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Convergence analysis for a second-order elliptic equation
by a collocation method using scattered points
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Abstract

A collocation method using scattered points applied to a second-order elliptic differential equation is analyzed
by establishing a new quadrature formula for the space of the polynomials. We show that a polynomial solution
possesses stability and preserves a similar convergence property occurred in the classical high order collocation
method.
© 2005 Elsevier B.V. All rights reserved.

MSC:65F10; 65F30

Keywords:Collocation; Scattered points; Numerical quadrature; Kernel 3

1. Introduction

Consider the following model problem:

Lu := −[uxx + uyy] + cu= f, in � ≡ (−1,1)× (−1,1), (1.1)
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with homogeneous Dirichlet boundary condition

u= 0 on ��,

wherec is a positive constant. The traditional high-order collocation method for solving (1.1) is to
approximateuby a polynomial at Legendre–Gauss (:=LG)-type or Chebyshev–Gauss (:=CG) type points
(see[2,3,8,10], etc.). The usages of LG points or CG points in the classical collocation method for (1.1)
yield the so-called spectral convergences and well-posed algebraic linear systems. It is well known that
these approaches are very popular and accurate to approximate the solutions of boundary value problems
like (1.1) among many other numerical techniques. Despite such merits on the classical high-order
collocation method, we are interested in a question on a spectral convergence property when arbitrarily
chosen scattered points are used for collocating a given differential equation. LetA(u, v) be a bilinear
form corresponding to (1.1) on a Sobolev spaceH 1

0 (�) andF(v) a linear functional onH 1
0 (�) such as

A(u, v)=
∫

�
∇u · ∇v + 2�uv d�, F(v)=

∫
�
f v d�. (1.2)

Then the corresponding variational formulation is to findu ∈ H 1
0 (�) satisfyingA(u, v)= F(v) for all

v ∈ H 1
0 (�) and its Galerkin approximation is to finduN ∈ P0

N(�) such thatAN(uN, v) = FN(v) for
all v ∈ P0

N(�), whereAN andFN are discrete linear functionals ofA andF, respectively, andP0
N

is the space of polynomials vanishing on the boundary��. Then the convergence analysis can be done
usually by estimating both the errorsA(u, v)−AN(u, v), which depends on a numerical quadrature rule,
andF(v)− FN(v), which depends on an interpolation operator defined at LG- or CG-type collocation
points. In this paper, instead of using an interpolation operator forFN(v), we will employ a projection
operator forFN(v) as an approximation toF(v). This is because the interpolation error estimates are not
known yet at general collocation points. We will use a new quadrature formula to approximateA(u, v)

so thatA(u, v)− AN(u, v) vanishes on a polynomial space. In some of the literatures there have been
some efforts to exploit arbitrarily scattered points as collocation points: for example, the differentiation
matrix for unstructured grids is introduced and applied to hyperbolic equations in[5]. A collocation
method using a radial basis function is reported in[6] for solving Poisson’s (1.1) numerically, in which
nearly complete geometric freedom is allowed. Some developments of spectral methods on triangles and
tetrahedra are also reported in[9], in which the approximate solutions can be represented as multivariate
Lagrange interpolation polynomials. In this paper, we choose any scattered points and then approximate
the solutionu of the Eq. (1.1) by a polynomial at chosen scattered points in�. For these purposes, let
X = {sj : j = 0, . . . ,M} be a finite set of distinct points inI = [−1,1] and letPN(I) be the set of
polynomials of degree less than or equal toN.

For a given set of scattered points in�, we establish a quadrature formula on�, which is exact for
polynomials of degree�K by using(M+1) scattered points with(M+1)>dimPK(I). The key point
in this numerical quadrature is to find a unique kernelA(t) := (a(t, sl))Ml=0 such that for allp ∈ PK(I),

M∑
l=0

p(sl)a(t, sl)= p(t). (1.3)

Indeed, there are infinitely many solutionsa(·, si) of the above linear system (1.3). However, it can be
uniquely determined by making the kernela(t, sl) in (1.3) be defined locally (we will see in Section 2).
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For the weights in the case of two or higher dimensions, the tensor arguments will be used. Then we
consider the corresponding discrete variational collocation formulation on a polynomial space, that is,
we want to find a polynomial solutionuN ∈ P0

