Constr. Approx. (2001) 17: 227-247

DOI: 10.10075003650010033 CONSTRUCTIVE
APPROXIMATION

© 2001 Springer-Verlag New York Inc.

Approximation in Lp(RY) from a Space Spanned by
the Scattered Shifts of a Radial Basis Function

J. Yoon

Abstract. A new multivariate approximation scheme A using scattered translates

of the “shifted” surface spline function is developed. The scheme is shown to provide
spectrall p-approximation orders with i p < oo, i.e., approximation orders that
depend on the smoothness of the approximands. In addition, it applies to noisy data as
well as noiseless data. A numerical example is presented with a comparison between
the new scheme and the surface spline interpolation method.

1. Introduction

1.1. General

Approximation schemes of the form

(1.1) S(X) = ch(x —£), x € RY,

el

with ¢ a “suitable” basis function are known to be effective for approximation to scattered
data. The use of a radially symmetric basis functias particularly useful because this
facilitates the evaluation of the approximant, while still leaving enough flexibility in the
choice ofgp. The setE in RY by which the radial basis functiap is shifted is usually
referred to as a set of “centers.” The common choicesiotlude:p(x) = |x|* log|x|

with d andx both even integers (surface splinglx) = (|x|? + ¢®*/2 with A andd

both odd integers (multiquadric), agdx) = exp(—c|x|?), ¢ > 0 (Gaussian).

The initial approximation method using radial basis functions has been obtained by
means of interpolation at finitely many scattered poiatsn RY. However, while the
interpolation method is certainly an important approach toward solving the scattered
data problem, it has several drawbacks. For example, for a large class of basis functions
(including multiquadrics and inverse multiquadrics), the existing theories guarantee the
interpolant to approximate well for only a very small class of very smooth approximands
(see [MNZ2]). Another drawback of the interpolation method is connected with the issue
of numerical stability: as the number of centers increases, one needs to solve alarge linear
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system which is ill-conditioned. Last but not least, interpolation is never recommended
when the data are known to be contaminatednpisy data). All in all, there is an
overwhelming need for approximation methods other than interpolation.

In view of the above discussion, we need a scheme with the following properties:

(i) it should approximate well a large class of functions;
(ii) it should be “local,” namely, a coefficient in (1.1) should be determined by a few
values of the data, even when many centers are involved in the scheme; and
(iii) the scheme should have a “smoothing” effect.

Thus, the main objective of this paper is, indeed, to construct an approximation scheme
on nonuniformly distributed centers that satisfies all the above (and more).

It should be noted that noninterpolatory approximation schemes of the type (1.1) are
also discussed intensively in the literature. However, most of the results in that direction
deal with the case when the center &ts infinite and uniform, i.e., a scakz? of
the integer lattic&9. In fact, there are only a handful of treatments of noninterpolatory
schemes for arbitrary center s@&sBuhmann, Dyn, and Levin [BuDL] were among the
first to construct a noninterpolatory approximation scheme for infinitely many scattered
centers and to analyze its approximation power. Dyn and Ron [DR] showed that the
scheme in [BuDL] can be understood as “an approximation to a uniform mesh approxi-
mation scheme.” In both papers, quasi-interpolation schemes from radial basis function
spaces with infinitely many centeB&were studied and both showed that the approxi-
mation orders obtained in the scattered case are identical to those that had been known
on uniform grids. In particular, N. Dyn and A. Ron provided a general tool that allows
us to converiny known approximation scheme on uniform grids to nonuniform grids,
while preserving (to the extent that this is possible) the approximation orders known in
the former case. The approach of [DR] can be described as follows: suppose that we are
given an approximation scheme

fio > ra(Fe( —a).

aezd

Then, we replace eaeh(- — «) by a suitable combination

> A (- — &),

E€E

with E the set of scattered centers we wish to use. This result, however, requires one to
choose the density of a uniform grid that is associated with the given scattergd set
As an alternative, we construct in this paper a new approximation scheme that, while
based on the general idea of [DR], is not connected to uniform grid approximations. The
approximation scheme that is developed and analyzed here is intrinsically “scattered”:
it employs directly the scattered shifts of the basis func@oirurthermore, while the
conversion tool in [DR] is applied there only to stationary schemes (see [BR], [DJLR]),
we successfully apply our new scheme to the more general nonstationary case. This
results in schemes that provide spectral approximation orders (i.e., approximation orders
that depend only on the smoothness of the approximdngle approximate).

Before we advance our discussion further, we would like to comment on the notion
of “radial basis function,” a comment which, as a matter of fact, is valid for all studies in
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the area of scattered data approximation. Many basis functions that are not necessarily
radially symmetric fit the theory developed here. The mere advantage of the radial
symmetry concerns the ease of the actual calculations, and has no theoretical advantage.

