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Abstract

A new multivariate approximation scheme to scattered data on arbitrary bounded
domains in R? is developed. The approximant is selected from a space spanned
(essentially) by corresponding translates of the ‘shifted’ thin-plate spline (‘essen-
tially’, since the space is augmented by certain functions in order to eliminate
boundary effects). The approximation scheme is derived from the optimal approx-
imation scheme of de Boor and Ron on uniform grids, using the conversion method
to the scattered centers developed by Dyn and Ron, and going to the limit with
that scheme as the mesh size of the uniform grid tends to zero.

The scheme is constructed in two steps. In the first one, the information on
the scattered centers is ‘interpolated’ using an algorithm of David Levin. The
output of the first step is used as input in the above scheme. The scheme is shown
to provide spectral approximation order, i.e., approximation order that depends
only on the smoothness of the approximand. It applies to noisy data as well as to
noiseless data, but its main advantage seems to be in the former case. We suggest
an algorithm for the new approximation scheme with a detailed description (in
a MATLAB-like program). Some numerical examples are presented, as well as

comparisons with Wahba’s thin-plate smoothing spline approximation.
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Chapter 1

Introduction

1.1 Statement of the Problem

Given = C Q C R? and values f|= (possibly contaminated) of some unknown
function f, our objective is to construct a function s :  — R such that, in some

sense, s approximates f:

s f, on .

This problem is usually referred to as scattered data approximation and has
many important applications. There are cases where the domain €2 is a rectangle
and the points = are uniformly gridded. There are, however, many other practical
instances where Q is of irregular shape and/or where the points = are irregularly
distributed on €. A large number of ideas have been proposed for the solution of
this problem. In order for an approximation scheme to scattered data to be useful
in practice, certain requirements should be satisfied:

(A) Numerical Stability : An approximation scheme should be local on the
sense that the contribution to the approximant’s value at a point x by the data
value at ¢ € = decreases (fast!) as the distance between z and ¢ increases. At
the same time, many of the approximation methods use, and for good reasons,
basis functions that are neither compactly supported, nor decay at oo. Hence, in
order to circumvent this initial instability, a ‘localization process’ is necessary. The

localness of the scheme also ensures that ‘boundary effects’ do not spill over into



the interior of the domain.

(B) Boundary Effects : Approximation near the boundary is a difficult prob-
lem. Because the data is usually given only inside the domain, the boundary effect
is very serious, and eventually, one must lose some order of accuracy. Even worse,
some of the pertinent radial basis functions have no local nature, hence special
care is necessary for the approximation near the boundary.

(C) Approximation Power : It is basic to require that the approximant
s approximates f better as the point set = becomes dense in €). In most cases
the approximation power is quantified by the asymptotic rate at which the error
decays. The problem is how we can get the largest possible asymptotic rate when
the function f is smooth.

(D) Noise : Noisy data arises in many scientific applications according to the

model
ye = f(§) + e, EE€E,

where, for example, ¢’s are independent noise with mean 0 and with (known or

unknown) variance 0'2.

In this case, the approximation scheme should have a
smoothing effect.

One of the well known approaches for scattered data approximation is the
use of piecewise-polynomials. In this case ) has to be partitioned into suitable
regions, different polynomials are employed on the different regions separately,
and usually the pieces have to be joined in a smooth way. In the multivariate case,
however, this problem is computationally expensive. For example, the evaluation

of an approximant at a given point requires one to identify the polynomial piece

relevant to the point.



Other techniques are based on forming suitable linear combinations of certain
radially symmetric basis function. In particular, one may employ the translates
along = of one fixed such function ¢. This approximation method has the general

form

s(@) =Y cedlz —£), z e .

EeE

The set of scattered points = in R? by which a radial basis function ¢ is shifted is

referred to as a set of “centers”. The choices of ¢ common in the literature include:

¢

(z) = exp(—c|z[?), ¢>0, Gaussian)
&
(
(

X

z) = |z|*log |z], AN€2Z,, deven thin — plate spline)

d(z) = (| + M2, NeZy, ), dodd, ¢ >0,

plx) = (|2 + )M, —d< A <0, NEZ, ¢>0.

) (
) (
) (multiquadric)

) (inverse multiquadric)

In view of the discussion so far, one might wonder why compactly supported func-
tions ¢ are not in this list (e.g., box splines). The answer is that, in general, since
such basis function does not respect the geometry aspect of information, it can not
yield a good approximation scheme. We refer the reader to [R2] for more details.
Radial basis functions, in contrast, if handled correctly, are known to be suitable
for any arrangement of the data locations. The initial approach to scattered data
using radial basis functions has been focused on interpolation at the scattered
points = C R?. The specific interpolation scheme has the form

S(.I‘) = Za£¢($ - 5) -I—pm(l‘), (1'1)

e

Pm € Hm, Z Clgp(f) = 0, pE I1,,,.
e

The general conditions on ¢ that ensure the existence and a uniqueness of a so-

lution of the above equations have been given by Micchelli [M]. The reader is



also referred to the work of Madych and Nelson [MN1,2]: there, the approach of
reproducing kernel Hilbert spaces is used. That approach is suitable for the ap-
proximation of functions that lie in the underlying Hilbert space (see also [MN3]
and [WS]). More recently, M. J. Johnson [J2] established an asymptotic upper
bound on the approximation order on the unit ball Q of R? for a basis function ¢
of the form ¢ = |- |Y? for d, X odd, and ¢ = |- |"?log| - | for d, A even. Non-
interpolation approximation methods were introduced in [BeP] and [BeD] for the
case of a univariate multiquadric basis function.

Interpolation by translates of suitable radial basis functions is certainly an im-
portant approach towards solving the scattered data problem. However, it carries
its own disadvantages. For example, for a large class of basis functions (includ-
ing multiquadric and inverse multiquadric), the existing theory guarantees the
interpolant to approximate well only for a very small class of approximands (see
[MN2]). The approximands need to be extremely smooth for an effective error
analysis. Another disadvantage of the interpolation method is that, with the in-
crease in the number of centers, one needs to solve a large linear system which is
very ill-conditioned. Most importantly, when the given data are contaminated, the
interpolation method can not be used. All in all, there is an overwhelming need for
approximation methods other than interpolation. A main concern of this study is
to provide a new method for solving the scattered data problem, a method which
is particularly effective for noisy data.

When considering approximation schemes for discrete data, one observes that

there already exist many successful results that address that problem in the case



= = 7%. In contrast less is known for the general case of = in R?. Recently, Buh-
mann, Dyn and Levin [BuDL] were among the first to construct a non-interpolatory
approximation scheme for infinitely many scattered centers and to analize its ap-
proximation power. Dyn and Ron [DR] then generalized the results of [BuDL].
In both papers, quasi-interpolation from radial basis function space with infinitely
many centers = were studied and both realized in the scattered case the same
asymptotic approximation orders that were known on uniform grids. In particu-
lar, N. Dyn and A. Ron provide a general tool that allows us to convert any known
approximation scheme on uniform grids to non-uniform grid, while preserving (to
the extent that this is possible) the approximation orders known in the former
case. Their results, however, requires certain properties of the basis function; see a
further discussion in the sequel. The initial objective of this study was to check the
possible practical value of the conversion methods of [DR]. The outcome, however,
is far more reaching:

(1) The approximation scheme that is developed and analyzed here, while based
on the general ideas of [DR], is intrinsically ‘scattered’, i.e., employs directly the
scattered values of the approximand f, and the scattered shifts of the basis function
0.

(2) The potential numerical instability in the scheme is overcome by deriving
a computationally stable ‘local’ algorithm for the computation and evaluation of
the approximant.

(3) The scheme is adjusted to deal properly with bounded domains. This is
done by adding a ‘predictor step’ to the algorithm.

(4) A MATLAB code was written, and initial numerical tests reveal that the



algorithm gives results comparable to, or better than, the state-of-art method for
both clean data and noisy data.
(5) The algorithm is non-stationary while the method suggested in [DR] is

stationary. (We explain these notions in the sequel.)

The following notations are used throughout this thesis. For a function ¢ :

R? — R and = C R?, we define
S=(¢) := closure So(¢)
under the topology of uniform convergence of compact sets, with
So(¢) := span{g(- — &) : £ € =},

Several function norms will be used. The L. -norm is used as the default norm,

le.,

1= 1 Moo = Il Lo me)

and the L;-norm is denoted as

£l = HfHLJ(Rd)-

For z = (z1,--+,z4) in R, |z| stands for its Euclidean norm:

o] = \f2d + 2+ oo + 2k,
and, for z,y € Hd, we use the abbreviations
Ty = a1y + -+ TaYd

and

[z..yl={(1 =tz +ty : 0<t <1}



also used is the notation
B, :={z e R?: |z| < 7n}.

Given a € 7% := {3 € 7% : B > 0}, we set

d glah d
" —_ e " —_ -—_
al:=[]a;, D*:= RS e la|y = kz:;ak.

j=1
Finally, 11 stands for the space of all polynomials of degree < k in d variables and
C'(R%) for the space of all continuous functions f : R* — C (or R) equipped with
the topology of uniform convergence on compact sets.

For a given f continuous on R?\ 0, we say that f has a singularity of
exact order k at the origin if there exist some constants c¢;, ¢; > 0 such that
c1 < |-1F|f] < ¢z in some punctured neighborhood of the origin. The semi-discrete
convolution is defined formally by

o' e — pH ci= Z c(a)d(- — a).
acZd

The Fourier transform of an absolutely integrable function f is given by

f(9) = /Rd f(t)e_s(t)dt, eg:x— €72,

Also, for a function f absolutely integrable, we use the notation

£Y8) = (27)~ / F(t) ea(t)dt

Rd

for the inverse Fourier transform. We assume the reader to be familiar with the
usual properties of Fourier transform. In particular, the Fourier transform can be

uniquely extended to the space of tempered distributions on R?.



1.2 An Outline of Our Approach

Let f : RY — R be a smooth function, and let ¢ be a ‘basis’ function defined on
R?. Suppose that we look for an approximant for f in the span of ¢(- — ), ¢ € R?.

Then we may try to find the the exact solution f* of the convolution equation
pxfr=f.
However, this equation is not always solvable. In some cases, in order to make sure
that there is a solution of this equation, the function f needs to be very smooth in
a way that depends on the basis function ¢. For example, if ¢ is the multiquadric,
f should be a special type of a C*-function (e.g., a band-limited function). Thus,
rather than solving the equation exactly, we approximate first the function f by
mY % f
where m is a suitable cut-off function. Then, after substituting m" * f for f in

above convolution equation, we look for a solution f* of
o* fr=m"*f. (1.2)

Under suitable assumptions on é and m, we find a solution in the expected form

ﬁz(@ﬂ.
¢

Our real intent, however, is to approximate the function f from the space

Sz(¢) = span {¢(- — €) : £ € E}
since it will provide a ‘local resolution of the approximand’ based on the local

density of the data. Thus, we are seeking an approximant of the form

s=3 ce(f)o(- =€)

EeE



that approximates m" * f in some sense. Also, we need to keep in mind that only
flz is actually available to us.
We say that the approximation maps (L), with L, mapping into the space

Srz(¢) provides approximation order k > 0 if, for every admissible f,
If = Lufll = O(*)

as h tends to 0.

We assume throughout this study that the function ¢, when considered as a
tempered distribution, has a Fourier transform qAb that coincides on R?\ 0 with
some continuous function while having a certain type of singularity (necessarily of
finite order) at the origin; especially, we assume that <$ # 0 on R\ 0.

The general approach of this study is to obtain an approximation scheme from a
space spanned by scattered shifts of ¢ by employing the following two step emthod.
In the first step we assume that the approximand f is fully available (e.g., thus,
we compute f) During this step, we consider approximation on R? by Sz(¢) for
an infinite set =. The actual approximation scheme considered in this study is of

the form

Re:f— [ o(,t) f(t)dt (1.3)

R4
where f* is the exact solution of (1.2) and ¢(-,t) is a kernel of the form
¢('7t) = ZA(taf)qb( _5)7 (14)
€e=
where ¢(-,t) approximating ¢(- — ¢) in some sense. In this introductory stage,

we assume that the sequence (A(t,&))¢e= is finitely supported (for each t € R?).
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Further properties of the map (¢,&) — A(t, £) that are essential for the success of
(1.3) will be analyzed later.

In the second, more practical, step, we derive a scheme for approximating
functions on a bounded domain under the assumption that the (only known) data
are the possibly contaminated values of f at =, with = a finite subset of the interior
of the domain. The approximant is selected from a space spanned ‘essentially’ by
the corresponding translates ¢(-—¢), £ € =, of the basis function (‘essentially’, since
the space Sz(¢) is augmented by other functions in order to eliminate boundary
effects).