N(�) satisfying

AM(uN, vN)= [�Nf, vN ]M, ∀vN ∈ P0
N(�), (1.4)

where�N is a projection operator from a space of all continuous functions toP0
N , AM(·, ·) and[·, ·]M

which are defined in Section 3. Then we show that (1.4) has a unique solution. The spectral convergence
analysis is also provided. The approach proposed here has the main advantage of providing spectral
accuracies similar to the classical pseudo-spectral method with any scattered points in�. The standard
Sobolev spacesHs(�) and norms‖u‖s are used. For example,L2(�) is same asH 0(�) whose inner
product is given by(u, u) and its correspondingL2 norm is given by‖u‖. The subspaceH 1

0 (�) of H 1 is
the closure ofC∞

0 . The seminorm|u|1 is also used.
This paper is as follows: in Section 2, we derive a quadrature rule on� for any scattered points and

then shows the way to get corresponding weights for one dimensional case. In Section 3, the variational
collocation method and its related linear system are introduced. In Section 4, the convergence analysis is
derived in the sense ofL2 andH 1 norms. In Section 5, we provide numerical tests for weights obtained
in Section 2 and forL2 andH 1 convergences of a polynomial solution. Finally, we add some concluding
remarks in Section 6.

2. Numerical quadrature

LetX= {sj : j = 0, . . . ,M} be a set of distinct points inI withM + 1>K + 1 := dim(PK(I)). Let
Xj be the subset ofX which has(K + 1)-elements as follows:

Xj =




{sl ∈ X|l = 0, . . . , K}, if 1�j <
⌊
K + 1

2

⌋
,{

sl ∈ X|l = j −
⌊
K + 1

2

⌋
, . . . , j +

⌊
K

2

⌋}
if

⌊
K + 1

2

⌋
�j�M −

⌊
K

2

⌋
,

{sl ∈ X|l =M −K, . . . ,M} if j >M −
⌊
K

2

⌋
.

(2.1)

Since the order ofPK isK + 1, we can represent the polynomialp ∈ PK as a linear combination of the
(K + 1)-number of valuesp(sl) for sl ∈ Xj , and corresponding polynomialaj,l(t) on the subinterval
[sj−1, sj ) as follows:∑

sl∈Xj
aj,l(t)p(sl)= p(t) for all t ∈ [sj−1, sj ). (2.2)

Note that the kernelaj,l(t) in (2.2) is defined locally and it becomes a polynomial of degreeK on[sj−1, sj ).
Moreover,aj,l(t) is the Lagrange polynomial defined on[sj−1, sj ) such that

aj,l(t)=
∏

sn∈Xj ,sn �=sl

t − sn
sl − sn , where t ∈ [sj−1, sj ) andsl ∈ Xj . (2.3)

Therefore, the kernelA(t)= (aj,l(t))Ml=0 becomes continuous piecewise polynomials.
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Let

a(t, sl) :=
{
aj,l(t), t ∈ [sj−1, sj ) if sl ∈ Xj ,

0, t ∈ [sj−1, sj ) if sl /∈Xj ,
(2.4)

then it satisfies the relation

M∑
l=0

p(sl)a(t, sl)= p(t), ∀t ∈ [−1,1], ∀p ∈ PK(I).

In fact, there is no restriction for the choice of the setXj but the distribution ofXj is important in the
sense of calculating the numerical weightsŵj defined in (2.6) or (2.7). From the practical point of view,
a good choice for approximation is to put almost the same numbers of centers on each side of the interval
[sj−1, sj ). It is also interest to point out that an error bound usually depends on the maximal distance
between centers.

Proposition 2.1. LetX := {sk : k = 0,1, . . . ,M} withM>K be a set of arbitrary distinct points in
[−1,1]. Assume that(2.2)holds. Then, for all polynomialsp ∈ PK([−1,1]) and a given functionw(t)
defined on[−1,1], we have

∫ 1

−1
p(t)w(t)dt =

M∑
l=0

p(sl)ŵl , (2.5)

whereŵl is defined in(2.6)or (2.7).