Among the basis functions currently in use, we choose our basis function to be the
“shifted” surface spline

_ JUxi2+ A2, reZ,.,x dodd
(1.2 pelX) = {(IXI2 +c?)*2log(|x|2 + c?)Y2, A eZ,, A, deven

whose properties are quite well understood, both theoretically and practically. One of
the reasons for choosing this particular function (over the “shifted” surface spline) is
the desire to use the parameteas a “tension” parameter. Note that we stress this
tension parameter by using the notatignWhenx andd are odd integers, the function
@c(X) = (IX]? 4+ ©)*/2 is usually referred to as a “multiquadric.” In particulargif= 0,

the resulting functiongo(x) = |x|* log|x|, is the so-called “surface spline.”

The reader who is interested in knowing more about the state-of-the-art in the area of
radial basis function methods may find it useful to consult with the surveys [Bul], [D],
and [P]. Another important source is the work of Madych and Nelson [MN1,2], who
developed a theory of interpolation based on reproducing kernel Hilbert spaces. The
general conditions op that ensure the existence and uniqueness of a solution of the
interpolation method have been given by Micchelli [M]. More recently, M. J. Johnson
[J] established an upper bound on the approximation order when interpolating data that
are defined in the unit ball d2%. His analysis covered the basis functipwf the form
@ =|-|?ford, x» odd, andp = | - |*”?log| - | for d, A even.

The following notations are used throughout this paper. For the given fungtiand
a discrete2 ¢ RY, we define

Sz (¢c) = closureS(ec),

under the topology of uniform convergence on compact sets, with

So(ge) = spargc(- — §): § € E},

the finite span ofg.(- — &) : & € E}. The Fourier transform of e L1(RY) is defined
as

f©) :=/ f(hesdt, e x> 7%
Rd

Also, forafunctionf € L;(RY), we use the notatiof" for the inverse Fourier transform.

We assume that the reader is familiar with the usual properties of the Fourier transform.
In particular, the Fourier transform can be uniquely extended to the space of tempered
distributions orR®. Several different function norms are used. In particular th@orm,

1< p < oo, is denoted as

Ifllp = 1fllL,Re).

Forx = (Xq, ..., Xq) in RY:

IX| i= (X2 4 X3 4 - - - 4 x§) Y2
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stands for its Euclidean norm and, fere Z4 = {8 € 2% : g > 0}, we seta! :=
arl---agland|aly = z‘k‘:l ak. Finally, Tk stands for the space of all polynomials of
degree< kin d variables.

Given a functionf in C(RY\0), we say thatf has a singularity of order k at the
origin if there exist some constants, ¢; > 0 such that; < |- |¥|f| < ¢, in some
punctured neighborhood of the origin.

Asymptotic approximation properties are usually quantified by the notion of approx-
imation order. In order to make this notion precise, we define the densiybyf

(1.3) h:=h(8) := supinf |[x — &|.

xeRd §€E

Then, given a sequencky,), of approximation schemes, we say thiat ), provides an
L ,-approximation ordek > 0 if, for every sufficiently smoottf € L,(RY),

If —Lnfllp=0(%, 1<p<oo,

ash tends to 0. In our study, the range lof is the spaceSz(¢c) for certainE andc.
Note that we have to index the operalgrby the densityh := h(E) of the center seE.
While this is convenient in the context of discussing approximation orders, the reader
should keep in mind that the actual schelmedepends on the choice ¢f as well as
on the given seE becausd.;, maps t0Sg (¢¢).

We used above the loose term of “sufficiently smobthMore precisely, our approx-
imands are chosen from the Sobolev space

Wy(RY, 1<p=<oo, keZ,

of all functions whose derivatives of ordetsk are ian(Rd). By |- |x,p, We shall denote
the homogeneousgh orderL P-Sobolev semi-norm, i.e.,

[flp:= > IID*fllp.

lrla=k

1.2. An Outline of our Approach

Let f: RY — RY be a smooth function, and let be the “shifted” surface spline as in
(1.2). The basis functiop. should not be used directly in any approximation scheme
since it increases polynomially fast arousel However, a suitable bell-shape

(1.4) Ye) = Y p(@)ge(X —a)

aezdd

is obtained by applying a difference operator. To simplify the discussion at this intro-
ductory stage, we assume that the localization sequerneef finite support.

In our study, we obtain an approximation scheme into the space spanned by the
scattered shifts op. by employing the following 2-step method. In the first step we
mollify f: we approximatef by

\
o, x|
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with o, a cut-off function, where is a parameter depending ani.e.,
w = w(h),
(we discuss this point later in further detail). In particular, we choose the paratrieter
¢c SO that the ratio
0 '=Clw

is held fixed. This will lead to the construction of numerically stable schemes. Next, we
look for an approximant from the spaSg(¢) which approximates « f in some sense.
To this end we realize that we know how to approximate wglk f by convolution:

o, x T~ [y, x Af(0)](-/w).

Here, the functiony, is a localization ofp, as in (1.4) so that, after some calculations,
one can see that

(L5) Yo/ —1) =Yrul/o—1) =Y w@ecl - +x)w)/o".

aezd

Also, A is an operator depending e} and it is of the form
(1.6) Af =me, *x f

with m¢ .+ a mollifier that “inverts” (in a suitable sense) the convolutisx. However,
the above approximant then lies in the space spannal life translates ap., con-
trary to our desire to have the approximantsSi(e¢c). Therefore, we approximate the
convolution kernelx, t) — ¥, (x/w — t) by a kernel

x,t) — K(x,1t).