Let us discuss now in more detail the scheme alluded to in (1.3). The main
question is how to find the coefficients (A(%, £))¢ex for the kernel ¢(-, %), t € R?, in
(1.4). The construction of this scheme is based on the general tool developed in
[DR] for converting an approximation scheme on a uniform grid to a non-uniform

grid. The conversion method in [DR] starts with a known approximation scheme

R of the form
R:f— > &(—a)Af)(e)

a€Zd
with A a bounded operator from L., (R?) N C(R?) into itself, and with the function

¥ being a linear combination of shifts of the original function ¢,

b= o (1.5)

where 1 : 77 — R decays fast around oo such that the sum in (1.5) converges. The
function (- — «) is supposed to decay at some polynomial rate such that, at a
minimum,

> (- = o)l € Lo (RY).

acZd
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Then one chooses for each shift (- — ) an approximation ¥ (-, «) from the space
Sz(¢), and by substituting (-, ) for ¥(- — «), one obtains an approximation of

the form

Ra:f— > ¢(,a)A(f)(a)

acZd

with A as before. The function (-, ) thus lies in Sz(¢). It is also assumed to
satisty

> (- a)l € Loo(RY).

acZd

It follows that the approximation scheme R, is a bounded map from L., (R%) N
C'(R?) into S=(¢). The actual construction of ¥(-,a) is done as follows. We first
approximate each ¢(- — a) by

¢y a) = A(a, )¢ — ¢)

e

as in (1.4), and then define (-, ) by

‘17/)(-,0[) = Z FL(/B - a>¢('a/3)a (16>

Bezd

which is a localization of the function ¢(-, ). Under some suitable conditions of
¢, it is shown in [DR] that the scheme R4 provides the same approximation order
as R does, provided the scheme is stationary.

As a matter of fact, this method provides a general tool for deriving a scheme for
a scattered set = from a scheme on a uniform mesh, instead of approximating the
function f directly from the space S=(¢). Since the present state-of-art in the area
of approximation on uniform grids is quite satisfactory, it gives hope for finding
new approaches into the unyielding scattered case. However, when we convert the

gridded scheme to the non-uniform case, we are faced with the issue of choosing
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the density of the uniform grid (hZ?) corresponding the scattered center set =: A
method for selecting the density h associated with a given = is not given in [DR].
At the outset of this work we found that the conversion method of [DR] converges
to a limit as h — 0; i.e., if (Ry : C(RY) N Lo(R?) — Sy,z4(¢))nso are scaled
versions of some uniform grid approximation R, and if (R4 )s are counterparts of
(Rp)n obtained by the [DR]-method, then R4, — R= as h tends to 0, with Rz a
new approximation scheme. Consequently, we obtain an approximation scheme in
(1.3) that is independent of any uniform grid issue. Furthermore, we will see that
this scheme provides spectral approximation order, (i.e., approximation order that
depends only on the smoothness of the function f we approximate).

In order to discuss approximation orders, we measure the density of = by

h := sup inf |z — ¢|. (1.7)

zER4 €e=

We also choose the basis function to be the ‘shifted thin-plate spline’

o(o) (|22 + )2, A€z, ) dodd, L9)
() = .
(|z|* + )M log(|z|? + ¢*)'/2, A€eZ4, X deven,

and make the following further assumptions:

(a) With f* the exact solution of ¢, * f* = m" * f, the approximation scheme is

of the form
RngAﬁ&ﬁﬁﬁﬁ

with ¢c(-, 1) == > A(t,£)¢.(- — £). The coefficients (A(t, €))eez for ¢o(-,1)
€e€=
are chosen to satisfy .= A(Z,§)p(&) = p(t), p € 11, for some sufficiently

large n.
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(b) The mollifier m" depends on the density of =, i.e., m = m(h) with A as given
in (1.7). In particular, for every admissible function f of smoothness class k,

we assume that f —m * f = o(h"%) for some 0 < r < 1.

The following serves as a prototype for one of the main results in this paper.
Prototype 1.  Let ¢. in (1.8) be our basis function and let ¢ satisfy the relation
¢ =ph” for 0 < r < 1 and p > 0 with h in (1.7). Under the conditions (a-b)

described above, for every admissible function f of smoothness class k, we have

If = R=fll = o(R™). (1.9)
The exact smoothness conditions on f will be explained later on.

Numerical Example. We assume that = C [—3,3]%. Choosing
sin(z) sin(y) °
o) = exp(—(a*+4) - | 2L
we approximate f by R=zf and measure the error on [—1,1]? (in order to avoid
‘boundary effects’). The set of scattered centers = is generated via a random
number generator in MATLAB. A comparison between the new scheme Rz and
thin-plate spline (TPS) interpolation is given in Figures 1.1-1.3 where the contour
lines of the original function, of the TPS interpolant, and of the output of the
scheme Rz are given. The errors in the max norm are 0.1682 for TPS interpolation

and 0.0397 by R=.
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Figure 1.3: The new scheme

We now turn to the practical case of approximating a function f using only

the scattered data (&, ye) (ve = f(€) or ye = f(€) +€), £ € = C Q, Q bounded.

In this case, a special technique is necessary in order to eliminate the boundary

effects. As one may observe, the scheme Rz in (1.3) it is not local, because the



15

kernel ¢.(-,t) in (1.3) grows polynomially as |z| goes to co. Hence, it is natural to

localize the scheme Rz first. To this end, letting
Qs:={y=z+z:2€Q, [2|] <5} =0+ Bs,

we augment the space Sz(¢.) by adding to = points from Qs \ €, and extrapolate
fla,s using fl=:
fo() =2 C(t (), t€ Qs

EeE

The augmented set of centers will be denoted by =, and our approximation is
actually from the space Sz(¢.). Precisely, our scattered approximation scheme for

bounded domains is of the form

S [ v folt)di (1.10)

Qs

R

[1

where (-, 1) is given by (1.6) and

fo = /Q 6 my, (- — 0) fc(0)dd

with a mollifier my4,_ depending on ¢, and m in (1.2).
With the scheme Rz in(1.10), we describe the development with some more

details as follows:

(a) The function 1 satisfies the condition sup,(1 + |z|)74 | (z)] < oo for a

positive integer q.

(b) The mollifier in m" * f depends on the density of =, fe., m= m(h) with h
the density of = as in (1.7). In particular, for every admissible function f of

smoothness class k, we assume that f —m * f = o(h™*) for some 0 < r < 1.
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(c) The coefficients (A(t,€))¢e= for the pseudo-shift ¢.(-,t) are chosen to satisfy

Yeez A(t,E)p(€) = p(t) with p € II,, for some sufficiently large n.

(d) The coefficients (C'(t,£))eez for fo = Y ee= C(t,€) f(£) are chosen to satisfy

Yee= C(t, E)p(€) = p(t) with p € I_y, with & as in (b).

Prototype 2.  Let ¢. in (1.8) be the basis function in (1.8) and let the parameter
c in (1.8) satisfy the relation ¢ = ph”, 0 < r < 1, for some p > 0. Assume that the
parameter § = §(h) in the definition of Qs decreases to zero as h tends to 0, but
slower than ", i.e., h"/§ — 0 as h — 0. Under the conditions (a-d) above, for any

admissible function f of smoothness class k, we have

If = R=fllo@ < O((R"/8)") + od").

Since the approximation scheme is local, even though the set = might be large,
the scheme is suitable for implementation by a parallel algorithm.

Next, we provide an algorithm for the approximation scheme R=. The cru-
cial part of any such algorithm is a method for constructing a suitable coefficient
sequence (A(t, £))eez for the pseudo-shift ¢.(-,¢) in (1.4). Specifically, ‘Gauss elim-
ination by degree’ which is introduced by de Boor and Ron [BR2], is applied to
a linear system generated by some basis of a polynomial space. We give a de-
tailed description (in a MATLAB-like program) of the calculation of the coeffi-
cients (A(t,€))eez. Also, a general algorithm for the scheme R= is given. Finally,
some numerical examples on a bounded domain in R? are provided. Since the
scheme Rz is applied to noiseless data as well as noisy data, we explore both of

the cases.
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Chapter 2
Approximation Scheme into the Span of

Scattered Shifts

2.1 The Pseudo-Shift ¢(-,t)

For a given discrete infinite set = in R?, our construction of an approximation
scheme from S=(¢) is based on the approximation of each shift ¢(- —t), ¢t € R?, by
a linear combination
¢ 1) =3 AL, (- — €). (2.1)
€e=
We referred to ¢(-,1) as a “pseudo-shift” of ¢. For every t € R?, the coefficients

(A(t,€))eez must satisfy the following condition, [DR];

Central Condition: For some my > d, the function ¢(-, ) of (2.1) satisfies
b(o—t) = p(e, )| Sc(l + o—th)™, v eRY, (2.2

with ¢ independent of x and t.

Note that this is an active condition on A: in all the examples of radial basis
function ¢ that were considered in [DR] and are considered here, the function ¢
itself grows at oo. The central condition pertains to the most fundamental property
of the basis functions ¢ that we study: while ¢ itself grows at oo, a suitable linear

combination of translates of ¢ may decay at oo. Specifically, by applying a suitable
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difference operator to ¢, a suitable bell-shaped function is obtained:

Y= ) ula)g(- - a). (2.3)

acZd

The coefficients p : Z¥ — R are called a localization sequence. In our study, p
is assumed to have finite support (generally a milder condition is imposed on )

and the localized function v is assumed to satisfy the condition

sup (14 [2])™th(2) < o (2.4)

reRd
for some m,, > d. Our localized pseudo-shifts, 1(-, ), are then defined simply by

w('at) = Z ILL(O[)Qb(-,t + Oz). (25>

acZd

Clearly, ¥(-,1), t € R?, is a function in S=(¢), and it follows directly from (2.5)
and Central Condition (2.2) that the difference ¢ (- —t) — (-, t) satisfies the decay

condition
Yz —t) =¥z, t)| < (1 + [z —t])7"2, (2.6)

where m4 is as in (2.2), and ¢’ is independent of ¢ and z. We refer to [DR] for
more details.

Recall that, for any fixed t € R?, we assume
At : 5 - A(t,f), § € Ea (27)

to be finitely supported. Let

=, t € R,

be the support of A;. We choose the centers =; C = to be some ‘close neighbors’

of ¢ and assume that #=; < C for some constant C' > 0. We require that =; be
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total for 11, i.e.,
(plz, =0, p e ll,) implies p=0.

This, of course, implies also that #=; should be no smaller than

dim TL,,(RY) = (" i d).

n

We will first discuss sufficient conditions on the coefficient (A(t,&))ee= which
imply the Central Condition (2.2), and we will also study other properties of the

coefficient sequence (A(t,€))ecz. We start with a lemma that is a simplified version

of a result from [DR].

Lemma 2.1.  Let =, t € R?, be total for I,,. Then Y qe= A(t,€) p(€) = p(t) for
every p € 11, if and only if
Z A(ta 5)(t - f)a = 50:0- (28)
£e=
Proof. Assume that Y ¢c= A(t,)p(€) = p(t). If we choose p(z) = (t — x)%, then
STAE(E— ) = da.
£€=

Conversely, for any polynomial p € II,,, let

D%p(0
pe-n= 3 Ty
jahi<n &
Then, by assumption,
Dp(0)

al

DAL OPE—1) =D A6 D] (€ —1)* = p(0).
ali<n

== == |
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This implies that

SAwONE) = X 5Y oD 1)

€= lali<n 7 £€E
[
= > —Dp(0) = p(t),
al
loeh <m
which completes our proof. [

Combining Lemmas 1 and 2 we obtain:

Theorem 2.2 Let (A(t,€))¢ez, t € RY, be the coefficients for ¢(-,t). We assume

that

(a) The Fourier transform ¢ belongs to C*(R?\ 0), and that each D" ¢, v € Zi,
is summable around oo, and that each D’¢ (calculated on R\ 0) has a

singularity of order |v|; + k at the origin.

(b) The set {A(t,€)(t — &) : t € R} of functions on = lies in (1(Z) and is

bounded there for all j < s,

(¢) For all p € 11, and for some n € (k,s), the coefficients (A(t,€))ee= satisfies

A Op() = pl(t).

EeE

If =4 is total for I1,,, then we have the relation
6 — 1) — d(z,1)] < const (1 + fo— )™ (29)
with myg = n — k + d and const independent of x and t.

Proof. Under the conditions (a-b), the result can be derived directly from the
result of [DR] (cf. the Theorem 2.7.1 in this article) if the linear system (2.8)

holds. Hence, the result is immediate from the Lemma 2.1. [
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It is remarkable that the coefficient sequence (A(-,&))eez can be chosen inde-
pendently of the basis function ¢ itself and only needs to respect the order of
the singularity of é at the origin. If some different basis function has the same
order of singularity, we can apply the same coefficient sequence (A(t, £))¢ez to con-
struct ¢(-,t). Basic functions that satisfy the assumptions in Theorem 2.2 include
truncated power functions (d = 1), multiquadric, inverse multiquadric, (‘shifted’)
thin-plate spline, and so on. In particular, we will concentrate in the next section

on the ‘shifted’ thin-plate spline function.

Corollary 2.3  Under the conditions of Theorem 2.2, if the basis function ¢ is
a piecewise polynomial on R, i.e., ¢(x) = [z or 2%, = € R, with n a positive
integer, then, for everyt € R, the difference ¢(- —1) — ¢(-, 1) is compactly supported

and supp (¢(- —t) — @(-, 1)) is the convex hull of the set =;.

In view of the above discussion, we introduce the notion of ‘admissible coeffi-

cients’ (A(-,€))ee=.