Proof. From (2.2) and (2.4), one may have

∫ 1

−1
p(t)w(t)dt =

M∑
j=1

∫ sj

sj−1

p(t)w(t)dt =
M∑
j=1

∫ sj

sj−1

∑
sl∈Xj

aj,l(t)p(sl)w(t)dt

=
M∑
j=1

∫ sj

sj−1

M∑
l=0

p(sl)a(t, sl)w(t)dt

=
M∑
l=0

p(sl)

M∑
j=1

∫ sj

sj−1

a(t, sl)w(t)dt

=
M∑
l=0

p(sl)ŵl ,
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where because of (2.1) and (2.4), the quadrature weights can be represented as follows: For the case of
K <M/2, i.e.K <M −K,

ŵl =




l+�K+1
2 �∑

j=1

∫ sj
sj−1

aj,l(t)w(t)dt for l = 0,1, . . . , K,

l+�K+1
2 �∑

j=l−�K2 �

∫ sj
sj−1

aj,l(t)w(t)dt for l =K + 1, . . . ,M −K − 1,

M∑
j=l−�K2 �

∫ sj
sj−1

aj,l(t)w(t)dt for l =M −K, . . . ,M.

(2.6)

For the case ofK�M/2, i.e.K�M −K,

ŵl =




l+�K+1
2 �∑

j=1

∫ sj
sj−1

aj,l(t)w(t)dt for l = 0,1, . . . ,M −K − 1,

M∑
j=1

∫ sj
sj−1

aj,l(t)w(t)dt for l =M −K, . . . , K,
M∑

j=l−�K2 �

∫ sj
sj−1

aj,l(t)w(t)dt for l =K + 1, . . . ,M.

(2.7)

This completes the proof.�

The above proposition tells us the way to get the numerical quadrature rule which is exact for a
polynomial of degree up toK. We note that one may use a tensor argument to extend one-dimensional
numerical quadrature formula to a higher-dimensional case immediately. In fact, one may notice that
several numerical tests for the convergence for a two-dimensional case, which needs two-dimensional
weights.

Now the weightsŵj defined in (2.6) and (2.7) can be written explicitly with help of Legendre–Gauss-
Lobatto [= :LGL] quadrature rule applied to the kernelaj,l(t) which is a polynomial of the degreeK
on the subinterval[sj−1, sj ] for j = 1,2, . . . ,M with s0 = −1 andsM = 1. For this, letLn(x) be the
Legendre polynomial of degreen. Then the LGL quadrature points{�j }nj=0 are the zeros of the polynomial

(1 − x2)L′
n(x) a nd the corresponding LGL weights{�j }nj=0 are

�j = 2

n(1 + n)[Ln(�j )]2
, j = 0,1, . . . , n. (2.8)

Then LGL quadrature rule is exact for polynomials of degree up to 2n.
Now, we can represent the weightsŵl in (2.6) and (2.7) for the casew(t)= 1 by using the quadrature

form. Using the change of variables and the exactness of the LGL quadrature withn = �K/2� + 1,
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the integral in the weights can be rewritten as

w(j, l) :=
∫ sj

sj−1

aj,l(t)dt

= sj − sj−1

2

∫ 1

−1
âj,l(x)dx = sj − sj−1

2

�K2 �+1∑
i=0

âj,l(�i)�i , (2.9)

where

âj,l(x) := aj,l
(
(sj − sj−1)x + (sj−1 + sj )

2

)
, x ∈ [−1,1]. (2.10)

Since the expression (2.3) ofaj,l(t) leads to

w(j, l)= sj − sj−1

2

�K2 �+1∑
i=0

�i


 ∏
sn∈Xj ,sn �=sl

sj−1(1 − �i)+ sj (1 + �i)− 2sn
2(sl − sn)


 , (2.11)

the weightsŵl in (2.6) and (2.7) can be written as follows. For the case ofK <M/2, i.e.K <M −K,

ŵl =




l+�K+1
2 �∑

j=1
w(j, l) for l = 0,1, . . . , K,

l+�K+1
2 �∑

j=l−�K2 �
w(j, l) for l =K + 1, . . . ,M −K − 1,

M∑
j=l−�K2 �

w(j, l) for l =M −K, . . . ,M.