The basic properties df are as follows:

(a) forafixedt € RY, K(-, 1) € Sz(¢c); and
(b) for afixedx € RY, K(x, -) € L1(RY).

Our quasi-interpolant is then initially written in the integral form
(1.7) Rg f :=/ K, D(Af) (wt) dt ~ o) * f
Rd

with the same operatax in (1.6).
The construction of the kern& (-, t) is done as follows: we first approximate each
@c(- — t) by a linear combination

(1.8) e, 1) 1= Alt, £)ge(- — ) € Sa(¢e).

E€B

Here the sequend@\(t, -)) is assumed to be finitely supported for each RY. (Note
that the above sequence is defined®mowever, we do not necessarily assug® be
finite.) Further properties of the map &) — A(t, &) that are essential for the success
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of (1.7) will be analyzed later. Next, by replacing each spift —t) in (1.5) bygc(-, t),
we defineK (-, t) by

(1.9) KD = 3 w@gel, (t +@)w) /o ~ P, (/o 1),

aeN
It is obvious from this form thaK (-, t) € Sz(¢c), for eacht € R. Note also that the
kernelK depends on the locations of the cent&rsut not on the approximant.

With the approximation scheni®z above at hand, our goal of this study is to prove
error bounds of the following form (Theorem 1.1). The theorem we state now can be
regarded as a prototype for the main results. We remind the reader that the parameter
A appears in the definition af. (and should not be confused with the convolution
operatorA) while d is the spatial dimension.

Theorem 1.1. Letthe basis function, and the approximation scheme; Re given as
above Let the coefficientsA(t, £))zcz for ¢c(-, t) in (1.8)satisfy the relation

Y AM&qE) =q)  forany ge I,

E€B

with n a “sufficiently large” integerAssume that fe WX(R?) N W"(R?) with m :=
min(k, » 4+ d), wherel < p < co. Thenifk < A + d, we have an estimate

I f — Re fllp = o(h*).
Also, if k > A 4+ d, we have
I f — Rz fllp = o(h™),

which is valid for ever <r < 1.

Note that the theorem indicates that we obtain approximation orders that depend on
the smoothness df only. We emphasize that the numipervhich represents “accuracy”
(as well as the complexity) of the scheme, depends en(0, 1) and the smoothness
parametek: the higher approximation order we desire, the more complex our scheme
is. We also emphasize that the “tension parametéinat appears in the definition @f
may vary withE.

The layout of this paper is as follows: Section 2 is devoted to the development of the
approximation schem@z. In Section 2.1, some basic propertiegpghre discussed and
then the schem®&g is constructed. Also discussed there is the issue of the smoothing
effects of Rg. In Section 2.2, we discuss properties of the ma#ix -) (which appears
in (1.8)) that are essential for the success of (1.7). Section 3 is devoted to error analysis.
Specifically, the approximation order of the scherags discussed in Section 3.2. Aswas
said, we will show thaRz providesspectral approximation orderghe convergence rate
of the scheme will be determined by the decay at infinitf i e., by the smoothness of
the approximand ). Finally, in Section 4, a specific numerical example which illustrates
the accuracy of approximation by using the schégés provided. The initial numerical
tests reveal that the new approximation scheme gives better results than the surface spline
interpolation method, which is one of the best well-known methods in this area.
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2. The Approximation SchemeRg and the Function ¢¢(-, t)

2.1. The Approximation Scheme

As mentioned in the Introduction, we choose to focus on “basis” functions that are
obtained from the fundamental solution of the iterated Laplacian by the shikjng
(I1X|2 + c®)Y2 with ¢ > 0:

() = [(XE+ ), »eZy i dodd
P =1 (%12 + )M 2log(|x[? + A)Y2, x e Z,, x, deven

The generalized Fourier transforms of these functions satisfy that
(2.1) 9e(6) = c(h, )OI+ K g2y /2(IcO)),

[GS], wherec(x, d) is a constant depending arandd, andK, (Jt|) := |t|”K,(|t]) with
K., (]t]) the modified Bessel function of order (Note that despite the similarity in the
notations, there is no direct connection between the aboemd the kerneK.) The
following properties oK, are related to our analysis:

(2.2) Ky (It]) ~ \/gt“—l/ze-"' (t — o00),
K, (It]) € C*71(RY) N C>(RI0),

see [AS]. One property af. which is important in our development is the following:
Lemma2.1. Lety. be as aboveror anyv € Z$ with [v|; =:n+1> 1 +d+1,
D'pc € Lp(RY),  1<p<oo.

Proof. Itissufficientto prove thatthe Fourier transform{of* D¢ : X > X* DY ¢(X)
with |a|; = d + 1isin L1(RY). Note that

[()*D el = (=DH"ID(( )" ¢o).
Hence by using Leibnitz’ rule, we will show that
(2.3) D”( )"D* 7 ¢c € L1(RY.