Definition.  The coefficients (a(-,£))¢c= are termed admissible for II,, if they

satisfy the following three conditions:

(a) There exists ¢; > 0 such that, for any ¢ € R?, a(¢,£) = 0 whenever |t — £| >

crh, with h the density of = as in (1.7).
(b) The set {(a(t,€))ee= : t € R} is bounded in 4 (Z).
(c) For every t € R, Y sczal(t, €)de = &; on 11, i.e.,

> a(t, &) p(€) = p(t), Vpell,. (2.10)

==
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Remark : Assuming that the coefficients (A(%, €))¢ez, t € R, are admissible for
I1,,, we note that the linear system in (2.9) is invariant under the dilation and

translation on R? and =. Hence, WLOG, we assume the following conditions in

this study:

(A(ct, €))eez = (A(t, €))eezse, > 0. (2.11)

2.2 Approximation Scheme

Among the basis functions that satisfy Theorem 2.2, we have chosen to focus on
functions that are obtained from the fundamental solution of the iterated Laplacian
by the shifting |z| — (|z|? + ¢*)'/2, ¢ > 0. Thus we consider the following radial
basis function

o (|z|* + ¢2)M2, A€y, A dodd,

de(z) = (2.12)

(|z|* + )M log(|x|? + ¢*)'/?, A€ Ly, A, deven.

In the univariate case, ¢1(x) = (|z|? + 1)"/2 is called Hardy’s multiquadric.

The generalized Fourier transform of ¢, is the functions [GS]:

. E(N) K (agry/2(cl0])]0]>4, A\, dodd,
¢e(0) = . (2.13)
%E(A)K(HA)/Q(CWD|9|_A_d, A, d even,
where ¢(3) is of the form

(8) = 254 (2m) 2 (=), (2.14)

and K, (|t]) := [t|"K,(|t]) with K, (]t|) the modified Bessel function of order v. The

following properties of K, are related to our analysis [AS]:

K,(|t]) >0, K, (|t])~2"7'T(v) (t—0), (2.15)
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(1)) ~ \/gt"_%e_“' (t = o0),

K,(|t]) € C*{RY)NCZ(RT\0), veZs.
For a smooth function f, we consider the approximation scheme defined by

R=f(z) := /R b (, 1) ((pi)v (1)dt (2.16)

where ¢.(-,1) is a kernel of the form

(1) = D A(t,)8(- — ).

e

This scheme is intrinsic in the sense that it employs directly the scattered shifts of
the basis function.
We hope that the approximation is getting better as the center set = becomes

‘dense’. In order to study this, we measure the density h of = as in (1.7):

h = sup inf |z — €|. (2.17)

zER4 €=

Let (A(t,€))ee= be admissible for T1,,. Then, for every function f such that f(%c_l €

L1(R%), we will prove that the scheme R= provides the approximation error
If = R=f|| = O(h"*").

However, in order for the integral in (2.16) to make sense, the function f need to
be extremely smooth, and we do not want to impose such smoothness condition
on our approximand. So, in this section, we will discuss how to apply the above
approximation scheme to functions in a larger space. Also, we will discuss in detail
the process by which the scheme Rz is derived.

When we are looking for an approximant from the space Sz(¢.) in terms of the

conversion method discussed earlier, it is essential to choose a good approximation
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scheme on the uniform grid. In the paper [BR1], C. de Boor and A. Ron introduce
an optimal approximation scheme from the spaces spanned by shifts of a basis
function. One can observe in this paper that spectral approximation order can be
obtained if the basis function is smooth and satisfies certain other conditions.

Let f be a smooth function in some smoothness space (the specific function
space will be defined later). The approximation scheme in [BR1] is of the form

Ry f— > veml-/h—a)fi(e)

acZd
with f; the bounded analytic function
ehx(ﬂ)
* eyn(h0)

where o : RY — [0...1] is a nonnegative C'*-cutoff function whose support o lies

filz) = (2m)~¢ /R o(h0)f(8)d8, (2.18)

in some ball B,, n > 0; furthermore ¢ = 1 on B,/ and that ||o|« = 1. Here and
hereafter we assume that 1. # 0 on B, such that o /v, is well-defined.

Then, for any 2 > 0, the scattered center variant R4 ; of R is defined by
replacing ©./n(- — @) by ©¥¢/i(+, @) in accordance with the conversion method in
[DR]. Hence, we arrive at an approximant from Sz(¢.) of the form

Ranf =Y Yoml-/h,a)fi() (2.19)

acZd

where 9./, is defined as in (2.5) with

Gepn(-/hya) =3 A(E/R) opn(-/h = /), (2.20)

EeE

which ensures that R4 f is an element of Sz(¢.).

Remark: The function ./4(-/h, ) in (2.19) is obtained by an application of

the same matrix (A(:,£))¢e= to the scattered shifts of ¢./(-/h — ). However, a



25

careful examination of the function R4 f reveals that R4 f is not in the space
Sz(¢.), but in the space Sp=(p.). Since our goal is to approximate from the space
Sz(¢.) the fact that the dilated center set A= is employed as h changes should
not occur. For this reason, at each h-level, we employ the center set A~'= in the

construction of R4y f. Then, for each a € Z¢, the pseudo-shift ¢./x(-/h, ) should

be of the form in (2.20).

With these remarks, let us turn to the discussion of choosing a uniform grid
density corresponding to the given scattered center set =. Actually, given a set of
scattered centers =, we need to choose a density A of the uniform grid corresponding
to =. So, in the following results, we observe the relation R, — R4 with a fixed
set = and a ladder of uniform grids (hZ%)s.

At this stage, we are first interested in the approximation of functions in the

space

Fio={f:R'=R: X ()fé! € Li(RY)

lv]1=k

and we use the notation
1A lea = D2 107 foc
|l/|1:k
Lemma 2.4. Let ¢. and ¢.(-,t), t € R?, be as above. Assume that the Central
Condition (2.2) holds. Then there exist a constant C' > 0 independent of x and h

such that

h? > |de(z — ha) — ¢o(z, ha)| < C

acZd

for any 0 < h <1 and = € R?.



26

Proof. From the Central Condition (2.2), we have
Z hd|qbc($ — ha) — ¢.(x, ha)| < const Z hd(l + |z — hal)™4
acZd aczd
with my > d as in (2.2) and const independent of x and ha. Letting By, . be the

set {a € 7¢ : |z — ha| < h}, we have the relation

Z (1 + |z —ha|)™™s = Z (1 + |z —ha|)™™4 + E (14 |z — ha|)™™m
acz? a€Bp 5 a€ZN\By, ,
< 27(14+ Y (L+[ha))™™4) =27 3" (14 |hal)™™
a€zd\o a€zd
Since

KT S (1 + [hal)~ma _>/Rd+(1+|t|)—w dt

d
a€Z+

as h tends to 0, we get the lemma’s claim. |

The following result is from [DR].

Lemma 2.5. Assume thatcﬁ is continuous on R*\0 and has a singularity of order
> k at the origin for some positive integer k. Let (u(a))yeza be the localization
sequence in (2.3) and assume that the localization ¢ satisfies the condition (2.4).
Assume also that the linear functional
pipr— Y p(—a)p(a) (2.21)
aczd
is well-defined on 1l (i.e., the above sum converges absolutely for every p € Ily).

Then p annthilates T1j.

The following proposition provides a clue for the relation between = and hZ?

in terms of the conversion method.
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Proposition 2.6.  Let ¢, ., ¢.(-,t), ¥c(-,1), t € R, Ry, and Ray, be as above.
Let the coefficients (A(t,€))eez for ¢.(-,t) be admissible for 11,,. Then, for every
function f € ]:(ifc with k = A+ d+ 1, we have
(e = Ras)fl = X (6ule — ha) = (s ha)) S D fi(a) + O(h)
aez? [vl1=A+d
where f; is as in (2.18) and

=Y wB)(=p) /v, vezl. (2.22)

pezd

Moreover,

[(Br — Ran)fll < e

with ¢ a constant independent of h and =.

Proof. First, from the definitions of Ry, and R4}, we can write (R, — Ran)f(z/h)
as follows:

(Rn — Rap)f(x/h) = D (epnla/h = B) = tep(z/h, B) £ ()

Bezd

= 3 > (Semla/h—a) = depn(z/h, a))ula = B) fr(3)

BEZ aeZd

with ¢e/n(-/h, @) as in (2.20). Due to the Central Condition (2.2), the above double

sum converge absolutely, and summation by parts implies that

(Rh — Raz)f(z/h) = > (bepn(x/h —a) = ¢on(x/h,a) Z pla—B)fr(8)

= Zd(¢c/h($/h — a) = epu(x/h, a))(# + fi)(e).  (2.23)

Here, we claim that

bepn(-/h — ) — depn(-/h, @) = b (¢o(- — ha) — ¢.(-, ha)). (2.24)
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For the case that d is odd, this equation follows immediately from the explicit

formula in (2.12); if d is even, the relation between ¢./, and ¢, is as follows:

ch/h = h_A¢c(h') - (| ' |2 + (C/h)Q))\/2 10g h.

Accordingly,

epn(a/h — @) = desr(a/hy ) = b 30 A, €/h)(be(x — ha) = ¢l — €))

e

—logh Y Ala, €/h)((Je = hal? + )2 = (|l — € + )] (2.25)

£e=
Since (A(+,&/h))¢ez = (A(h-, €))ee=z by (2.11) and (|- |> 4+ ¢*)M? is a polynomial of
degree A, it follows from the condition on the matrix (A(-, £))¢e= in (2.10) that the
second sum in the above equation is identically zero. This establishes the identity
(2.24).
Thus, by (2.23) and (2.24), we arrive at the relation
(i — Rag)f(o/h) = h™ 3 (dule — ha) — gule, ha))(u # fi)().  (2:26)
acZd
Recalling the definition of the linear functional g in (2.21), we have the identity
(' fi)(e) = p(fila+)) = 3 u(=B)fila+p).
pezd

Since f; is real analytic, its Taylor polynomial of degree A + d — 1 around ¥ =y
is well-defined:

T,fi(s):= 3 D'fr(y)(s—y)/v!,  y,seR”

|l/|1 <A+d

Then it follows from Lemma 2.5 that

p(To(fr (a ZM B)Tufi(a+B)=0.

Bezd
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Hence, we have

(o fi)le)=" 2. mD"file)+ 3 3 pu(=B)B"D"fi(Ba)/v! (2.27)

|U|1=>\+d |1/|1=/\+d+1 Bezd

where (3, € [a.. (], and g, is in (2.22). From the explicit formula of f; in (2.18),

it is clear that the function D" f; is well-defined, and especially, it has the form

R e (6) .
D fi(t) = [, = (i0) 0 (10) £(0) do. 2.28
fh( ) (2’/T)d R4 Lbc/h(ha)( ) ( )f( ) ( )
This leads to the inequality
1D fill < const A1 |[£][],), (2.29)
with const independent of A. From (2.27) and (2.29), we obtain

[+ fi) ()] < etk FIl gy + k™I g (2.30)

Therefore, combining (2.30) with (2.26), we arrive at the bound

(B = Bag) < K (1 | s + 2 Al M) (231)
where
K := sup hd Z |¢c('1j - hﬂ) - ¢c(£ahﬂ)| < 00
z,h Bezd
by Lemma 2.4. [

From the view point of finding optimal & associated with a given set of scattered
centers = in terms of the error (R, — RAJE)a the bound of the form ¢; + coh does
not provide us with any preferable value of h: the parameter A does not play any
major role in our error estimation. Hence, we let the uniform mesh size go to 0
for the purpose of minimizing the upper bound of errors. Next, we describe the

convergence property of Ry — R4, f as h tends to 0.
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Lemma 2.7. Let ¢., p and . be as above. Then, as h tends to 0, we have the
following convergence property:

bepn () = (=) M9B(0) 3 p(—a)(a-0)M/(A + ), 6 € RY.

acZd

Proof. From the definition of ./, we can compute its Fourier transform term
by term. Defining a trigonometric polynomial function

= Z M(O‘)e—aa

acZd

we have
Ve/h = Te/n
pointwise on R?\ 0. We then simply obtain the following relation from the expres-

sion (2.13)

N

Vepn(he) = ExKpgaya(e)(he) /[l [+
with ¢(X) from (2.14). Invoking the localization condition of 1. in (2.4), we know

that 'z/;c/h(h-) is continuous everywhere, especially, at the origin. Hence, 7(h-) has

a zero of order A + d at the origin. Consequently, when A converges to 0, we have

T(hO) /RO — (=) 37 p(—a)(a- 0 /(A + d)/]10]*
aeZd
with § € R?\ 0, and this completes our proof. [

Theorem 2.8.  Assume that the Central Condition (2.2) holds, and let R;, and

Ray be as above. Then, for every function f € Fj , we have the convergence

property

A

(= Rag) o) — S) = [ o0 (2)

C

pointwise as h converges to 0.



31
Proof. We invoke Proposition 2.6. Using the explicit formula for D¥ f; in (2.28),

we estimate

h 3 (¢e(x — ha) = ¢e(x,ha)) > D fi(a) (2.32)
a€Z? lvl1=A+d
= it a(h@)f(@) 0 hi (b (z — ha) — z. ha))ey, (0)do
(2m) /Rd besn(hB) MZ;H/«LV a;:d (9 ) = #el@, he))era(0)db.
Note that

Y owt = XY u(—a)a"0 /]

[v]1=A+d |[v)1=A+d a€Zd

- Su-a ¥

aeZd lv|1=A+d

= Y ula)(a- 0)* (A + d)L.

acZd

A+d

v

)wﬁn“~«%%rw@+dﬂ

Here, we use the standard abbreviation

</\+d) (A +a!