(2.12)

For the case ofK�M/2, i.e.K�M −K,

ŵl =




l+�K+1
2 �∑

j=1
w(j, l) for l = 0,1, . . . ,M −K − 1,

M∑
j=1

w(j, l) for l =M −K, . . . , K,
M∑

j=l−�K2 �
w(j, l) for l =K + 1, . . . ,M.

(2.13)

Finally, one may note that the quadrature weightsŵl can be determined in a different way. For example,
since

∫ 1

−1
p(t)w(t)dt =

∫ 1

−1

M∑
l=0

p(sl)a(t, sl)w(t)dt =
M∑
l=0

p(sl)

�K2 �+1∑
j=0

a(�j , sl)�j ,

the quadrature weights can be given asŵl =∑�K2 �+1
j=0 a(�j , sl)�j .
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3. A variational collocation method

From now on we assume that the weight functionw(x) = 1. LetX = {si | i = 0,1, . . . ,M} where
M>2N . Then the numerical quadrature in the previous section shows that

∫ 1

−1
p(t)dt =

M∑
i=0

p(si)ŵi for all p ∈ P2N(I). (3.1)

3.1. One-dimensional case

In this section, we describe one-dimensional high-order variational collocation method using scattered
points and a projection operator for the following model problem:

−u′′ + cu= f in (−1,1), u(−1)= u(1)= 0, (3.2)

wherec is a positive constant.
The variational form for (3.2) is to findu ∈ H 1

0 (I ) such that

A(u, v)= F(v) for all v ∈ H 1
0 (I ), (3.3)

where the bilinear functionalA(·, ·) : H 1
0 (I )×H 1

0 (I ) −→ R and the linear functionalF(·) : C[−1,1]
−→ R are defined as

A(u, v) :=
∫
I

u′v′ + cuv dt, F(v)=
∫
I

f v dt . (3.4)

Assume that there is an orthogonal projection operator�N : L2(I ) −→ PN(I) with the following
property: for allf ∈ L2(I ),

‖f − �Nf ‖�CN−m‖f ‖m, (3.5)

wherem�1 is an integer (see[2]). The variational collocation formulation corresponding to (3.3) is to
find uN ∈ P0

N(�) such that

AM(uN, vN)= FM(vN) for all vN ∈ P0
N(I), (3.6)

where the discrete bilinear functionalAM(·, ·) : P0
N(I)×P0

N(I) −→ R and the discrete linear functional
FM : P0

N(I) −→ R, corresponding toA(·, ·) andF(·), respectively, are defined as

AM(uN, vN)=
M∑
i=0

[u′
N(si)v

′
N(si)+ cuN(si)vN(si)]ŵi (3.7)

and

F(vN)=
M∑
i=0

(�Nf )(si)vN(si)ŵi . (3.8)
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Due to the exactness of numerical quadrature, we note that

AM(uN, vN)=
∫
I

u′
Nv

′
N + cuNvN dt =

∫
I

(−u′′
N + cuN)vN dt

=
M∑
i=0

(−u′′
N + cuN)(si)vN(si)ŵi . (3.9)

Let

uN(t)=
N−2∑
j=0

ujpj (t) ∈ P0
N(I),

where{pj (t)} is a basis forP0
N(I). Then we can define the matricesB andE whose elements are given

as

B(i, k)= −p′′
k (si), E(i, k)= pk(si) 0�i�M, 0�k�N − 2.

Note that

(Lpk)(si)= −p′′
k (si)+ cpk(si) (3.10)

leads to the(M + 1)× (N − 1) matrix

(B + cE) =: B̂. (3.11)

Then the matrix (3.11) results in an over-determined system which takes after the usual collocation
method for the approximations of the given differential (3.2). But there is no solution usually for such an
over-determined system. The matrix representation of (3.6) becomes

ETŴ B̂ UN = ETŴFM , (3.12)

where

Ŵ = diag(ŵj )

and, with vectors arranged by the same order as basis,

UN = (u0, . . . , uN−2)
T and FM = ((�N)f (s0), . . . , (�Nf )(sM))T.