Since D*77 ¢, decays fast aroundo, the function in (2.3) is inL1(Ny) for some
neighborhood\,, of co. Next, from (2.1), we see that the distributi@® " ¢. has a
singularity of orderr + 2d + 1 — |y|; at the origin andD” ( )" has a zero of order
n+ 1 — |y|; at the origin. Thus, we find that the function in (2.3) has a singularity of
orderi 4+ 2d — n, andi + 2d — n < d by assumption. It implies th&?” ( )"D*~" ¢, is

in L1(Np) with N a neighborhood at the origin. [ |

Now, let us turn to the construction of the approximation sch&san (1.7). Suppose
that we look for an approximant in the spanggf- —t), t € RY, for a smooth function
f: RY — R. Then we may try to find the exact solutidri of the convolution equation

gk f* = 1.
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However, this equation is not always solvable. In order to make sure that there is a
solution for this equation, the functiohneeds to be very smooth in a way that depends
on the basis function.. Thus, rather than solving the equation exactly, we approximate
first the functionf by

Y
o, * f

wherew is a parameter depending ani.e.,
w = w((h),

0w . X = o(wX), ando : RY — [0, 1] is a nonnegative€>®-cutoff function whose
supporto lies in the ballB, := {x € R%: |x| < n} C [-2r,27]% with o = 1 on
B2 and|lo|l« = 1. Then we look for an approximant from the spa&eqc) which
approximates, * f.

Since the functiow,’ * f is band-limited, after substituting) = f for f in the above
convolution equation, we can find a solution

f* = (0, f/90)"
of the following equation
(2.4) pcx =0 x f.

Since our real intent is to approximate the functigh = f from the spaceSz(¢c), a
natural way to construct an approximant from the sp&gg.) can be to replace the
kernelp(- —t) in the convolution equatiop. * f* in (2.4) by the approximatiopc(-, t)

in (1.8). However, a close look at the left-hand side of the above expression (2.4) shows
that this attempt encounters several obstacles. First, the basis fupctioows at some
polynomial degree away from zero, and there are inherent “cancellations;” hence loss of
significance in the integration. Furthermore, in order for the above integration to make
sense, we need to impose some extra conditiorfs @damely, the functiorf is required

to satisfy the conditiorf € C¥(R?), k > d + 1.) The standard way to circumvent those
difficulties is via a “localization process.” Our strategy is to localize the kesgel- t)

in the above convolution equation (2.4) by applying a difference operatay, tohich
constructs a new bell-shaped kernel

Yo=Y m@gc(- —a)

aezd

where the localization sequenge Z% — C decays fast abo and the above sum
converges uniformly on compact sets. In factis chosen to have finite support in this
paper and the functiotr. is assumed to satisfy the condition

sup(L + [X)™e|ye(x)| < 0o

xeRd

for somemy, > d. The ability to perform this localization process is due to the structure
of the Fourier transform ap.. The crucial fact is that the Fourier transfotimof ¢ is
very smooth off the origin (see [DJLR]). This means that in order to localizee only
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need to make sure that the Fourier transfgrgof v is smooth at the origin. To ensure
numerical stability, we need to insist that

ye(0) # 0.

In other words, considering the localization conditionjenthe function/. is continuous
everywhere, especially at the origin. Hence, the function

Ti= ) e

aezd

with 1. = ¢ has a high-order zero at the origin. We note herettiga 2r Z%-periodic
function, and since the only singularity ¢ is at the origin and. # 0 onR%\0, we
can assume thatdoes not vanish on some punctured neighbortgd of the origin.
This ensures that. does not vanish ofe. Expressing the inverse Fourier transform of
T as

(2.5) V=) @,
aezd

the above convolution equation (2.4) implies the relation

A

(2.6) o) x f = gz)c*‘l:(a)~)v*< waA )
T(w-)¢c

in which the propertygh)¥ = g¥ % h" is used. Invoking the relation in (2.1), we obtain
(2.7) T(@)ge = &N (@-).
Denoting
p=Cl/w,
the expression (2.7) leads to
(2.8) T(@)" % gc = 0" Y, (-/w).
Hence, from (2.6) and (2.8), a direct calculation using change of variables yields that

w—deC/w>*(A“”f )

p(a*)

- [¢b*(¢fz£)> (w»}(%w»
@

Thus, approximating the convolution kerng)(-/w — t) in the above identity by

\4
o, * f

KG D =) w@eet, t+ a)w)/o’

aezd

with ¢(-, t) in (1.8), we obtain the following scheme:
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Definition 2.2.  With ¢, V¢, andK (-, t) as above, we define our approximation scheme

(2.9) Rg f :=/ K(, Af(wt)dt,
Rd

whereA is the operator

(2.10) A: f i (04T, (@) * f.
Remark. From (2.10), we observe that
(2.12) At = [ @i o=y feydy

Here, we find that /vy, € C#*+2-1(RY) (see [DILR]) ando/v,)" decays at some
polynomial degree. Thus, we realize that the localization properfyzofs due to the
decaying properties of the kernkl and (a/tﬁp)V in the sense that the contribution to
the approximant’s value at a poixby the data value &t € E decreases as the distance
betweerx and¢ increases. In addition, the definitionléf(-, t) leads to the explicit form

RefO0) =) ge(x—€) Y p(@)Cea(f),

§€E aezd

where
Ceo(f) = / Alw(t + a), E)Af (wt) dt/o*
Rd

with A in (2.10). It ensures that the approximdy f belongs toSg (¢.).