1%

ol
Now the right hand side of the equation (2.32) can be rewritten as

A

M a(h0) f(0) ” -
(zfr)d(Aer)!/Rd dopn(h0) agd#(—a)(a-ﬂ) ! (2.33)

X D h ez — hB) — o, hi3))ena(9)do.

pezd

Though this formula may look very complicated, it tends to a simple expression

as we take h — 0. We first observe that, for any fixed z € R?,

> W (belx — hB) — del, hB))ens(0) — /Rd(qﬁc(:'f — 1) = be(,1))es(0) di.

pezd

A direct calculation using Lemmas 2.4 and 2.5 yields that the integrand in (2.33)

is bounded uniformly by

const |=

€ L;(RY).

C
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Thus, by Lemma 2.7, we have the limit of the above equation as follows:

A

(L)@ [orte =00 o) v

fim(ft = Ragfaft) = [ (5

R

by Lebesgue Dominated Convergence Theorem. Since f € Fj and (- —t) —

bo(+,1) € L1(R?), we deduce that

fin(Bs = Ra)f(af) = [ (02 =1) = 6.(2,0) )v<t>dt

by Fubini’s theorem. [

Remark. As a consequence of Theorem 2.8, we obtain an approximation scheme
from Sz(¢) which does not require an association with any uniform mesh. Clearly,

we deduce from the above theorem that

lim Ry, f(2) = /R (1) (qbi)v (t)dt = R=f(z). (2.34)

Recalling the definition of the pseudo-shift ¢.(-,¢) in (2.1), R=f has the explicit

form

where cg is the linear functional

ceifr— [ A(t,f)(qgi;)v(t)dt. (2.35)

It is clear that R=f is an element of Sz(¢,).
However, since the modified Bessel function R’y(:ﬂ) which is a part of qAbc is de-

creasing exponentially fast as = tends to oo, the space of functions fgc is very
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small and only extremely smooth function can belong to it: Even some infinitely
differentiable functions are not in this space. Our interest in this study is in approx-

imating functions from a larger smoothness space. Specifically, we are interested

in approximating functions in the space
WE(R)

of all functions f such that the Fourier transform f is a Radon measure, and the
total mass ||(1+ |- [2)*2f]||1 of (1+]-|2)¥/2f is finite. If f € L;(R?), then the norm
(1 + |- [2)*2f]|; coincides with the L;(R?)-norm of (1 + |- |2)¥/2f). The above

induces a norm on W¥ (R?),

1 llke == I1CL+ - )2 1.

In order to apply the scheme R= to a function f € W&(Hd), we first replace f by
its smooth part

O'V*f

where o is the cutoff function in (2.18). Then oV  f is a band-limited function,
and we apply the scheme Rz to " * f instead of f.

Since we hope that the approximation is getting better as the center set =
becomes denser, the cutoff function o is dilated proportional to the density of =.

Thus, for a given set =, we consider the approximation

A

%Ux*f:(UWf)v

where w := w(h) and
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It is important to note that we do not necessarily choose w(h) = h. We will discuss
our choice in the next section,

In this case, there occurs some obstacles for this scheme to be used directly;
First, since the basis function ¢ grows at some polynomial degree away from zero ,
it may cause to loose local property of the approximation scheme R=. Furthermore,
we need to impose some extra conditions on f in order to make the above integra-
tion make sense. The function f is required to satisfy the condition f € CHR?),
k > d+ A. Thus, in order to circumvent those difficulties, a ‘localization process’
is necessary. The strategy to be used here is first to localize the kernel ¢.(- — t)
in the above convolution equation by applying a difference operator to ¢., which
construct a new bell-shaped kernel

Ye= > p@)ée(- —a)
aezZd
with favorable decay properties at oo. Next, we then approximate the localized
kernel (- — t) from the space S=(¢.).

The Fourier transform q%c of ¢. is very smooth off the origin. This means that
in order to localize ¢. we only need to ensure that the Fourier transform ';/A)c of
the localized function 1. is smooth at the origin. Note that we also need to insist
that '1/30(()) # 0. In other words, considering the localization condition on ., 'J;C is
continuous everywhere, especially at the origin. Hence, the function

T = E pla)e_iq
aezd
with '1/7)0 = T(%C has a high order zero at the origin. We note here that 7 is a 27Z%-

periodic function, and since the only singularity of qAD'C is at the origin and cAp'C # 0
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on R?\ 0, we can assume that 7 does not vanish on some punctured neighborhood
Q\ 0 of the origin. This ensures that 1. does not vanish on \ 0. Expressing the
inverse Fourier transform of 7 as

= Y ple)da, (2.36)

a€eZd
the above convolution equation (1.2) implies the relation

)= [m/w*(‘f“’f )Yw} (xfw)  (237)

T(W')qbc llr/)c/w

A

ol * = * T(w-)v*<aw
where the equality holds by using the properties (gh)" = ¢g¥ * hY and
(W) e = W Dby (w0). (2.38)

Thus, substituting v/, (-/w,t) for ©./,(-/w —t) in (2.37), we obtain our approxi-

mation scheme as following:

Definition 2.9 With ¢., . and .(-,1) as above, we define our approximation

scheme R= by

Re:f o Rd;z;c/w(x/w,t)(f’“’f > (wt)dt. (2.39)

Yefuw(w?)
where .(-,t) is a localized kernel of the form

c/w "E/(.() t Z ,u ch/w .17/(4) t—|—0é)

acZd

In the error analysis, it is useful to divide f — R=f into two parts,

f—R=f= ((wa>v —R=f)+(f - (Uwf>v)- (2.40)

In particular, for every function f € Wfo(ﬂ:\?d), it is immediate that

If = (o)l < (QW)‘ded (1 = 0u(8))f(6)|d8 = o) (2.41)
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as w tends to 0.

Usually, approximation power is quantified by approximation order. But, an
error analysis can be carried out in terms of a given tolerance. By taking a suffi-
ciently small w in our scheme, we can make the tail error small enough to satisfy
a (given) tolerance. Then, for a fixed w, we choose the space Sz(¢.) such that the

final error satisfies the required tolerance . The following results discuss this issue.

Lemma 2.10 Let ¢, be as above. For v € 1% with [v]y = n+1 > X+d+1,

D¥ ¢, € Li(R?).

Proof. It is sufficient to prove that the Fourier transform of ()*D¥¢. with |a|; =

d+ 1 is bounded in L;(R?). We see that the Fourier transform of ()*D"¢, is
()%,
and hence by using Leibniz’ rule, we only need to show that
DV( )" D", € L(RY). (2.42)

Since D*7¢, decays fast around oo, the function in (2.42) is bounded in L;(Ny)
for some neighborhood N, of cc.

Next, we note that the Fourier transform of D"¢. is (i-)”qu'c. Here, since the
distribution &C has the order of singularity A 4+ d at the origin and 6" has a zero
of order n +1 (> A+ d + 1) at the origin, it follows that the Fourier transform of
DY ¢. extends to the entire R?. We also realize that the function in (2.42) has a
singularity of order A 4+ 2d —n, and A + 2d — n < d by assumption. It implies that

DY( )”D“‘”(%C is integrable around origin. |
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Theorem 2.11  Let ¢.(-,t), t € R?, and R= be as above. Let (A(t,€))¢ez for

¢e(+, 1) be admissible for 11, with n > XN+ d. Then, for every f € Wég(Hd),
| f = R=f]| < const k™! 4 o(wF)
with h the density of = as in (1.7) and const dependent on ¢ and w.

Proof. We prefer to provide the proof of this theorem in the form of a separate

lemma:

Lemma 2.12  Let ¢.(-,t), t € R?, and R= be as above. Let (A(t,£))¢e= for

¢e(+, 1) be admissible for 11, with n > A+ d. Then, for every band-limited function

/s

A

/Rd(qbc(. — 1) = e[ 1)) (%)V (t)dt < const A"+!

C

with const independent of =, but dependent on f.

Proof of Lemma. We first deduce the relation

A

S

e =0 = outa) (L) 0l <16 [l -0 - entenia

since ||g]| < ||g|l1 for g € Li(R?). Because, by assumption, Y ¢z A(Z, &) = 1, it is
immediate that
qbc('lj - t) qbc z, t Z A fa qbc T — t) ¢c(r - 5))
£€=
Let Tp_¢p. be the Taylor polynomial for ¢. of degree n about ¥ = (x — ¢). Then
Te—ebe(x —1) — p(x — &) is also a polynomial of degree n in terms of variable ¢ and

Selx — 1) = de(, 1) = 3 A1) [Toede(z — 1) — de(x — §) + Ru(t, 8]

e
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with the remainder in integral form
_ [0y v v ,
Rt €)= [ LTI SN oD — oyt — )y,
0 nl S

By the facts that Y ez A(+, £)p(€) = p and that A(¢,£) = 0 whenever |t — | > ¢ih
with & the density of = in (1.7) for some ¢; > 0, we have

STIA( )t — €)Y < const ™!, |y =n 4+ 1. (2.43)

€€E
Thus, recalling the property #=; < C with Z; the support of the map A, in (2.7),

we obtain the bound

o 19:(z = 1) = éula 1)l
L[ S S A - D e — o+ ye - €yl

|[v]1=n+1 EEE

n H(l— ) " v
Sconsth“Z/o % [Rd| Y D¢z —t+y(z—§))| dtdy
EEE: ' lv]1=n+1

< consty A™T!

where the last inequality is implied by Lemma 2.10. We established the required

result. [ |

To complete the proof of the theorem, we need to show that

oUf = Ref = [ (6l =1) = bl ) (D)t
Invoking the relation(2.38), we have the identities

(2f = Re)@) = [ (oulfeo = 1) = bulfeon ) (%) (00

Cc

A

~ O-Wf
Yefulw:)

= o [ el =) = ol DO (7)o
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= w_A_d/RdT:*< 22l )v(t)(qbc(.r—t)—qbc(:ﬂ,t))dt

'lr/;c/w(w')

- /Rd(¢c($ - ) - ¢c($7 ))(t)f*(t)dt

with 7¥ is (2.36), which establishes our theorem. |

Corollary 2.13  Let ¢.(+,t), t € R?, and R= be as above. Let (A(t,€))¢e= for
¢e(+,t) be admissible for 11, with n > X+ d. Then, for every function f such that

fozt € Li(RY), we have
| f — R=f|| < const A"*!

with const dependent on c.

Proof. Using the properties (2.13) and (2.15), this follows easily from the theo-

rem above. [ |

Remark 2.14  The localized pseudo-shift ./, (:/w, a) is obtained by an appli-
cation of the same matrix (A(-,§))cez to the scattered shifts of ¢, /,(-/w — a).
However, a careful examination of the function R=f reveals that R=zf is not in
the space Sz(¢.), but in the space S,z(¢.). Since our goal is to approximate from
the space Sz(¢.) the fact that the dilated center set A= is employed as h changes
should not occur. For this reason, at each h-level, we employ the center set w™'=
in the construction of R=f. Then, for each ¢ € R?, the pseudo-shift ¢...(-/w, @)

should be of the form

¢C/w(x/w,t +a) = E At + «a, f/w)qﬁc/w(;v/w —¢/w). (2.44)

EeE

Then, the definition of 1./, (+, 1) leads to the explicit form

Ref(x) = ) ¢e(x =€) Y ul@)eealf)

EEE acZd
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with
; v
A((w(t+a),g)<%) (wt) dt fu.
wc/w(w')
It ensures that the approximant R=f belongs to Sz(¢.).

cealf) = /

Rd

2.3 Approximation Power of the Scheme F=

As the set = becomes dense, we hope to approximate a function f better. First,

we expect that the error f — (wa)v is to be smaller as w decreases to 0. However,

re(z)
be

f* can not be kept, in general, bounded as w tends to zero since ée decreases

since

exponentially fast as observed in (2.13) and (2.15). Hence one of the important
issues in our scheme is the choice of the proper parameter w in accordance with the
density of =. In this section, we will study strategies for choosing the parameters
¢ and w according to the density of =. Specifically, we will see how the parameters

w and ¢ are interrelated.

Exploiting the relation (gh)¥ = ¢¥ * hY, we have the identity
Ay V . \
ouf 1 |- | A D/ 2,
= ) = — t—0) | =——=| (0)do
(%) o = & fre-n( )
1

A
= — f(t—ch) <Jw/c

¢y JRe MK (0td) /2

K’()\+d)/2(c-)
|- |(A+d)/2

\%
) (0)do (2.45)
for a function f € Wfo([ﬁ?d). Here, we note that the parameters ¢ and w can be

managed simultaneously by controlling the ratio ¢/w rather than controlling w and

¢ independently. For simplicity, we will use the abbreviation

, w, ¢> 0.
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Since suppoy/, = B,, with B, =suppo only the values of [i’(A_Fd)/Q on B,, are
incorporated into the scheme regardless of the density of =.
Furthermore, for f € Wfo([ﬁ?d), k > XA+ d, a variant of the expression in (2.45)

is as follows:

1 oLl /9 A Ow v
fo= 0P e P ( T ) b (246
i ( S (L+ e [DFPE(a)2(c) A0
1 A+d 2\k' /2 F\V ( G1/p )v
_ . 14 ]e- F)V(t = ch . 0)df
;. A e S D O ) 41 P Komans (0)

with &' = k — A — d. Because ||g|| < (27)7%||g]|; for § € L1(R?), we estimate the

bound

(- PHAA A+ e HEADZAY < I PO+ e E92 A

< (1T ko

From (2.46), we obtain that

LF¥II < comsty (14 ¢* =) || fll1,00

with const; dependent on p and k.
In a similar fashion, for a function f € W&(Hd) with & < A + d, we have the

relation

1 | Py, o _
ity = (R g0 oy
cy /R4 [X(/\+d)/2(c-)

Since A4d > k, Lebesgue Dominated Convergence Theorem implies that ¢*d=% f*

tends to zero as ¢ — 0. Thus, we obtain that

17*]l = o("*9)
as ¢ — 0.