We note thatET ŴB̂ is the square matrix with the sizeN−1 because of zero boundary conditions, which
enables us to solve the linear system (3.12) if it has an inverse. The matrixETŴ B̂ is not symmetric
positive definite, but we can obtain the symmetric positive definite system directly from (3.7):

(DTŴD + cETŴE)UN = ETŴFM , (3.13)

whereD(i, k)= p′
k(si) with k = 0,1, . . . , N − 2 andi = 0,1, . . . ,M. This matrix (3.13) which comes

from the variational collocation problem (3.6) will be used for actual computations in Section 5.
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3.2. Two-dimensional case

Consider the two-dimensional model problem (1.1)

Lu := −[uxx + uyy] + cu= f in � and u= 0 on ��.

Assume that there isL2(�) orthogonal projection operator�N : L2(�) −→ PN(�) such that for all
functionf ∈ L2(�), �Nf ∈ PN(�) which has the following properties: for allf ∈ L2(�)

‖f − �Nf ‖�CN−m‖f ‖m (3.14)

and

‖f − �Nf ‖1�CN
3
2−m‖f ‖m, (3.15)

wherem�1 is an integer and the constantC does not depend onN (see[10]). LetX2 =X×X be the set
of scattered points in�. The variational form for (1.1) is to findu ∈ H 1

0 (�) such that

A(u, v)= F(v) for all v ∈ H 1
0 (�), (3.16)

where the bilinear functionalA(·, ·) : H 1
0 (�)×H 1

0 (�) −→ R and the linear functionalF(·) :−→ R are
defined as

A(u, v) :=
∫

�
∇u · ∇v + cuv d�, F(v)=

∫
�
f v d�. (3.17)

Now consider the variational collocation formulation corresponding to (3.16): finduN ∈ P0
N(�) such

that

AM(uN, vN)= [�Nf, vN ]M for all vN ∈ P0
N(�), (3.18)

where the discrete bilinear functionalAM(·, ·) : P0
N(�)×P0

N(�) −→ Rand the discrete linear functional
FM : P0

N(�) −→ R, corresponding toAM(·, ·) andFM(·), respectively, are defined as

AM(uN, vN)=
M∑
i,j=0

[∇uN(si, sj ) · ∇vN(si, sj )+ cuN(si, sj )v(si, sj )]wxi wyj (3.19)

and

FM(vN)=
M∑
i,j=0

(�Nf )(si, sj )vN(si, sj )ŵ
x
i ŵ

y
j . (3.20)

The two-dimensional scattered points of� can be arranged as

ŝ� = (si, sj ), � = j + i(M + 1), i, j = 0, . . . ,M

and, accordingly, the polynomial basis forP 0
N(�) can be also arranged as

p�(x, y)= pk(x)pn(y), � = n+ k(N − 1), k, n= 0, . . . , N − 2.
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Let

uN(x, y)=
(N−1)2−1∑

�=0

u�p�(x, y) ∈ P0
N(�).

Define the two collocation matricesD andE, respectively, as

E(i, j) := pj (si)= (1 − s2i )Lj (si),
D(i, j) := p′

j (si)= (1 − s2i )L′
j (si)− 2siLj (si), i = 0,1, . . . ,M, j = 0,1, . . . , N − 2,

whereLj(t) is the Legendre polynomial. Then the matrix versions of (3.19) and (3.20) can be written as

(D̂T
x Ŵ D̂x + D̂T

y Ŵ D̂y + c ÊTŴ Ê)UN = ÊTŴFM , (3.21)

where

D̂x =D ⊗ E, D̂y = E ⊗D, Ê = E ⊗ E, Ŵ =Wx ⊗Wy

and

UN = (u0, . . . , u(N−1)2−1)
T and FM = ((�N)f (s0), . . . , (�Nf )(s(M+1)2−1))

T

with vectors arranged by the same order as basis.

4. Convergence analysis

In this section, we discuss the uniqueness, stability and convergence for the problem (3.18):

Proposition 4.1. The problem(3.18)has a unique solutionuN ∈ P0
N(�). Moreover, the unique solution

uN ∈ P0
N(�) satisfies that for all continuous function f on�,

‖uN‖1�C‖�Nf ‖, (4.1)

where the constant C is independent of N.