Remark. The schemdrz has a smoothing effect through the convolution
Af = (00/V,(@)) * T,

in (2.9). The actual smoothing parameters@aedw; they are adjusted according to the
density of centers and the level of the noise.cA® — 0, the functionA f converges

to a local interpolant off . On the other hand, asgrows, the approximant becomes
smoother; hence, it may lose some “details.” A good choice for the paranteteid

w can be interpreted as a balanced compromise between smoothness and fidelity of the
approximation to the data. Practical examples are discussed in [Y].

2.2. The Admissible CoefficientA(t, £))eez for ¢c(-, t)

For a given discrete sé& in RY, our approximation schent@z in (1.7) is based on the
approximation of each shific(- — t), t € RY, by a linear combination

(2.12) 9e(, 1) 1= ) A E)go(- — §).

E€E
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We refer tog.(-,t) as a “pseudo-shift” ofp.. For everyt e RY, the coefficients
(A(t, £))eez for ¢c (-, t) are assumed to satisfy the following condition: for same> d,
there exists a constaatndependent ok andt such that

(2.13) loe(X —t) — (X, )] <c(d+[x —t)™™,  xeR.

This condition pertains to the most fundamental property of the basis funeiidhat
we study; whileg, itself grows atoo, a suitable linear combination of translatespgf
should decay ato.

Theorem 2.3. Let(A(t, £))sez,t € RY, be the coefficients fer. (-, t) in (2.12). Assume
that

(a) the set{A(t, -)(t — -)J: t € RY} of functions defined o& lies in ¢1(E) and is
bounded there for all < s for some nonnegative integerand

(b) forall p € IT, withn € [» + d, s) (A + d is the order of singularity of. at the
origin), the coefficient§$A(t, £)):cz Satisfy

D At E)pE) = p(t).

Ee€l
Then we have the relation
lpe(X — 1) — @e(X, )| < c(1+ |x —t])~™

with ma = n— A > d and c a constant independent of x and t

Indeed, once the following simple lemma s established, this theorem is proved directly
by Theorem 2.7.1 of [DR]:

Lemma?2.4. The relationzéeE A(t, &) p(¢) = p(t) holds for every pe I, if and
only if

(2.14) D AR E)( — £ =y,

el

Proof of the Lemma. The “onlyif”implicationistrivial, since-—&)* is a polynomial.
As for the “if” implication, assuming (2.14) to hold, it is clear that

D At EPE -t = pO)

EcB

for any p € I,. This implies that

> A £)pE)

Dt AMEDUPE — b/l

&eE lela<n  &€E
= > t“D*p(0)/al = p(b),
leels=n

which completes our proof. ]
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Forthe given basis functigm, Theorem 2.3 states sufficient conditiong ét, £)):cz
that imply (2.13). The highlight of these sulfficient conditions is that they are actually
independent of the basis functigg the only information required on the basis function
@c is the order of singularity of the Fourier transfofipat the origin. If a different basis
function (e.g., the surface spline of orderhas the same order of singularity (at the
origin on the Fourier domain), we can use the same coefficient seqUA(CE))scz to
construct its pseudo-shifts. The general conditiongAdt, £)):cz and basis functions
for the successful construction @f(-, t) in the sense of (2.13) are studied in the papers
[DR] and [Y].

Here and in the sequel, we assume (without much loss) that, for anyt fix&f, the
sequencéA(t, £)):cz is finitely supported, and we use the abbreviation

B = (£ € B: AL, £) # O},

Of course, we choose the centers in the&eto be some “close neighbors” of It is
natural to requireg; to have the nondegeneracy propertyffy, i.e., any polynomial in
IT,, which vanishes ofE; must be identically zero. This also implies that the number of
centers inZ; should be no smaller than
(n+ d)!

ntd -

In view of the above discussion, we introduce the notion of “admissible coefficients”
(AC, E)zez-

dim I, (RY) =

Definition 2.5. The coefficients(A(-, £)):cz are termedadmissible for I, if they
satisfy the following three conditions:

(a) there exists; > 0 such that, forany € RY, A(t, £) = 0 wheneveit —&| > c;h,
with h the density of2 as in (1.3);

(b) the sef(A(t, £))zez: t € RY} is bounded ity (E); and

(c) foreveryt e RY, Y. o A(t, £)8: =8 onTly, i.e.,

=

(2.15) DAL EPE) =pt),  Vpel,

E€B

Remark. Whenthe coefficientSA(-, £)): .z are admissible fofl,, we realize that their

key property is local reproduction of polynomialsii,. It is an important ingredient

in our error estimates in the following Section 3. We also note that the linear system in
(2.15) is invariant under the dilation and translationRShand E. Hence, without loss

of generality, we assume that the following condition holds in this study:

(AL, §))zez = (AL, §/0))¢ce, §>0.