Therefore, the following lemma is established.
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Lemma 2.15  Let ¢. and f* be defined as above. We assume that the parameters

¢ and w satisfy the relation p := c/w for some fived p > 0. Then, for every function

fe Wég(Hd), we have

1 + cF=A=d) ifk>M\+d,
| £*|| < const

o(ck_h_d) if k< XA+,

with const independent of ¢ and w, but dependent on p and k.
Next, we discuss how the density of = is related to the parameters ¢ and w.

Theorem 2.16  Let ¢.(-,t), t € R?, and R= be defined as above. Let h be the
density of = in (1.7), and (A(t,€))ecz for ¢o(-,t) be admissible for 11, with n >
A +d. Assume further that the parameters c and w satisfy the relation < = p > 0.

If we choose w = h™ with 0 < r < 1, then, for every f € WQ(Hd), we have

|f — R=f|| = o(h"F) O(RU-D(+D+r () k> A +d o)
— = = 0 ” —|— 2.
o)1k k<A td

Remark 2.17 The reason of our choice r € (0,1) here is as following. When
k> A+ d and w = h, the approximation scheme becomes stationary, i.e., the
approximation order is A + d. In this theorem, however, the choice w = A" with
0 < r < 1 induces nearly optimal approximation order O(h"*) by taking sufficiently
large n for a given r. Of course, if r is getting closer to 1, the degree of polynomial
n should be larger enough and we need to solve larger linear system to get the
approximation power O(h™*). In case k < A + d, there is no advantage in the

choice of r € (0, 1). Hence, taking w = h brings approximation order o(h*).
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Proof. For [ € W&(Hd), taking w(h) = h" with 0 < r < 1, it is clear from (2.41)

that

If = (0uf)VIl = o(R™). (2.48)

For the estimation of approximation error, we invoke Lemma 2.12 and then

deduce by a change of variables the relation:

(0uf) = Bef)(@) = [ (6ua—ht) = go(a, b))/ (RO dt. (2.49)

Using the property Y sc= A(+,§) = 1 and the notation ¢ := ¢, we claim that
Gu( = ) = dul bt) = & 2 ARt (2 — /) — d{(x — )] (2.50)
£e=
For the case that d is odd, this equation follows immediately from the explicit

formula in (2.12); if d is even, we first have the relation
be = (-/c) + (|- [ + ') logee
Correspondingly,

S A(hL,€)(¢e(z — ht) — do(x — hE))

e

= Y AR, O[((z — ht)/c) — d((z — €)/c)]

EeE

—|—10ch A(ht, O)[(|Jx = ht]* + c2)’\/2 —(Jz=€* + CQ)A/Q].

€€=
As in the definition of ¢., A is even and (| - |> + ¢2)*/? is polynomial. Hence, the
second sum on the right hand side of the above equation is identically zero because,
by assumption, Yee= A(t, £)p(€) = p(t), t € R?, for p € TI,,. This verifies our claim

in (2.50).
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Now, let Ty f be the Taylor polynomial of f at 8 of degree n, i.e.,

(Tof)(s)= > D"¢(0)(s —0)"/v! (s, 6 € RY).

| |1<n

Then taking the Taylor expansion of ¢((z — £)/c) about ¥ := (z — ht)/c provides

be(x — ht) — de(x,ht) = —c* > A(ht, )R, (t,€) (2.51)
e

+M Y AL O)[((z — ht)/¢) = Ti—pysed((x — €)/ )]
EeE

where R, (t,£) is the remainder in the integral form

Ro(L,€) = /01 (1—y)" 3 (ht—5)”+1Dy¢($—ht+y(w—f))dy_

|
n! i c c

Note that
S((z = ht)/e) = Tiayyebl(x =€)y = 3 D¢(0)c (At — )" /ul.
0<|v|1<n
Then, by the property that 3 ;.= A(-,&)p({) = p for p € II,, the second sum in
(2.51) is identically zero. We arrive at the equality
S — 1) — B, ht) = & 3 AL Ru(6(( — €)/). (2 — Bi)c).
€€=
Now, recall D*¢ € L'(R?) with |v|; = n + 1 and the relation in (2.43), i.e
S TA(LE)(t— €)” < const R, vl =n+ 1 (2.52)
£e=

A similar calculation as in the proof of Lemma 2.12 yields that

[, 16(x = Bt) = (a, Fo)| e
R

Rt Ll —y)" s (= ht+y(z—§)
§constcn_}_1_A > /0 7/[Rd| > D¢ | dt dy

— n! c
= o=t 1

< const! ML
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where =; is the support of the map A(t,-) and, by assumption, #=; < C for some

C > 0. Thus, we derive from (2.49) the relation that
(0w f)" = Ref|| < const M1 a7

Since ¢ = ph” by assumption, it is clear from Lemma 2.15 that

if k> X+d,
| /%l < const’
o(hrth=2=d)) ifk<X+d
for sufficiently small A. Consequently, we get the theorem’s claim. |

Corollary 2.18  Under the same conditions and notations as in the Theorem
2.16, let w(h) = h and ¢ = ph for some p > 0. Then, for every f € Wfo(ﬂ:\?d),
O(h ), if k> X+d,

If—R=fll=4 (2.53)
o(hF), if k< A+d.
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Chapter 3
Approximation by Scattered Data on a

Bounded Domain

3.1 Approximation in the Interior of Bounded
Domains

We discuss the more practical issue of approximating a function f : @ — R using
only its known values at finitely many scattered centers. Here, £ is a bounded
open set in R?. In this section, we look for the asymptotic rate of decay of the
error on a closed subset of £, which is disjoint of the boundary of €2, rather than

on whole domain Q. Hence, for 6 > 0, we define
Qs:={z e : jz—y|<d=ye}.

We think of  as either being fixed, or decreasing to 0 as the density of = increases.
Some of our arguments deal with approximation to functions in the homoge-

neous L.,-Sobolev space

wt (R, kel,

of all functions whose derivatives of order k are bounded. We shall denote by | |k,

the homogeneous k-th order L.,-Sobolev semi-norm on w® (R?), i.e.,

[fleoo = D2 1D f]-

lal1=k
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Our choice of radial basis function in this part is still the ‘shifted thin-plate spline’

¢, and its localized basis function . is assumed to satisfy the conditions
sup (1 + 2)) 1y (2) < 0o, h:(0) £0, and ¢, € CHI(RY) (3.1)

for some a positive integer ¢. In the case of approximation over R?, our approximant

was of the form

R

[1]

F@) = [ bepulafw, OAF)(et) di (3.2)

where A is an operator

Ac o Rd(ﬁwy —0) £(0) db. (3.3)

It is natural to truncate the above integrations properly to derive a suitable
approximation on ). First, we need to pay attention to the construction of ¥.(-, 1),
t € Q, which approximates ¥.(- — t), because our error estimation depends on the
error ¥.(- —t) — (-, 1) (as a matter of fact, on ¢.(-,1) — ¢de(-,1)). Specifically, we
note that the error is large when ¢ is far away from all the centers while if there
exist sufficiently many points from = around ¢, we get a tight error bound. Since

(fwst) = D pla)be(-/w,t + a),
aeZd
each t + a is supposed to be surrounded by centers from =. Thus, we take ¥.(-, 1)

into account only for ¢ € s, and then, correspondingly, we truncate the function

A(f) as follows:

Alxaf)() :A(%)v(t—e) £0)dd, e Qs (3.4)

'lr/)c/w(w'
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On the other hand, since the only known information of f is f|z, we approximate
other function values on Q:

fe(0):=>_C(0,6)f(&), 0. (3.5)

£e=

Here, we assume that the coefficients (C(-,€))¢exz are admissible for 11, for a posi-
tive integer m. From the definition of admissible coefficients, we note that the map
f +— fcois exact on 1I,,. Thus, when we can show that fo provides a “reasonable”
approximation to f on {2, we accept this approximant as an initial replacement for
f. In order to discuss the approximation power, let us measure the density of =

as before by

h := supmin |z — £|. (3.6)
reQ) €EE

We describe the approximation properties of fo to f on ) in next lemma.

Lemma 3.1.  Let fc be given by (3.5), and let the coefficients (C(-,€))¢cz for

fo be admissible for I1,,. Then, for f € w* (R?) N C*(R?) with k > m, we have
1f = folliw@ < const A i 0
with const independent of =.

Proof. Since ) ;= C(-,£) = 1 by definition, it is clear that

(f = fe)(0) = ;C(w,ﬁ)(fw) —1(€), 0.

Letting Ty f be the Taylor polynomial of degree m of f about 8 € ), the function

{f(0) — Tof(y) : y € R} is also a polynomial in II,, that matches f and all its



49

derivatives of degree up to m at * = y and then, by the definition of admissible
coefficients (C(+,€))eez, we have

> C(0,)(f(0) = T f(§) =0

£e=
This induces the expression

1F(0) = fe(O) =[D>_C(0,8) > (0—€6D"f(&))
663 |OA|1=TL+1

with & € [0..&]. Further, due to the property C'(8,¢) = 0 for such ¢ that |6 —¢&| >
c1h for some ¢; > 0, we estimate that

1£(0) = fe(O)] = [X2C0,8) > (60— D*f(&)l

EEE lee|i=n+1

< const 7Ln+1|f|n+1,oo Z 1C(8,)].

EeE

Therefore, since

I 1CC M@ < oo,

EeE

we obtain the lemma’s claim. [ |

With the definition of f¢ in (3.5), we define an approximation scheme by

R= - H/ Vol Jw, YA (xafo)(wt)dt

with the operator A in (3.3) and ygq the characteristic function of . Recall that

the function ./, (-/w,t) is a linear combination of the pseudo-shifts

c/w /Wt ZAté. c/w(/w_g/w)

e

Now, for x € {35, the error analysis is based on the estimate
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(= R=D@) < M) (@)= [, vepulefo=DAGD@OE (37)
1 et/ —1) = (e, 1) AS) (i)
1, beralale DA = Axa )t
1L el DAaS) = Alxafe)) (w0
+ 11(@) = (0u])"(@)
with the operator A form (3.3).

We have observed earlier that the last term in (3.7) satisfies
If = (0w /)]l = o(w")

for every function f € Wfo([ﬁ?d).

The next lemma treats the first term in (3.7).

Lemma 3.2.  Let ¥, satisfy the conditions in (3.1) and A be as in (3.3). Assume

further that the relation ¢ = pw holds for some p > 0. Then, for every f € L.,(R?),

[(ouf) = [ bepal-feo = DAt 1cga < const (o),

Qé/w

where q is as in (3.1).

Proof. Using the representation

[ ot_n(LY
7=, o t)((%) (1),
we have the expression
(0uf) = [, el = DA = [ epulofo —OM Pt (38)
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where ' indicates the complement set of  in R?. Since

AWl = 1 (7 705) @re-0a

- 1 (F) @sw—enm< ()

we can bound (3.8) by a constant multiple of

|tey0(x/w — t)| dt.

/Qg o1Vl ( )

Furthermore, under the relation p = ¢/w, we have a bound of 9./, as in (3.1)
Vefw =, < const |- |=4=1,

with ¢ in (3.1) and const independent of w and ¢, but dependent on p. Since

|z —t] > 4 for @ € Qys and ¢ € Qf, a direct calculation yields

. . 1
Yepulafw = Oldt < consto? | dt
/Qg/w Wepulefw = Dldl < constw Q) (w4 |z —t])d+e
1
< t q/ ———dt
< constw o (o 1 [P

[oe] rd_l w q
= constw!? O'(Sd_l)/6 m dr < const; <5)

where S ! = {z € R? : |z| = 1}, and o(S?"!) is the measure associated with

spherical coordinates. [

Finding the approximation order of the second term in (3.7) was the focal point
of our study in the case = R? (see Section 2.3 and 2.4). We obtain the exact same
approximation property on the bounded domain with the admissible coefficients
for 11, for the approximation

Gol1) = DAL, E)e(- — &) = (- — 1) (3.9)

EeE
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where the coefficient sequence (A(-, ¢))¢e= is admissible for IL,. In fact, for func-

tions f € Wég(Hd), we have the following convergence property

I, (oo =1) = gl 0) ACE) )

O(E(1—T)(n+1)+r(A+d)) ifk>\+d,

o h=7) (1) 37k if k< \+d,
with h the density of = in (3.6), in the case w = A" (0 < 7 < 1) and ¢ =
pw for some p > 0. We note that the lemmas in this section are stated with
respect to w® (R?) N C*(R?). But, since WO’Z(Hd) is continuously embedded into
wk (RY) N C*(RY), those results are valid for the smaller space Wk (R%).

A bound of the third term in (3.7) is obtained in next lemma.