Proof. Because of the exactness of numerical quadrature and Green’s formula,AM(·, ·) satisfies for
some positive constantsC1 andC2

AM(uN, uN)=
∫

�
∇uN · ∇uN + cuNuN d��C1‖uN‖2

1 (4.2)

and

AM(uN, vN)=
∫

�
∇uN · ∇vN + c uNvN d��C2‖uN‖1 ‖vN‖1. (4.3)
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Therefore, the Lax–Milgram lemma yields the existence and the uniqueness of the solution of (3.18).
Using Cauchy–Schwarz inequality, we have forvN ∈ P0

N(�)

FM(uN)=
M∑
i,j=0

(�Nf )(si, sj )uN(si, sj )ŵ
x
i ŵ

y
j

�


 M∑
i,j=0

(�Nf )(si, sj )
2ŵxi ŵ

y
j




1/2
 M∑
i,j=0

uN(si, sj )
2ŵxi ŵ

y
j




1/2

=
(∫

�
|�Nf |2

)1/2(∫
�

|uN(x, y)|2 dx dy

)1/2

= ‖�Nf ‖ ‖uN‖1. (4.4)

The stability estimate (4.1) comes from (4.2) and (4.4).�

Because of Proposition 4.1, the problem (3.18) has the unique solution with a stability.

Theorem 4.1. Let u be the solution of(3.16)anduN be the solution of the problem(3.18).Then we have
the following error estimate:

‖u− uN‖1�C
(

inf
vN∈P0

N(�)
‖u− vN‖1 + ‖f − �Nf ‖

)
, (4.5)

where the constant C depends on�.

Proof. Due to (4.2) and (3.18), it follows that for anyvN ∈ P 0
N(�)

C1‖uN − vN‖2
1�AM(uN − vN, uN − vN)= FM(uN − vN)− AM(vN, uN − vN). (4.6)

Letube the solution of (3.16).Then, using (4.6), the exactness of numerical quadrature, Schwarz inequality
and Poincare inequality yields

C1‖uN − vN‖2
1 = A(u, uN − vN)− F(uN − vN)+ FM(uN − vN)− AM(vN, uN − vN)

=A(u− vN, uN − vN)− F(uN − vN)+ FM(uN − vN)
�C(‖u− vN‖1 + ‖f − �Nf ‖) ‖uN − vN‖1. (4.7)

Due to (4.7) and the triangle inequality, we can deduce that for anyvN ∈ P 0
N(�)

‖u− uN‖1�‖u− vN‖1 + ‖vN − uN‖1�C(‖u− vN‖1 + ‖f − �Nf ‖). (4.8)

Hence this argument yields the conclusion.�

Corollary 4.1. Suppose that the solution u of the problem(3.16) is in Hs with an integers�1 and
f ∈ Hr with an integerr�1.Then, for problem(3.18),we have

‖u− uN‖1�C(N(
3
2−s)‖u‖s +N−r‖f ‖r ). (4.9)

Proof. Since (4.5) holds for anyvN ∈ P 0
N(�), the result comes from (3.15) and (3.14).�
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Theorem 4.2. Under the hypothesis of Corollary4.1,for problem(3.18),we have

‖u− uN‖�C(N1−s‖u‖s +N−r‖f ‖r ). (4.10)

Proof. Letting t = (x, y), we note that

‖u− uN‖ = sup
g∈L2(�)

∫
�(u− uN)(t)g(t)dt

‖g‖ . (4.11)

The solutionw ∈ H 1
0 (�) to the problem

A(w, v)=
∫

�
g(t)v(t)dt ∀v ∈ H 1

0 (�), ∀g ∈ L2(�), (4.12)

satisfies

‖w‖2�C‖g‖. (4.13)

Using the exactness of numerical quadrature, (3.16) and (3.18), we have for all polynomialwN ∈ P0
N(�)

A(u− uN,wN)= F(wN)− FM(wN)=
∫

�
(f − �Nf )(t)wN(t)dt

and, from (4.12), we have∫
�
(u− uN)(t)g(t)dt = A(u− uN,w)

=A(u− uN,w − wN)+ A(u− uN,wN)
=A(u− uN,w − wN)+

∫
�
(f − �Nf )(t)wN(t)dt .