3. The Approximation Power of the SchemeRz

3.1. Basic Results

As we discussed in the previous sections, our approximation is performed in two steps:
first a function f is approximated by, x f, and then we approximate this mollified
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function by the quasi-interpolamg f. For this reason, in error analysis, it is useful to
divide f — Rg f into two parts

(3.2) f—Ref=(f—0o,*xf)+ (o) xf—Rzf).
To estimater,’ « f — Rg f, we first consider the following lemma:

Lemma 3.1. Let Rz be the scheme defined as(i9). Assume that the coefficients
(A, £))eez for gc(-, 1) in (1.8) are admissible fofl, with n > A 4 d. Then for every
f € L1(RY), we have the identity

3.2) o, % —Raf =/ (@c(- = 1) = g D) (0, T /de)” dt.
Rd

Proof. From (2.8), let us recall the equation
Vo (/o) = 0 T(@)" * g

with p = c/w. Then, by (2.7) and change of variables, we deduce that
(0 + T =Ra1)00 = 08 [ )" x fgetx =) = getx NOAT O
Rd

= o ¢ / (@e(X = 1) = @c(X, 1) (z(@)" * Af)(1) dt
Rd
with A in (2.10). Using (2.7) again, we get
o (@)Y % Af = (0, T/§0)",

which completes our proof. ]

Theorem 3.2. Let Rs be the scheme defined as (.9). Suppose the coefficients
(A(t, €))¢ez for ¢c(-, 1) in (1.8) are admissible forll, with n > A + d. Then for
every band-limited function & L1(RY), we have

| f — Rz fllp < consth™™.

Proof. For sufficiently smally, the termf — o « f is identically zero becausg is
compactly supported. Thus, invoking (3.1), it suffices to estimate only the efrer
f — Rg f. For this, we recall the conditioEseE A(t, &) = 1to derive

Pc(X —1) —gc(X, 1) = Z At §)(@c(X — 1) — @e(X — §)).
E€E
Let Tx_tpc be the Taylor expansion of degreeof ¢, aboutx — t. Then, due to the
polynomial reproduction propertzEGE A(-, &) p(§) = pforanyp € I, we get

> A Olpex—D—Teipex—6] = Y Dge(x—t) > A(t, £)(t—£)"/v! = 0.

E€E O<|v]1<n E€kB
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Thus, it gives the identity

PeX — 1) — e, ) = Y A, £)Ra(t, £)

Eel

with the remainder in the integral form

t— v 1
Rit.6) = Y /O(n+l)(1—Y)”D”¢c(X—t+Y(t—é))dY-

[vl1=n+1

Moreover, sinceA(t, §€) = 0 whenevelt — &| > ¢;h for some constant; > 0 (see
Definition 2.5), we obtain the bound

Y IA 8t - &17/v! < consh™ Y At £)]

E€B E€B

for |v]1 = n+ 1. Therefore, it provides the inequality

lpe(X — 1) — ge(x, 1) < consh™™ ) " |A(t, £)|

Eel

1
X/o M+DA-y" > ID'ge(x —t+y(t — )l dy.

[vli=n+1

Now, in order to bound the errgrf — Rz f||, with 1 < p < oo, we apply the above
inequality to the right-hand side of the identity (3.2). Then, a direct calculation using the
Minkowski’s inequality (for the case £ p < 0) yields

(3.3) IIf —Rafllp < consh™|(o, /@) l1lgclnsrp, 1< p=<oc.

Consequently, to complete the proof of the theorem, it remains to show that the term
(oo T/¢c)”[l1 is bounded by a constant independentwofLet o, be a compactly

supportedC>°-cutoff function suchthat, = 1onthe support of . Then, for sufficiently
smallw, it is clear that

©0nf/60) = (0 /¢e)” * 1,
and it follows

@0 f/¢0) Il < @t /@) 12l f 12
Combining this bound with (3.3), we establish the required result. ]

We now estimate the errdr — o,/ * f:

Lemma 3.3. Leto, be the cutoff function defined as in Sectda. Then for any
Ve ZS’H

/ 60, (6)d6 = 5,.
Rd
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Proof. Using the property’s.’ (9) = (—iw)" (D o (w-))"(9) for anyv € 24, we
have

/ 0”0 (0)dd = (—iw)"* (Do (w))(0) = §,,0.
Rd

Lemma 3.4. Leto, be the cutoff function defined as in Sectibh. Then for every
f e WK(RY), we have the convergence property

If—o) fllp =0, 1<p<oo,

asw tends tad.

