5.5811581204690757010702171442217274793660@
Error of weights 5.58364¢e18 2.43915e 37
Table 3
Quadrature weights for uniformly distributed random[eri, 1) and two boundary points-1, 1}
Selected scattered (M =100 K =50)

points selecteds;)

Quadrature weights

64 bit mantissa 128 bit mantissa
—1.000000 1.559979198758410534603 1.55997919875841053459999043289467372699@8e
—0.845511 5.5679920217219595811164 5.5679920217219595882541373137368545720%6D¢
—0.721106 —6.5760083387374503430%e04 —6.57600833873745037118937797929919251490404
—0.562618 —1.39612620096338682462e07 —1.3961262009633868168739221225302553257090¢
—0.367481 1.211657947991048085684 1.2116579479910480873212052492391232347300e
—0.155688 6.8983083896755055954360 6.89830838967550559985260850877457107 1 7F10@
0.125146 —3.23140926649002962698e00 —3.2314092664900296298255051908814344688890@
0.344232 —1.55234935071183041492e04 —1.552349350711830415521620046056182195274504
0.633373 —9.3676176087648632593%e02 —9.36761760876486326479005553137201988629302
0.909896 —9.02921663242048124705e00 —9.0292166324204812583022040741136123959%440e
1.000000 3.129173872337741579508 3.129173872337741579483757192385514160952B¢e

Error of weights —3.03417e-11 —1.92780e-30
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CONVERGENCE ANALYSIS USING SCATTERED POINTS
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6. Remarks

The convergence and stability analysis depend on the developed numerical quadrature and projection
operator. The numerical quadrature (2.12) or (2.13) relies on the choices of sets which consist of the
arbitrarily (K 4+ 1)-number of the points. As known, the LG- or CG-type points and weights are compu-
tationally good enough for an approximation of a large class of boundary value differential equations. In
this case, the given differential equation is collocated at such points and the interpolation operator will
be used for the convergence and stability analysis[&8¢L0] for example). In this paper, the points are
designated arbitrarily for collocating the model problem (1.1) in the variational sense and the projection
operator is used. For the convergence analysis, the known techniques are ug&8,(H&lefor example).

Even though the convergence is shown analytically and numerically, it still remains how we can develop

an efficient way for accurate computations of numerical solutions including numerical weights. These

questions will be studied in a forthcoming paper. Finally, note that scattered data collocation problem has
been also considered by using a radial basis function interpolation. It might be of interest to note that the
radial basis function interpolant converges to the polynomial interpolant when the radial basis function

is made increasingly flat (s¢€]).
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