Now using the continuity ofA(·, ·), Schwarz inequality, Poincare inequality, (3.15) and (3.14) lead to∫
�
(u− uN)(t)g(t)dt�C(|u− uN |1|w − wN |1 + ‖f − �Nf ‖|wN |1)

�C(|u− uN |1|w − wN |1 + ‖f − �Nf ‖(|w − wN |1 + ‖w‖1))

�C(N− 1
2 |u− uN |1‖w‖2 +N−r‖f ‖r (N− 1

2‖w‖2 + ‖w‖1))

�C(N− 1
2 |u− uN |1 +N−r‖f ‖r )‖w‖2. (4.14)

Combining (4.11), (4.9) and (4.13), we have the conclusion.�

5. Numerical example

Let � = (−1,1)× (−1,1). Then the following model problem:

−[uxx + uyy] + u= (2�2 + 1) sin �x sin �y in �,
u= 0 on ��,
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Table 1
Quadrature weights for equally spaced points on[−1,1] : si = −1 + 2i/M, i = 0,1, . . . ,M

Scattered points
selected(si )

(M = 100,K = 50)

Quadrature weights

64 bit mantissa 128 bit mantissa

−1.000000 4.02917283811215760504e−03 4.0291728381121576050318324003355185138300e−03
−0.800000 −7.60851091955374213645e+05 −7.6085109195537421421258446573704958596220e+ 05
−0.600000 −1.71855216754343152609e+ 09 −1.7185521675434315270039482440802818856180e+ 09
−0.400000 −1.13986966342148075378e+ 09 −1.1398696634214807543287389736969204759000e+ 09
−0.200000 −1.85861753522131415982e+ 05 −1.8586175352213141603676075079582469210430e+ 05

0.000000 1.99710943219752775376e−02 1.9971094321975277577306305565301168220880e−02
0.200000 −1.85861753522144483227e+ 05 −1.8586175352214448329183946018702610958420e+ 05
0.400000 −1.13986966342154070640e+ 09 −1.1398696634215407068950431256920132873730e+ 09
0.600000 −1.71855216754349147870e+ 09 −1.7185521675434914795702523961333331945410e+ 09
0.800000 −7.60851091955387280830e+ 05 −7.6085109195538728146766383624373926695960e+ 05
1.000000 4.02917283811215633295e−03 4.0291728381121563329425389529381701402660e−0

Error of weights 6.95614e−10 4.18957e−29

will be taken for a numerical evidence to support the convergence results. Furthermore, we provide here
one-dimensional weights for several cases numerically. Note that the above model problem has the unique
solution ofu(x, y)= sin �x sin �y.

To obtain the quadrature weightŝwl , we need to evaluate Lagrange polynomials (2.3). But it is well
known that this polynomial is very unstable for higher degree. This instability results in difficulties for
achievement of our goals by usual single/double precision arithmetic for floating-point numbers, which
have 24 bit mantissa and 53 bit mantissa, respectively: even if we work with double precision floating-
point arithmetic, we cannot avoid significant digit cancellation in calculation of Lagrange polynomial of
high degree because of roundoff error. To perform the computation of Lagrange polynomials of higher
degree successfully, we adopt the 128 bits precision floating-point numbers in GNU MP (Gnu multiple
precision library[11]), which gives an arbitrary precision. With the help of this library, we can obtain
quadrature weights with high accuracy of about 30 decimal places (seeTables 1–3). In each table, we list
some selected scattered points and their corresponding weights. The 64 and 128 bit mantissa have about
19 and 38 significant decimal digits respectively. The error of weights means the difference of 2 and the
sum of all weights.