Proof. From Lemma 3.3, it is easy to check that o,/ (9)d¢ = 1 for anyw > 0.
Then it leads to the identity

(f —0) x f)(t):f o O)(f(t) — f(t—6))ds.
Rd

Here, Taylor expansion of (t — 6) aboutt gives the expression

(3.4) fy—ft—0)= >  (=0)'D"ft)/v!+ Rf(t,0)

O<|v|1<k
with

1
Ref(t,0) = Z (—9)“/ k(1—y) VD" f(t — yo)dy/v!.
0

[vla=k

Due to the facyRd 0,/(0)0" do = 0 forv # O (see Lemma 3.3), we find that the integral
of oY multiplied by the first term in the right-hand side of (3.4) is identically zero. Thus,
we get

(f —o) x f)(®) =/ o, (O)Rf(t,6)do
Rd

= ()| o) (D')"(0/w)

Rd vi=k
1
x / k(l—y)® VD"t — yo)dy do/v!.
0
One can in fact prove by using Minkowski’s inequality that

o | f — o, x f, < const ||D”f||pf 0 9(D"0)Y(6/w)| db
Rd

[vli=k
with 1 < p < oco. Note that(D"0)v(0) = 0 for v # 0. Also, for6 £ 0,
0 9(D"0)V(0/w) — 0, w — 0.

Therefore, this lemma is true by the Lebesgue Dominated Convergence Theomm.
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Though asymptotic approximation properties are usually quantified by approximation
orders, an error estimate can be carried out in terms of a user’s requirement, say “toler-
ance.” By taking a sufficiently smadl, we can make the errdr — o,/ « f small enough
to satisfy a (given) tolerance. Then, with the fixedan approximand is sampled densely
enough to make the final error satisfy the required tolerance. The following corollary is
related to this issue:

Corollary 3.5. Let Rg be the scheme defined as (19). Suppose the coefficients
(A, £))eez for gc(-, 1) in (1.8) are admissible fofl, with n > A 4 d. Then for every
f € WE(RY) N L1(RY), we have

| f — Rz fllp < consth™* + o(w"), 1<p<oo,

whereconstis dependent on the parameter cgg

3.2. The Approximation Order of R

As a setE becomes dense, we waRg; f to better approximate the approximahdThe
basic criterion of the approximation propertiesRf is that of approximation orders.
In this section, we will observe thd&g providesspectral approximation orderghe
convergence rate of the scheme will be determined by the decay at infinfitief, by
the smoothness of the approximahy

As a matter of fact, remembering the expression

f—Ref=(0+f—Raf)+(f—0*f)

in (3.1), the errorf — o % f is computed directly by Lemma 3.4 regardless of the
schemeRz. Hence, we focus our estimate on the terji« f — Rg f. For this purpose,
we recall the expression in (3.3):

1
oy * f — Rz fllp < consth™ || f*[l1lclnsp

with

A Vv
(3.5) £ = ("‘jf> .
Pc

Here, we see that the functidrt cannot be kept, in general, boundedwgt®nds to zero
because_ 1(9) increases exponentially fast@s> oo (see (2.1) and (2.2)). However, it
will be shown in the following analysis that this phenomenon is overcome by choosing
a fixed ratiop = c/w > 0.

Exploiting the relation(gh)” = g¥ x hY, for a functionf e L;(RY), we have the

identity
o | 3 |)\<+d v
3.6 f5t) = fa—0) | =—=—1] © do
(3.6) C(x, d) Jro Kordy/2(C)
Cped \ Y
_ tt—oo (22T ) 0y do
¢, d) Jre MK d) 2
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wherec(x, d) is in (2.1) andK, ([t]) := [t|"K,(]t]) with K,(]t|) the modified Bessel
function of ordew, see (2.2). Now, let us first consider the cédse Wl“d(Rd). Denoting

. . A+d
g i= D X =[x

lei=2+d
a variant of the expression in (3.6) is as follows:
f* = pra(D) f * (00/Kirdy2(e)".
It implies that

501 < I fliavall 010/ Kovay2)” I
In a similar fashion, for a functiori € Wf(Rd) with k < A + d, we have the identity

"
= 3 o (L) .t
ahmrrd  \ Kard)2(C))

For eachr € Z9 with ||, = A +d, we can writex = 8+ (¢ — 8) with | 8|1 =k < A+d
andg <« (i =1,...,d). Then, it follows that

a—p v
(3.7) = 3 c(-)D’f *<L)

o1 =A+d K+dy/2(C)

We note that

a—p v
/ 20O ) pyde =0,
Re \ K(iydy/2(C)

and hence, it implies the equation

a—p v a—p v
I A =/ 9O ) ) (DPft — ) — DF F (1)) do.
K Gty /2(C-) RO\ Kiray2(C)
From (3.7), it leads to an estimate bf as follows:
a—f v
(L?’( ) ) ©/0)
Karay2
We observe that the above integrand is zefb4f 0, and ford # 0,

a—p v
¢ (M) 6/c) >0, c—0,

Ktd) 2

Il s 3 ded [ e ID” f(-—6)— D f 1 do.

lee|1=A+d Rd

becausei(Hd)/z e C*9-1(RY), Thus, the Lebesgue Dominated Convergence Theorem
implies that

[ f*ll1 = o9, c— 0.
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Therefore, the following lemma is established:

Lemma 3.6. Let f* be defined as i(3.5). Assume that the parameters ¢ andatisfy
the relation c= pw for a fixedp > 0. Then for every fe Wf(Rd), we have

\ 1 itk >%+d,
1171 < CO”St{o(ck*d) it k <+,

with constindependent of ¢ and, but dependent op.
Now we are ready to present the following theorem:

Theorem 3.7. Let Rg be the scheme defined ag2m9).Let the coefficientSA(t, £)):cs
for ¢c(-, 1) in (1.8) be admissible fofl, with n > A + d. Assume thatv(h) = h"
withO < r < 1, and that c= pw for a fixedp > 0. Then for every function fe
WE(RY) N WR?) with m := min(k, A + d), we have

K O(h(l—r)(n+l)+r(x+d)) if k > A+ d,
”f — Rgf ”p = O(hr )+ {O(h(l—f)(n+1)+rk) if k< A-+d.