Lemma 3.3.  Let v, satisfy the conditions in (3.1), and let the operator A be
defined as in (3.3). Assume that the relation ¢ = pw hold for some p > 0. Then,

for every f € Lo,(R?), we have

| Yefu(z/w = OAS) = Axal))(wl) dt|| 1.0y < const(w/d)",

Qé/w
where const is independent of =, and q is as in (3.1). Furthermore, if § = §(h)

and w = w(h) such that w/§ — 0 as h — 0, then

| /o Vejo(/w — ) (A(f) — Axaf))(wt) dt]| L. (.5 < o(w/d)?.

Proof. It is clear from the condition (3.1) that ||1./u|[1 = [|1,]l1 < oo, hence we

estimate

I, terslafeo = D) = Axal )t dilgon

< 2ol IACS) = Alxa) |z (@29)-
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For y € s, it follows from the explicit formula for A(f) and A(yqf) that

(A(f) = Alxa/(y) = /Q<¢ /U‘zw_)>v(y —0)f(6)db

_ /y'_ﬂ’ Fly—6) ( i )v(a/w) df /"

P

SN N TR

o+

with

g=1- 1" (£)"
3

Hence, we have the bound of A(f) — A(xaf) as following

A - Al << 1 [ 0 o = (<) 11 [ e o 310

|6]e+ |6]2+
Since, as in (3.1),
ot € IR N C*=(R?\ 0)
and 0 € B!, it follows from the Riemann-Lebesgue lemma that |g(60/w)| — 0 as

w/d — 0, and it implies that the last integral in (3.10) tends to 0. |

A bound for the fourth term in (3.7) is deduced directly from Lemma 3.1 and

relation (3.1).

Lemma 3.4.  Let o, and the operator A be defined as above, and let the relation
¢ = pw hold for some p > 0. Assume that the coefficient sequence (C(+,€))eez for
fo is admissible for 11,,. Then, for every f € WE(R?) N C*(R?) with k > m, we

have the relation

I eul-/o — D(A(xaf) — Alxafo))(wt) dt| 1@, < OR™H).

Q(j/w
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Proof. For y € Qs, it follows from the explicit formula of A(xqf) and A(xafc)

that
Aoxal) = Mxafo)w) = [ (575) =0 G0~ seo)
with fe in (3.5). Since
o) e () < (0=

by Lemma 3.1, we obtain the bound

IA(xaf) = Axafe)ll Loy < const A7 flai o

Invoking the condition (3.1), we see that |[t.s.]|1 = ||¥,]l1 < oo, and this leads to

the estimation

I, burelas = D(AG@S) = Alxafo)) (@) dl oy < const ™.
|

Theorem 3.5.  Let ¢., ¥, ¢.(-,1), t € Q, and Rz be as above, and let . satisfy
the conditions in (3.1). Let f € W&(Hd) for a positive integer k. We assume

further that the following hold:

(a) Fort € Q, the pseudo-shift ¢.(-,t) is defined as in (3.9) and the coefficients

(A(t,€))eex for ¢o(-,1) are admissible for 11, with n > A + d.

(b) The function fc is defined as in (3.5), and the coefficients (C(-,€))ee= for

fo are admissible for 1_; in Qgs.
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(¢) The relation p = c/w > 0 holds with w(h) = h.
Then, if k <X+ d and ¢ > X\ + d with q in (3.1),

If = Rz fllbec(@u) = o(h) (3.11)
where const is independent of =, but depends on f and ).

Theorem 3.6.  Let ¢., ¥, ¢.(-, 1), t € Q, and Rz be as above, and let . satisfy
the conditions in (3.1). Let f € Wfo(ﬂ:\?d) for some k € 7,. We assume the
condition (a-b) in Theorem 3.5 above, and assume further that p = ¢/w > 0 with

wh)=h",0<r <1, Then, ifk > X +d,
IF = Refll @) < const 70 4 o) + O(RO-IC#0H0D)  (31)
where q is as in (3.1), and const is independent of =, but depends on 9.

Remark: Note that for the case studied in the above theorems, § must be held
fixed, so that the approximation orders in (3.11) and (3.12) are proved only for fixed
subsets of Q. Alternatively, Lemmas 3.2 and 3.3 show that one should restrict 6 =
§(h) by assuming it to decrease to 0 slower than w(%) in order to get approximation
order as high as possible. For example, in the case of w(h) = A" with rqg > X + d,
§(h) should be

5() > chr- O+

for the approximation order A + d.

3.2 Error Estimates near the Boundary

Approximation near the boundary is a difficult problem. Because data information

is unavailable outside of the domain, deterioration in fidelity of the approximation



56

near the boundary is unavoidable. For example, an asymptotic upper bound on
the approximation order of thin-plate interpolation on the unit ball in R? is O(A?)
while O(h*) is available inside the domain. The reader is referred to the paper
[J2]. Actually, since the available information on f is only f|z with = C , some
special care is necessary in order to eliminate the boundary effects. We approach
this problem by adding additional pseudo-shifts ¢.(-,¢) around boundary. For the
construction of these additional functions, we add new centers to =. Accordingly,

we need the function values at those new centers. First we define a superset
Qg::{y::ﬂ-l—z::cEQand|z|§5}:Q-|—Bg (3.13)

of 2, and add some extra centers on 5225 \ © to be used for the construction of

be(-,1), t € Q5. We denote by

[1]2

the extended center set in 5225, and let

h := sup min |z — €| (3.14)

€Qas €e=

Then, for ¢t € Qu5, we produce extrapolated values of f by applying the matrix
(C(t,€))eec= to flz as follows:

fe(t)=3_Ct,&)[(8). (3.15)

£e=

The coefficients (C(+,¢))¢ez are assumed as before to be admissible for 1I,, for
some nonnegative integer m. Hence, the map f — fo has degree of polynomial
reproduction > m.

In fact, extrapolation contains a strong element of uncertainty even under the
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best circumstances. We describe this approximation property of fo to f on  in

next lemma.

Lemma 3.7.  Let fc be given by (3.15) and the coefficients (C(+,€))ec= be admis-
sible for T,,. Let h be the density of = in (3.14). Then, for f € w* (RY) N C*(R?)

with k > m, we have

Hf fC”LOO (€5) § [Cl(g + CQH]m+1|f|m+1,oo

with ¢ and cy independent of = and 9.

Proof. By applying the same idea as in Lemma 3.1, we first get the expression

1£(0) = fe(0 | 3" 00,60 — ) f N (&)|, 0 € Qs

|oz|1_7r EEE

with & € [0..€]. Since C(6,£) = 0 whenever | — €| > ¢;h for some ¢; > 0, we
deduce that

> C(0,6)]0 — €|* < [dist (6,9) + const A]™ > |C(8,€)].

== EeE

Therefore, since

sup > |C'(6,8)] < oo,

0€Qs (€=

we obtain the lemma’s claim. [ |

Now, for z € 2, we define our approximation scheme on ) by

Ref()= [ ol t) Alxa, o)) di

where

AlXay, o) (y) = /Q%(JJ/"Z’w.))vw—a)fo(e)da, yets  (316)
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with fo(6) in (3.15).
Our approach for the error analysis is now done by estimating each of the terms

in the error bound

(= ReP@) < o) = [, vepulafo =) A0 (3.17)
1L oo = 1) = g/, ) AP t)d|
+| /M Vel /1) (A(S) = Alxa, f)) (wt)dt
1L el DA, F) = Alva, fe) i)
Hf = () (@) (3.18)

with the operator A in (3.3). The terms in this bound are exactly the same as in the
previous discussion except the fourth term which is related to the extrapolation.
The next lemma treats the fourth term in (3.17). It is immediate from the

Lemma 3.7 and relation (3.1).

Lemma 3.8.  Let ¥, and A be defined as above, and let h be the density of
= in (3.14). We assume that the relation ¢ = pw holds for some p > 0, and
the coefficient sequence (C(-,€))ecz for fo is admissible for 1y_y with a positive

integer k. Then, for f € w* (RY) N C*(RY), we have

I eraleleo = DM, /) = Mxafe)) () ey < O((3+ ),

Theorem 3.9. Let é., ¥, and R= be as above, and let . satisfy the conditions
in (3.1). Let h be the density of = in (3.14), and assume that § = 5(h) — 0 as h

tends to 0. We assume further that the following hold:

(a) Fort € Qys, the pseudo-shift ¢.(-, 1) is as in (3.9), and the coefficient sequence

(A(t,€))eex for ¢u(-, 1) is admissible for 11, with a integer n > X + d.
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(b) Fort € Qus, the function fe is defined as in (3.5), and the coefficient sequence

(C(t,€))eez for fc is admissible for 1j_.

(c) The relation p = c¢/w > 0 holds with w(h) =h", 0 <r <1, and w/d — 0 as

h tends to 0.

Then, for every f € W&(Hd), we obtain

N _ , ORI+ Oy if k> X\ 4 d,
If = Refllrw@ < O((B/6)") +o(6") +{
O(h(l—r)(n+l)+rk) if k& < Y + d’

where q is as in (3.1).

3.3 Smoothing Noisy Data

We assume that the data (y¢)eez arise according to the model

Ye = f(§) + €

where the ¢ belong to @ C R? and, for example, ¢ are independent normally
distributed random variables with mean 0 and (known or unknown) variance o?.
Here f : R? — R is assumed to be a smooth function. It is desired to recover an
estimate of f from given data (£, ye)ecz. So we apply the same scheme for the
purpose of smoothing the noisy data. As in the general algorithm, our smoothing

procedure with Rz is implemented in three steps. First, we get a extrapolation fo

from the given data as in (3.15). Next, we smooth the data by the convolution

M )0 = [, (775) w0 e, yed
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where s as in (3.13). Finally, we make another convolution

Ref(z) = Vel /w, t) Axg,, fo)(wt)dt.

Qé/w

As we observed already, we have smoothing parameters ¢ and w which are being
adjusted according to the density of centers and noise (€¢)¢e=. As ¢,w — 0, the
function A(XQMJCC) tends to the local interpolant fo, which make the approximant
lose some smoothness. Also, as ¢ is getting bigger, the approximant becomes
smoother hence may lose some ‘details’. In fact, a good choice for the parameters
¢ and w can be interpreted as a balanced compromise between smoothness and
fidelity of the approximant to the data.

The following example illustrates these steps.

Example. The given data is of the form

Ye = f(g) + €, é. € [_17 1]2

with ¢¢ independent random variables normally distributed with mean 0 and vari-

ance o = 0.05. Here the underlying function is
f(z,y) = [Ba(1.5(x — .5)) — By(1.5(x + .5))] * exp(—y?)

with Bj tensor-product quadratic spline. Figures 3.1-3.4 show the surfaces ob-
tained in each of steps described above. Figure 3.1 displays the surface defined
by the function f, and Figure 3.2 the surface obtained by interpolating the noisy
data. Figure 3.3 presents the surface after removing the noise (Step 2). Finally we
obtain the surface displayed in Figure 3.4. We will discuss this example in detail

in the next section.
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Figure 3.3: Step 2 Figure 3.4: Step 3
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Chapter 4

Computational Aspects

4.1 On the Coefficients of Pseudo-Shift ¢(-,t)

4.1.1 Preliminary

In this section we describe an algorithm for the construction of the coefficient
matrix for the pseudo-shift

qbc("t) = Z A(af)qbc( - ‘5)

e

This algorithm is also applied to find the coefficients (C(t,£))¢ez for the function

fo=2_COf(6)

EeE

For ¢t € Q, the ‘admissible’ coefficients (A(t, £))¢ez for ¢.(-, 1) are required to satisfy

the linear system

S AL E)p(e) = plt) (4.1)

e

for p € II,, with n greater than the order of singularity of cAp'C at the origin. Letting
Gy, Gn, a basis of a polynomial space II,(€), this condition (4.1) holds if and

only if the coefficient matrix

@ := (A(l,§))ee=

solves the linear system
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with
B=(g6) =1 ns £€5)

and

bT = (QJ(t) : .7 = 17' te and)'
Here, for t € 2, we suggest to find the coefficient matrix (A(¢,&))eez for ¢.(+,t) by
a minimization problem

minimize Y _ n(t, &) A*(t, ) (4.3)

EEE:
subject to Fa =b

with a penalty function n(t,-). The choice of polynomial space II,, requires that

4%, > dimll,(RY) = (" ;“ d) —ny
with #=; > ny. In the univariate case, we can make this problem simple compu-
tationally by choosing some good basis functions of II,, (e.g., Hermite or Lagrange
polynomials), which makes the matrix £ banded or triangular. However, in the
multivariate case, since we do not know of a basis for II,, that results in a matrix
E with simple structure, we confront numerical difficulties caused by the condi-
tioning of the matrix £. Eventually, the system (4.2) becomes ill-conditioned with
the increase in the number of constraints. The well-known standard method to
solve this problem is via Gauss elimination. However, Gauss elimination has to
deal another numerical difficulty in providing a solution to the linear system in
(4.3) when all the pivots available for the current step in the current column are

all zero. For example, if all the centers in =; are on a straight line and ¢ is not on

this line, there may occur a controversy. In this case, we need interchange some



64

of centers and recompute a part of the elimination. So the actual location and
configuration of =; need to be taken into account.

C. de Boor and A. Ron proposed a particular elimination method, the so-called
Gauss elimination by degree, which is more efficient for this problem (cf. [BR2]). It
is designed for the construction of multivariate polynomial interpolation. Actually,
it applies Gauss elimination degree-by-degree (not monomial-by-monomial) with

partial pivoting to the Vandermonde matrix

V= (€9

by treating all the entries of a given degree as one entry. Hence, this method can

be applied to the matrix 7.