Now, we solve this system by a conjugate gradient method without preconditioner[1]. In Figs. 1and
2, we report theL2 andH 1 Sobolev norm for the Legendre variational collocation method. In these
numerical tests, we chooseM = 50 or 100 points in eachx andy directions, so that 2500 or 10 000 points
are taken in the computational domain. The degrees of polynomial solutionsPN are 5,10,15,20 and
25. These numerical tests for the model problem show the spectral convergence forL2 andH 1 sense,
regardless of choice and numbers of scattered points. In the computational aspects, the scattered points
distributed like Chebyshev points are preferred to other cases of scattered points.
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Table 2
Quadrature weights for Chebyshev points:si = − cos(�i/M), i = 0,1, . . . ,M

Selected scattered
points selected(si )

(M = 100,K = 50)

Quadrature weights

64 bit mantissa 128 bit mantissa

−1.000000 2.32935338587141686305e+ 00 2.3293533858714168634259715344273372182400e+ 00
−0.951057 8.00625486552649712763e−01 8.0062548655264971290341234331626468922780e−01
−0.809017 2.22791138702256323830e−02 2.2279113870225632416548269815690753093920e−02
−0.587785 2.54163839080124230381e−02 2.5416383908012423085239114249391203144620e−02
−0.309017 2.98783216475778899574e−02 2.9878321647577890014645834220479414502480e−02
−0.000000 3.14159265358979155886e−02 3.1415926535897915649859040146932568526040e−02

0.309017 2.98783216470020877059e−02 2.9878321647002087761833506600831470489130e−02
0.587785 2.54150954992010541524e−02 2.5415095499201054191521756175941039097470e−02
0.809017 8.98331715608820901899e−03 8.9833171560882090412431595850733820102600e−03
0.951057 −1.91107025541142409354e+ 00 −1.9110702554114240944084441847962086023290e+ 00
1.000000 −5.58115812046907569974e+ 00 −5.5811581204690757010702171442217274793660e+ 00

Error of weights 5.58364e−18 2.43915e−37

Table 3
Quadrature weights for uniformly distributed random on[−1,1) and two boundary points{−1,1}
Selected scattered
points selected(si )

(M = 100,K = 50)

Quadrature weights

64 bit mantissa 128 bit mantissa

−1.000000 1.55997919875841053460e−03 1.5599791987584105345999904328946737269940e−03
−0.845511 5.56799202172195958111e+ 04 5.5679920217219595882541373137368545720560e+ 04
−0.721106 −6.57600833873745034301e+ 04 −6.5760083387374503711893779792991925149040e+ 04
−0.562618 −1.39612620096338682462e+ 07 −1.3961262009633868168739221225302553257090e+ 07
−0.367481 1.21165794799104808568e−01 1.2116579479910480873212052492391232347310e−01
−0.155688 6.89830838967550559543e+ 00 6.8983083896755055998526085087745710717710e+ 00

0.125146 −3.23140926649002962698e+ 00 −3.2314092664900296298255051908814344688890e+ 00
0.344232 −1.55234935071183041492e+ 04 −1.5523493507118304155216200460561821952750e+ 04
0.633373 −9.36761760876486325931e+ 02 −9.3676176087648632647900555313720198862930e+ 02
0.909896 −9.02921663242048124705e+ 00 −9.0292166324204812583022040741136123959140e+ 00
1.000000 3.12917387233774157955e−03 3.1291738723377415794837571923855141609520e−03

Error of weights −3.03417e−11 −1.92780e−30
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6. Remarks

The convergence and stability analysis depend on the developed numerical quadrature and projection
operator. The numerical quadrature (2.12) or (2.13) relies on the choices of sets which consist of the
arbitrarily (K + 1)-number of the points. As known, the LG- or CG-type points and weights are compu-
tationally good enough for an approximation of a large class of boundary value differential equations. In
this case, the given differential equation is collocated at such points and the interpolation operator will
be used for the convergence and stability analysis (see[2,3,10], for example). In this paper, the points are
designated arbitrarily for collocating the model problem (1.1) in the variational sense and the projection
operator is used. For the convergence analysis, the known techniques are used (see[2,3,10], for example).
Even though the convergence is shown analytically and numerically, it still remains how we can develop
an efficient way for accurate computations of numerical solutions including numerical weights. These
questions will be studied in a forthcoming paper. Finally, note that scattered data collocation problem has
been also considered by using a radial basis function interpolation. It might be of interest to note that the
radial basis function interpolant converges to the polynomial interpolant when the radial basis function
is made increasingly flat (see[7]).
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