Proof. Takingw(h) = h" with 0 <r < 1, itis immediate from Lemma 3.4 that
If—o)* flp=o0(h™)

for any functionf € W'Ff(Rd). Hence, invoking (3.1), it remains to estimate only the
termo, « f — Rg f. To this end, let us recall the inequality in (3.3):

(3.8) llo,  f — Re fllp < consth™™ | *[l1|¢cln+1,p-
For anyv € Z9, with |[v|; = n + 1, it is obvious that

D’gc = ¢"D"(p1(-/0)) = """ 1(D"p1)(-/C).
It follows from Lemma 2.1 that, for anjp|; =n+ 1,

A+d—n—-1

ID@cllp =c ID"¢allp < oo.

Therefore, choosing = ph" with 0 < r < 1, the inequality (3.8) implies the bound
o) % f — Rg flp < consth®=DOFDFGrd) £

with constindependent of the parameasndw. Applying Lemma 3.6 to this inequality,
we get the desired result. ]

Remark. The reason for our choice € (0, 1) in the above theorem is as follows:
whenk > 1 + d andw(h) = h, the approximation scheme becomes stationary; the
approximation order i + d. However, the choice(h) = h" with 0 <r < 1 induces

the nearly optimal approximation ordeth™) by taking sufficiently large for a given
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r. Of course, ifr is getting closer to 1, practically, we need to solve larger linear systems
to get the approximation powexh™). In contrast, for the cade < A + d, there is no
advantage in the choice pfe (0, 1). Hence, taking» (h) = h brings the approximation
ordero(h¥), which is in fact the best possible convergence rate. Also, in the stationary
case, the approximation power does not depend on the choice of the nu(rbr-d).

Corollary 3.8. Suppose that £ WE(R?) N WiH4(RY) with k > A + d. For a given
r € (0, 1), let the number (> A + d) be chosen to satisfy the conditiéh— r)(n +
1) +r (1 +d) > rk. Under the same conditions and notations of TheoBemwe have

I f — Rg fllp = 0o(h™).

Corollary 3.9. Assumethab(h) = hand f € WK(R?)NW['(R?) with g = min(k, A+
d). Then under the same conditions and notations of Thedefmwe have

_[omYy ifk>A+d,
”f‘REf”p—{o(hk) it k < % +d.

4. Numerical Results

In this section, we provide a numerical example concerning our schemén this
example, we approximate the function

sin(x) sin(y):|5

_ _(y2 2
(4.1) f(X,y) = —exp(—(x +y))+[ Xy

Note thatf is a smooth function, hence should be suitableificerpolation methods
Since interpolation methods have a known deteriorating performance near the boundary
of the given domain, we confined our experiment to a “central portion” of the domain.
Here are the details. A set of 200 scattered cergdsschosen randomly in the square
[—3, 3] (see Figure 4.1(a)). Then, we approximate the given funcfion (3.9) from
the spaceS:z(¢c) (i.e., we employ a suitable schen®, as defined in (2.9) and used
in the form given by the display following (2.11)). Finally, we measure the error only
on [-1, 1]°. We compare then the approximation with the benchmark method of the
surface spline interpolation. Figures 4.1(b), (c), and (d) show the contour lines of the
original function and the approximants by the surface spline interpolatiofRand@he
differences are obvious from the contour lines and the maximal absolute errors: 0.1682
by the surface spline interpolation and 0.0397Ryy In addition, one major advantage
of our scheme is that it is local in the sense that its value at a point mainly depends on
values ofp.(- — &), for thoset € E which are close to the point.
The above comparison is meaningful, since the two schemes, i.e., the surface spline
interpolation and our schenfi®; both select an approximant from a space spanned by the
E shifts of a basis function. Nonetheless, we need to stress that the above comparison,
which heavily favors our scheme, is not completely “fair”: the interpolation method
uses as input only the scattered values of the given functicd. @&ur method, in
contrast, incorporates any needed information alfioMte have conducted comparative
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experiments where both schemes use only the valudsatfz; our approach in those
experiments was still found to perform better than existing methods. In those other
experiments, however, we have tackled the “boundary effect” problem as well, thereby
implementing a more sophisticated version of Riescheme.

In fact, the approximation scheni®; can be applied to noisy data as well as noiseless
data. We refer the reader to [Y] for more examples, especially for noisy data approxi-
mation and the details of an algorithm. From the theory and experience gained with this
approximation, and in comparison with other methods, we are convinced that the new
scheme performs at least on a par with, and in many instances better than, the currently
used methods.
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