4.1.2 Factorization

For any ¢ € Q, let =; be the support of the sequence (A(%,§))¢ez, i.e.,

Cbc("t) = ZA(t7§)¢c( - f)

EEE:

We assume that #Z; = m(> ngy) for all ¢t € Q and let

Et = {517525 e 7§m}

Choosing a set of functions {(t—-)*}|4|<, as a basis of II,,, we denote the matrix

ET as follows,
ET = ((t_gp)a p= 17"'ama 0< |a|1 gn)7
and correspondingly, the matrix b in (4.3) is changed to

b:=[10---0]".
——
(ng—1) terms
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The strategy of Gauss elimination by degree begins by treating all the entries of a

given degree as one entry: the (p, q)-entry of ET is to be
E(p.q) = (& : lal =q).

Here and in the sequel, we shall use the notation E in lieu of £ in order to emphasize
the alternative point of view. Thus, the rows and columns of ET are indexed by
£, € = and k=0, -+, n respectively.

Now since the entries in ET are considered not as scalars but as vectors, we
make all the entries in the pivot column below the pivot row orthogonal to the

pivot entry. In order to eliminate entries in column k of ET, a scalar product is

defined as
(a,b) := Z a(a)b(a)wo(a)

la|=Fk

with w a weight function. Furthermore, since each entry in column k consists of

, (k+d—1)!
Clh+d=1Lik) =

monomials, after Gauss elimination by degree in column k, we want to have C'(k +

d — 1; k) nonzero orthogonal entries in the kth column below row

=304 +d—135) + 1,

i<k
the first working position of elimination in the kth column. Hence, the ultimate
goal is the factorization
ET=LU
with LT in row echelon form and U a block upper triangular non-singular matrix.
The algorithm is summarized as follows: Let W be the ‘working array’ which

initially equals ET. At each column, say kth, we first put our working position at
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k°-th row and go through below the row. At each step (let us assume that we start
at k;th row in column k), we look for the current row k; or below the row such that,
in order to alleviate the devastating interaction of rounding error, we find a largest
non-trivial entry (relatively to the size of the corresponding entry or row of ET)
and, if it is not on pivot position, interchange its row with row k; of W to bring
it into the pivot position W (&, k). Then we subtract the appropriate multiple
of the pivot row W (& ,:) from all subsequent rows in order to make W(¢,, k)
orthogonal to W (&, k) for all k; > k;. Then we proceed elimination by Gram-
Schmidt process. Specifically, if we assume that orthogonal entries wj, - - - ,'ij_l)

are already available in a column &, we can compute

< w;,wh >
w' = w.: — Zw’.ij’ ¢ (4.4)
7 J z<, 1oyl >
i< w;, W;

for a next orthogonal entry, and thereby ensure that
< wy,w; >=0 (1 <)

while w’ # 0. It may, of course, happen that all the pivots available for the current
step in the current column k are zero before we obtain C(k + d — 1;k) nonzero
orthogonal entries. Then we have to replace some of the centers in =; by another
centers in =\ Z¢, and perform the calculation (4.4) again on the corresponding row
until we obtain C'(k + d — 1; k) orthogonal entries in the column &.

On the other hand, Gauss elimination is usually performed to a square matrix,
and it factors this matrix into a lower triangular matrix and a upper triangular
matrix. However, since our matrix E7 is a m x ng rectangle matrix with m > ng,

each step of elimination by degree is equivalent to factoring ET into a m x m



67

matrix and a m x ng matrix. For example, the first step can be expressed as the
following

Ef=0L,W
with a matrix W of working array and a lower triangular matrix Ly which is
associated to making the entries in row 2 through row m orthogonal to the first row.
Continuing this process, the final output of elimination by degree is a factorization

of ET in the form

ET=LW. (4.5)

with L a m x m unit lower triangular matrix. Since E7 is a m x ng matrix with
m > ng, the elimination is performed with ng-th columns, and hence the matrix L

can be written in the form

L =[L Ly (4.6)

where the matrix L consists of the first ny columns of L which are associated with
elimination procedures of matrix E”, but Lo takes the last m — ng columns of L,
and it is not associated with any elimination progress, which means Lq(i,7) = 0
for « # 7 with 7 > ng, and Lo(¢,7) = 1 for i = j. Furthermore, the final output
W is a row echelon matrix in the following sense. If we make ordering kq,- -, k,,
of columns according to the degree of each entry and &;,---, &, of the rows, the
last m — ng rows of matrix W are completely zero, and the leading entry (the first
nonzero entry) in the nonzero row W (¢;,:) is the entry W(¢;, k;) for all j < ng.

Hence, the matrix W is of the form
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where U is a ng x ng block upper triangular square matrix, and 0 is a (m —ng) X ng
zero matrix. In actual calculation, the two matrices Ly and 0 can be ignored.

Therefore, the factorization in (4.5) is replaced by
ET =LU

We note that the matrix U do not have to be upper triangular since ky, - - -, k,,, need
not be strictly increasing. But each entry in the diagonal entries are orthogonal to
each other, hence U is invertible. With this factorization, we return to the original

system (4.2)

By substituting

(U=, (4.7)
the linear system (4.2) can be replaced by
LTa=1.

With the matrices L and & at hand, we find the coefficient matrix a :=

(A(t,€))eez, by minimizing the quadratic form

St &) A%, €)

EEE,

subject to the constraints
La="b.
Theorem 4.1.  Fort € Q, let n be a weight function and D = 2 Diag(n(t,&) :

i=1,---,m). Let a = (A(t,€))¢ex,, and let L and b’ be the matrices defined in

(4.6) and (4.7). Then

a=D'L(L"D'L)7'Y. (4.8)
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Proof. The method of Lagrange multipliers induces the following linear system.
Da+ILA=0 and L'a =1V (4.9)

with AT :=[X\; -+ ),,] the matrix of Lagrange multipliers. Then it can be easily

verified that the matrix for the linear system (4.9),

D L
LT 0
is non-singular. Therefore, @ = D' L(LTD*L)~' and A = (LT D~'L)~'¥ solve

(4.9). m

We shall be mostly interested in an optimality condition for the minimization

problem. Here we suggest some examples.

Example 1. We adopt a penalty function of the form

n(t, &) = ny(Jt =€)

where 7, is an increasing function on R4, and 1,(0) = 0. As a good choice of

n4, the following function is suggested in [L]:

t— ¢
el =€) = exp(" =50y
where h is the density of =, i.e.,
h := supmin [t — &|. (4.10)

teQ E€E

Example 2. In this study, we want to find the coefficient matrix (A(¢, €))ez, for

¢c(+,t) which approximates ¢.(- — t) in some sense. But the above example does
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not depend on the basis function ¢.. Hence, in order to minimize an upper bound

of the error ¢.(- —t) — ¢.(+, 1), we consider the relation

|¢c( - t) - Cbc('? t)|2

| 22 A Olbe(- — 1) — ¢ — O

EEE:

< const Z A%t 8) [do(- — ) — (- — )]

EEE:

Thus, our optimization problem becomes

minimize Y A*(t,&)n(t, €)

EEE:
subject to LTa=1"¥

with LT and ¥’ in (4.6) and (4.7) respectively, and
0t &) = [|ée(- — 1) = de(- = Ell1(a (4.11)
with  a bounded domain in R,

Example 3. As an another example of a minimization condition for finding a,

we consider the following Ly-norm minimization:

minimize ||¢.(+,t) — do(- — t)||L2(Q)

subject to LTa=1. (4.12)
The next theorem provides the solution of the problem in (4.12).

Theorem 4.2. Fort € Q, let a = (A(1,€))eez, and E be as above. Using the no-

tation =; = {51)52) T 7§m}: let D = (2 fQ (pC(x —&)qﬁc(”ﬂ _gj)d:ﬂ ti,y=1,--- 7m)'

Then

a=D"'d— DT'E(ETDT'E)"(E"D™'d - b). (4.13)
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where
=2 [ ula = €)ocla—t)dz:j=1,--,m).
Proof. The method of Lagrange multipliers induces the following linear
system

Da+ LA =d and LTa=1¥ (4.14)

with AT :=[\; --- X,] the matrix of Lagrange multipliers. Then it can be easily

verified that the matrix of the system (4.14),

D L
LT 0
is non-singular. Thus, the matrices A = (LY D1 L)"Y (LT D~1d—¥') and @ in (4.13)

solve (4.14). [ |

4.1.3 Algorithm Details : The Coefficients (A(¢,¢))¢ex for
¢C('7t)

Letting d = 2, we give here a MATLAB-like pseudo-program to construct coefhi-

cients (A(t,€))eez, t € Q, for the pseudo-shift

¢c('7t) = E A(t7 5)990( - 5)

e

This algorithm selects a =; which is total for II,,, and then finds an admissible
coefficients (A(+,t))eez, for I,. In this ‘program,’” we use the following convention.
The set of scattered centers = is considered as m x 2 matrix such that we use

the notation

[1]

Pi=Z(,1) and ZF:=ZE(:,2).
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The matrices ET and W are denoted by ET and W respectively. In particular, since
Clk+d—1;k) =k + 1 with d = 2, we note that W(j,k) is a vector with (k + 1)
entries, indexed by {a € Z¢ : |a| = k}, and (k + 1) orthogonal entries will be
obtained in column k. All matrices mentioned in the ‘program’ other than ET and
W are proper MATLAB matrices, i.e., have scalar entries. Correspondingly, for two
vectors a and b (such as W(i,k), W(j,k)) indexed by {a € 7% : la] = k}, <a,b>
denotes the scalar product

<a,b>:= Z a(a) - b(a)w. (4.15)

|ar|=k o

We borrow from MATLAB the notations : (i) ones(m,n) for the matrix of
size m x n with all entries equal to 1; (ii) eys(m,m) for the identity matrix of
order m; (iii) a:b for the vector with entries a,a+ 1,---,a+ m, with m the natural
number for which a+m<b < a+m+1; (iv) A*B for the matrix product of the
matrices A and B; (v) standard logical constructs like (for 7 =1 : n,---, end),
and (if---,---, end); (vi) the construct (while 1, ---, if ---, break, end,

-+, end), which is a loop exited only through the break; (vii) the construct [m,1i]

max (a) to provide m:=a(i) := maxja(j); (viii) the command function [a,b]

ft-name (x) defines a new function called ft-name. The variables within the
body of a function are all by default local; (ix) the relation operator a==b means
that a is equal to b while a=b is used for the assignment statement. Furthermore,

we use an occasional word to describe an action whose details seem clear.

% INPUT : Z¢ = [2! 22|, m, n, tol, penalty function 7
% OUTPUT : a=D"1*L*(LT*D"1xL)"!) xb by Theorem 4.1

Select Z; (from Z) which are closest to ¢, #Zt =m>n
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nbr_og=0 ; k=0

ET(:,k) = ones(n,1) ; W(:,k) = E"(: k)

L = eye(m,m)
for j=1:m
while 1

m,i] = maxisj_1<W(i,k),W(i,k)>/<ET(i,k), ET(i,k)>
if m > tol
nbr_og = nbr_og+l
break
end
if nbr_og > k+1
replace fj by &, one of the closest centers to ¢ from E‘\Et, i.e.,
E"(¢5,:) = ET(¢, )
(L, Wyl= RE—COMP(j,k,E%j,Q, W); break
L(j,1:5-1)=Lj;W(j, k) = Wy;
end
k = k+1; nbr_og=0;
ET(:,k) = [ET(1,k—1) %2l ET(k — 1,k) % 22, ET(k — 1, k) % E2]
W(:,k) = L7+ ET(:, k)
end
if 1 > j, interchange i and j, end
for i=j+1i:n
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end
end

end

L

L(:,1:n) ; W=W(1:n,:)

b= (W)"! b ; D= Diag(n(t,))ees,

a=D1#Lx(LT+D71xL) ) xb

function [Lj,W(j,q)] = RE — COMP(j, k,E*(j,:), W)
q=0
for p=1:j-1
if W(j,q)==0, gq=q+1, end
Li(p) =<E"(j,q),W(p,q) > / < W(p,q),W(p,q) >
W(j,q) =E"(j,q) — Lj(p) * W(p, q)

end

4.2 A General Algorithm for the Scheme R=

4.2.1 Formulation for the Construction of Rz f

We now describe a general algorithm for the approximation scheme Rz on a
bounded domain in R? by using ¢.(z) = (Jz|* + ¢*)*? log(|z|? 4 ¢)'/?, the ‘shifted’

thin-plate spline. We assume that the given data (¢, y¢) arise according the model

ye = f(§) or ye=f(§) +e
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where ¢ belong to 2 C R? and (€;)¢ex= is a type of noise, for example, independent

normally distributed random variables with mean 0 and variance o?.

Step 0 : [Initialization]

For the computational feasibility, we localize ¢. by an application of a difference

operator, i.e., obtains a function of the form

o= ) p(a)de(- — a)

a€EN

where N is finite subset of Z%. One example of N (to be used for our numeri-
cal examples in next section) for this linear combination is illustrated by stencils

centered at the origin as shown in Figure 4.1.

X X X
-3 -2 -1 0 1 2 3
Figure 4.1: Stencil for N (d=2, A = 2)

Actually, the function . need to satisfy the condition in (3.1) with ¢ = 2\ +d — 1.

Letting

T(0) = 3 pla)e™”,

aEN
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the sufficient condition for (3.1) is as follows:
D(r—¢71)(0) =0, |ojy <22 +2d—1 (4.16)

(see the paper [DJLR]). It is not surprising that the localization involves the be-

havior near zero of ¢.. It follows that the localization sequence (u())aen satisfies

> ula)a’ = DYG71(0)

a€EN
with |81 <22 +2d—1. Let N = {a; : j = 1,---,#N}. Then the localization

sequence

j=(ulag)  j =1, #N)"
is obtained by solving the linear system
A[ﬂ =C
where
M = (ozf Bl <22 42d—-1,7=1,---,#N)

and

e=(D%71(0): |Bh <2A+2d—1)7.

Then . satisfies the decaying property

sup (14 [2) P44 (2) < oo
reR?

In particular, assuming N is as in Figure 4.1 with A = 2 and d = 2, the graph of

function . is symmetric about coordinate axes.

Step 1 : [Extrapolation]
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Let Qy5 D O with § > 0 as in (3.13). For z € Qas, we define an extrapolation
fo by applying the matrix (C(-, €))¢ez to the given data (y¢)ees, i.e.,
fe(t) =2 C(t,E)ye (4.17)
€e=
where ye is a function value f(&) or a noisy value f(¢) + €. Like the algorithm for
(A(t,€))eex, we suggest to find the coefficients (C(t,€))¢e= for fo by a minimizing
problem

minimize Y _n(t,)C*(t,€) (4.18)

EEE:
subject to Lie =1

with L and &' as in (4.6) and (4.7) respectively, and

¢ i= (C1,€))ee=.

Because the approximation should be local in the sense that its value at @ depend
on ¢ which is close to x, we assign a high penalty to centers which are far from =z.
Having performed some numerical experimentations with several alternatives for

the function n, we found that a good choice is

it =€ = fesp ) 1 1o g (1.19)

with k € Z; and h the density of = as in (4.10).

Step 2 : [ Compute A(xg,, fo)]
We describe a subalgorithm to compute the function (J/@/ZC)V. In fact, the

function A(xg,, fc) is a combination of (J/@/ZC)V and fo.
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The Fourier transform of . is of the form

0e(0) = 6u(0) 3 ula)e

aEN

d . [ Kptay2(0)
= %c()\ Tz E;V/J cos(a - 0)

where [{’U is a modified Bessel function and

E(8) = 2541 (2m) D=2

For example, in the case A = 2 and d = 2, the constant <=¢(2) is computed as

»3

by using some tools like MATHEMATICA.

Next, we construct a C'*°-cutoff function ¢ as the tensor product of a one-
variable C'*°-cutoff function o' whose support lies in the ball By with 0 < M < 2m,

so that ¢ =1 on Byyy and ||o]| = 1. For t € R, let

with
1

: 1
= ————)dt
Co [/[—1..1] expl 1 — |t|2)

We know that g € C*°(R?), ||g|s =1, and it has support in [—1..1]. Then

ge=¢"g(/e) (4.20)

has support in [—e¢..¢€] and ||g|l1 = 1, so

0 = X[-M+e..M—¢ * Ge
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satisfies our requirements. Then the cutoff function o is defined as
o) = M@) oMaa),  z = (o)

In particular, if d = 2 and N is as in Figure 4.1, the function (J/'lf),,)v is simplified

as

(J )v(e) =L 7 (s) cos(8 - s)ds.

b, 72 Jo. mp2 b,
4.2.2 A General Algorithm for Rzf

Under the above setting and notation, we propose the following general algorithm
for the scheme R=f in the case A = 2 and d = 2. Since it contains several
numerical integration issues, a general policy of numerical integration should be

set up in advance. In this algorithm, we use the notation
Qs:={y=xz+2:2ecQand|z| <d}.
Step 0 : [Initialization]

0.1 Choose the tuning parameters ¢ and w = A", 0 < r < 1, depending on the

density of =.

0.2 Compute the localization sequence i := (p(a;))a;en by solving p = M~'c.

If d =2 and A = 2, we may use the N in Figure 4.1.
0.3 Choose § > 0 and 25 D ().
0.4 Place additional centers in 55 \ € and construct an extended center set =,

Step 1 : [Extrapolation]
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1.1 For t € Qs, construct a linear system Yee= C(1,)p(§) = p(t) (considering

the given data).

1.2 Compute the coefficients (C(-, ) )¢e= for fo by using the algorithm in Section

4.1.
1.3 For t € Qys, compute fo(t) = Yee= C(t, ) F(E)
Step 2 : [Compute A(xg,, fc)]

2.1 Let 01 := X[-Me.. M- * ge with 0 < M < 7, € > 0, and g. be as in (4.20).

Construct a cutoff function o(z) = o'(z1)o'(z2).
2.2 Compute ;/30(0) = 47r|0|_4[§'2(0) >aen pla)cos(a - 6)

2.3 Compute (U/‘;Z;p)v(t) = = Jjo..mp 0(0)'1/;;1(9) cos(t - 0)df (by numerical inte-

gration).
(d) Compute A(xgq,,fc) (by numerical interaction) from fo and (a/';/;p)v.
Step 3 :

3.1 For t € Qy5, compute (A(t7§))£e§/w for ¢c/.(-,t), using the algorithm in

Section 4.1.
3.2 For x € Q, compute ¥/, (z/w,1).

3.3 Compute Rz f from Yejw(/w,t) and A(xg, . fo)-
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4.3 Numerical Results

In this section, we present some numerical results on the approximation of func-
tions by using R= and R= on a bounded domain in R%. Those new approximation
schemes suggested in this study can be applied to noiseless data as well as noise
data. From the theory and experience gained with this approximation, and in com-
pare with other methods, we see that this scheme provides better approximants. In
the following examples, all the scattered centers are generated by a random num-
ber generator in MATLAB, and we observe approximation of a function f on the
domain [—1,1]%. In Example 1-2, we assume that a set = is given in a larger space
containing [—1, 1]? such that, for a given function f, we observe the approximation
power of Rz on [—1,1]* by using all the given scattered shifts of basis function.
Currently, one of the most well-known approximation methods to scattered data is
thin-plate spline (TPS) interpolation, hence some comparisons are given between
these two schemes, and we see better approximations by using the scheme R=. In
addition, one major advantage behind this comparison is that the scheme Rz is
local in the sense that its value at a point mainly depend on ¢.(- — &) for which
¢ € = is close to the point. A well-known disadvantage of TPS interpolation is
that, with the increase of the number of centers, it requires the computation with
a huge matrix which is very ill-conditioned. However, the scheme Rz requires to

solve the linear system

> et,Op() = p(t), peTl, (4.21)

EEE,

which is independent of the size of =. Furthermore, in case a huge set of scattered

center is given, it is possible to do parallel computation by dividing the domain
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into several pieces.

Next, in Example 3-4, we consider approximation of a function f known only

at finitely many centers with noise, i.e., the given data is of the form (&, y,) with

Ye = f(g) + €, g € [_L 1]27 (422)

where ¢¢’s are independent noise with mean 0 and variance o?. Unlike the pre-
vious case, the noisy data (£,ye) arise only inside of a domain. As discussed in
Section 3.2, we use an extrapolation method to recover the function values on some
domain including [—1,1]?, and augment the space Sz(¢.) by adding some extra
centers around [—1,1]%. Then, letting = be the extended center set, we look for an
approximant from the space Sz(¢.) with = by using the same scheme R=. Among
the other approaches for smoothing noisy data, G. Wahba’s thin-plate smoothing
spline (TPSS) technique is widely used. So we provide some comparisons between

R= and TPSS, and we see better approximations by using the scheme R=.

Example 1 Let B; be a standard quadratic spline. We consider approximation
of a C''-function
f(z,y) = Ba(z)Ba(y)

on the square [—1,1]* from the space Sz(¢.), where = consist of 200 scattered
centers in [—4.5,4.5]* as in Figure 4.2. Comparisons between Rz and TPS inter-
polation are given in Figures 4.4-4.5 through the surfaces and contour lines. The
error distributions are also displayed in Figure 4.6-4.7. The sizes of the surfaces of
error distributions look similar, but they have different scale relative each other.
Even, in the contour lines of these errors, the distances between level lines are 0.1

by TPS interpolation, but 0.05 by R=. We obtain absolutely maximal errors 0.1423
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by TPS interpolation and 0.0458 by R=. The coefficient (A(t, £))eez for ¢o(-, 1) are
computed by (4.8) with penalty function 5 in (4.11), which involves the solution of
a linear system in (4.21) with & = 7. In particular, we use the tuning parameters

¢ = 1.5%w with w = .5%.
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Example 2 As a second example, we approximate a C'*°-function

sin(z) sin(y)] °

o) = —expl—(a"+2) + | 22
Another set of 200 scattered centers are generated in [—3,3] (see Figure 4.8),
and we also approximate f over the square [—1,1]2. A comparison has been made
between R= and TPS interpolation. Figures 4.10-4.11 show the contour lines of the
original function and the approximants by TPS interpolation and R=. The error
distributions are also displayed in Figure 4.12-4.13. As in the previous example,
surfaces of the error distributions have different scales each other, and the distance
between the contour lines are 0.1 by TPS interpolation, but 0.05 by R=. We obtain
absolutely maximal errors 0.1682 by TPS interpolation and 0.0397 by R=. The
coefficients (A(t, €))eez for ¢e(-, 1) are computed by the same way as in Example
1. The values of the tuning parameters are ¢ = 2 * w and w = .5%>. Actually, as
we observed through the theory, the parameter ¢ in the basis function ¢, can be
chosen in the manner of ¢ = pw with p > 0 and w = A", 0 < r < 1. Also, it is
recommended to choose r < 1 for the spectral approximation order, and p is chosen
to depend on the smoothness of function f. More specifically, since p determines
the function pr/KQ_1 being involved in the construction of approximant and the
decaying property of f is determined by the smoothness of f, a bigger number
p (eventually, ¢) can be assigned in the implementation of Rzf as f becomes
smoother. Fortunately, though we have an issue of choosing this tuning parameter,
its effect to the approximation is not sensitive according to the smoothness of f. In
this example, the approximant R=f is computed in terms of p = 2, while p = 1.5

with a C''-function f in previous example.
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Example 3 Given a noisy data (&, y¢)ee= with

we construct an approximant to the function f. The underlying function is

f(2.y) = [Ba(1.5(x = 5)) = Ba(1.5(x + .5))] » exp(~y)

with B; standard quadratic spline. Here, a set of 160 scattered centers = is given
in [—1,1]%, shown in Figure 4.14 and ¢’s are independent normally distributed
random variables with mean 0 and variance ¢ = 0.05. As before, the sets =

and (e¢)eez come from a random number generator in MATLAB. The coefficient

(C(t,€))ec= for the extrapolation fo are computed by (4.8) with penalty function

|t = ¢
h?

0.9 = [e 5D 1] - e,

and h the density of = as in (4.10). which involves the solution of a linear system in
(4.21) with k£ = 1. The coefficient (A(%,§))¢ez for ¢.(-, 1) are computed by the same
way as in Example 1 with £ = 5 in (4.21). In particular, because of the uncertainty
of extrapolation outside of [—1,1]?, we technically adopt a high tension w = .1 and
assign ¢ = Tw. Also, we use cutoff function & such that suppoc = [—M, M]* with
M = .197. As a matter of fact, the tuning parameter ¢ and w control the trade-
off between smoothness of approximant and fidelity of approximant to the data.
But if the tension parameter w is fixed for the technical issue, the parameter ¢ is
determined by p. In particular, the smoothing step

M o)) = [, (7705) w0 fe@a,  yeds

26 {(rbc/w (w'
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with Qs as in (3.13), which is a key ingredient in the development of our approxima-
tion from noisy data, is influenced by the cutoff function o with suppo = [—n, n]?,
n < 2m. Then p and n become our tuning parameters on behalf of ¢ and w. How-
ever, the visual appearance of approximant is not sensitive to the choice of p and
n. Comparisons between R= and Wahba’s thin-plate smoothing spline (TPSS) are
made. Figures 4.15-4.17 give the surfaces and the contour lines of the original
function f, the approximants by TPSS and R= over the square [—1,1]%. We see

that R= provides better approximant, but also has smaller error.
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Example 4 Given a noisy data (&, y¢)ee= with

ye = f(§) + €,

we construct an approximant to the function f. The underlying function is
flz,y) = [1.4 % By(1.2(z — .8)) + Bs(1.2(x + .8))] * exp(—y?)

with By k-th order standard spline. Here, the same set = and (¢¢)¢ez in Example
3 are used. The coefficients (C(t,€))eez and (A(t,€))eez for fo(t) and (-, 1)
respectively are also computed by exactly same way as in Example 3. Our setting
of tuning parameters are in the same spirit as in the previous example. We assign
a high tension w = .1 and ¢ = bw. Also, we use cutoff function o such that
suppo = [—M, M]* with M = .217. Comparisons between R= and Wahba’s thin-
plate smoothing spline (TPSS) are made. Figures 4.18-4.20 give the contour lines

of original function f, the approximants by TPSS and R= over the square [—1, 1]*.



Figure 4.18: Contour lines of Original Function
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Figure 4.19: TPSS : Max. Error = 0.1136
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Figure 4.20: R=f : Max. Error=0.1010
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